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Abstract—Deep neural networks have shown great potential
in solving various problems through machine learning. With
recent high levels of accuracy, there is a new possibility to
model and understand the human brain by running a neural
network comparable to the number of neurons and connections
in the human brain. In many cases, memory limits neural
network size. Fortunately, the human brain’s number of neurons
and sparse connections implies that we can model the human
brain as a large, sparse neural network. With the Dynamic
Distributed Dimensional Data Model (D4M) software and the
Apache Accumulo database, it is possible to store a neural
network, with as many neurons and connections as the human
brain, through the help of parallel computing in supercomputers.
This work describes a schema for storing a human brain scale
neural network. Using Graphulo, the stored neural network will
be able to execute large inference on the same scale as the human
brain.

Index Terms—sparse neural networks, human brain, Accu-
mulo database

I. INTRODUCTION

Neural networks have become larger and sparser to maxi-
mize the accuracy of machine learning [1]. Major companies
have managed to create and run large neural networks that
are reasonably accurate [2]. Still, the largest existing neural
networks have far fewer connections than the human brain
with its estimated 86 billion neurons and over 100 trillion
connections [3]-[5]. Constructing a neural network at this
scale requires massive parallel databases and schemas. The
Apache Accumulo database is designed to hold large, sparse
data and is a reasonable starting point to explore building a
human brain scale neural network [6].

With about 100 billion neurons and 100 trillion connections,
the human brain has inherent sparsity. Sparse matrices are
the result of taking regular neural network weight matrices
and setting weight values close to O to 0. This process of
approximating the weight value is equivalent to severing the
connection between the two neurons that the weight values
connected. With sparse matrices, matrices of larger dimensions
can be stored using less memory compared to denser matrices
of the same dimensions and can take advantage of sparse
matrix optimized math libraries such as the GraphBLAS [7],
[8].
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In general, the resulting sparse matrix does not guarantee
that every input node has a path to every output node.
Recently, there have been studies in generating sparse weight
matrices that have path connectedness, a property with which
every input neuron has a path connecting to every output
neuron [1]. Through the use of Radix-Net Topologies, a neural
network composed of sparse weight matrices can be carefully
monitored through the weights’ path-connectedness [9].

With Graphulo, matrix multiplication, the operation that
allows for neural network inference, can be executed inside
the Accumulo database. Using D4M, matrix multiplication
is performed through the product of associative arrays [10].
As a result, associative arrays provide an effective way to
run the forward propagation of weight matrices. However, in
order to utilize this method of forward propagation, weight
matrices need to be labeled properly. Although the brain has
been mapped through various schemas, there does not exist
a schema that has enough brain labels for all the neurons
in the brain. Since this potential model of the human brain
uses associative array multiplication, a naming scheme for
more brain regions is necessary for more efficient matrix
multiplication within the Accumulo database.

To fully insert all of the 100 billion neurons and 100
trillion connections into a database, parallel computing and
vectorization are also necessary to reduce the amount of time
it takes to ingest weights.

II. APPROACH

To partition the individual weight matrices of the human
brain into reasonable sizes, further separations are necessary.
The 100 trillion (10'%) connections could be reached by
putting approximately 300 billion (3 * 10'!) connections into
300 instances of Accumulo. Within each instance of Accu-
mulo, the 300 billion connections could be achieved through
300 weight matrices. These would be 10° by 10° weight
matrices with 1000 connections for each neuron. This means
that each weight matrix would have sparsity 10~3. Using
the Radix-Net Topology, more specifically extended from the
Extended Mixed-Radix (EMR) Topology, two of these weight
matrices are constructed with N* = (1000, 1000) [9].

In order to achieve the desired number of brain regions,
existing naming schemes were combined. For the cerebrum,
there exist many labels in the set of accessible brain images
[11]. With the usage of the different layers (types of neurons)
of the cerebrum, the number of brain regions is multiplied even



more [12]. As for the cerebellum, there exist many different
naming schemes, such as the anatomical and functional nam-
ing schemes [13]. Like the cerebrum, even more regions are
generated through the cortical layers of the cerebellum [13].
While the cerebrum has often been regarded as the portion of
the brain that deals with higher-level thinking, the cerebellum,
which is smaller in size than the cerebrum, has more than
twice as many neurons as the cerebrum [4]. As a result, the
idea of five different microzones, as seen in cats, allows us to
generate even more regions for the cerebellum and maintain
the ratio of cerebrum labels to cerebellum labels [13], [14].
Thus, to obtain a useful naming schema and ontology for
the brain, the following brain regions were used and combined:
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Once the brain regions are all created, a list of all the brain
regions allows the weight matrices to be properly labeled.
Proper labels, using consecutive elements of the brain region
list, are integral to associative array multiplication. Vectoriza-
tion allows us to reduce the number of for-loops and, as a
result, decreases the amount of time that it takes to generate
the associative array labels (row ids, column ids, and values).

Ingesting large data efficiently requires finding the optimal
number of parallel processes. We tested different numbers of
workers, which all created, labeled, and inserted the optimal
size weight matrices. To test that, we tried 1, 2, 4, and 8
workers and graphed the ingest rate. In doing so, we can
extrapolate the total time needed to ingest all of the brain
regions.

III. RESULTS

By combining the existing labels in brains with the different
layer labels, we were able to obtain 1272 brain region names.
Since these region names were obtained through the cross
sections of existing regions, each existing label was shortened
to reduce the size of the labels. For all of the brain regions,
they are separated by the left and right hemispheres. A forward
slash between the regions separates the various cross sections
for that brain region.

The 372 cerebrum region names were obtained using the
vast existing names in both hemispheres with the 6 layers
in the cerebrum. For the cerebrum, the brain regions are in
the form {hemisphere}/{anatomical region}/{layer}, using the
components listed in the top half of table 1 [11].

The 900 cerebellum region names were obtained through

cross sections of the hemispheres, functional names,
anatomical names, layers, and five suspected micro-
zones. For the cerebellum, the region names are in

the form {hemisphere}/{functional region}/{anatomical re-
gion}/{layer}/{microzone}, using the components listed in the
bottom half of table 1 [15].

By varying the number of workers, the ingest rate nearly
doubled from 2 to 4 workers. Changing from 4 to 8 work-
ers, the ingest rate increased by approximately 20%. Also,
transposing the weight matrix proved to be necessary in order
to convert the sparse matrix formatting between compressed
sparse columns (CSC), which Julia uses, and compressed
sparse rows (CSR), which is used in Accumulo.
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Fig. 1. Insert rate versus number of inserting processes

Lastly, the weight matrices were ingested with their brain
labels. As the number of workers increases, the speed of
ingesting increases due to parallel computing. In addition, by
taking the transpose (swapped) of the matrices, the matrices
are ingested in the correct format at faster rates.

IV. SUMMARY

By taking the cross sections of existing brain regions, we
can easily generate over a thousand unique brain region labels.
With these labels, we can make the row ids and column ids for
associative arrays so that large inference can be done within
the Accumulo database. Consequently, we have found a way
to create a 100 trillion connection sparse neural network with
9 x 10* path-connected weight matrices.
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