Scaling Big Data Platform for Big Data Pipeline

Rebecca Wild, Matthew Hubbell, Jeremy Kepner
MIT Lincoln Laboratory

Abstract—Monitoring and Managing High Performance Com-
puting (HPC) systems and environments generate an ever grow-
ing amount of data. Making sense of this data and generat-
ing a platform where the data can be visualized for system
administrators and management to proactively identify system
failures or understand the state of the system requires the
platform to be as efficient and scalable as the underlying database
tools used to store and analyze the data. In this paper we will
show how we leverage Accumulo, d4m, and Unity to generate
a 3D visualization platform to monitor and manage the Lincoln
Laboratory Supercomputer systems and how we have had to
retool our approach to scale with our systems.

Leveraging the 3D Data Center Infrastructure Management
(DCIM) tool built on the Unity game engine as published
in 2015 [1] has enabled the administrators of the TX-Green
supercomputer at MIT Lincoln Laboratory Supercomputing
Center, LLSC, to have an easily digestible single pane of
the current state of the systems they manage. At the time
of the original publication the TX-Green systems comprised
of 3500 IT data points and 5000 environmental sensors
outputs. The TX-Green systems were approximately 9,000
compute cores, 2PB of storage and a single core network.
The integration of monitoring the core compute assets while
having full situational awareness of the lights out data center
located 100 miles from the offices was critical to providing a
stable HPC platform for the research community. Enabling the
administration team to proactively identify potential resource
constraints, node failures, and environmental risks.

The converged DCIM platform leverages the strategies
and techniques commonly used in Big Data communities to
store, query, analyze, and visualize voluminous amounts of
data. It consist of Accumulo, MATLAB, and Dynamically
Distributed Dimensional Data Model (D4M), and Unity [2],
[3]. However, since original publication our systems have
grown significantly. In 2016 we added a 1.32 Petaflop Intel
Knights Landing system which debuted on the 2016 Top 500
list at 106 in the world [4]. This addition brought over 40,000
additional compute cores to TX-Green, an additional core
switch, and OmniPath network [5]. As part of our regular
refresh cycle we also included 75 GPU enabled systems to the
TX-Green environment, thus creating a total of four unique
computing architectures AMD, Intel, KNL, GPU requiring
separate resource queues and creating more diverse landscape
of available resources. The more than quadrupling of compute
resources and service queues pushed our DCIM architecture
to new levels.

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

Scaling our monitoring and management capabilities to
match our new computational environment gave us good
insight into the design choices and how they scaled under
real world conditions. The underlying Accumulo database
managed through the MIT SuperCloud portal technology has
been the best performer, seamlessly scaling with the added
entries and data collection fields [6]. At the time of original
publication the combined number of entries for both Node and
Data Center databases was just over 15 billion. There are now
6.9 billion entries for the Nodes database and over 31 billion
entries for the environmental building management system
database. This would be extremely taxing on a standard mysql
database. Accumulo, however, has performed exceptionally
well under these conditions as it can withstand ingest rates
of 100,000,000 entries per second [7].

The scaling of our systems extended to all aspects of
the HPC environment. With the additional computational
resources being brought online and additional queues we
expanded the number of default job slots individual users can
consume on a single run from 2048 to 8192 and allowing some
users to consume 16384 cores on special request. This results
in the base number of jobs concurrently running on the system
to be dramatically increased.

With additional queues setup for the four different archi-
tectures, new alerts were implemented to correlate to the het-
erogeneous environment of available memory, local disk, and
CPU load thresholds. As a result the growth in data collections
for each node grew substantially. The 40,000+ cores added to
the system were each reporting the jobs running, the potential
alerts and thresholds met. The one area of our processing
pipeline that was most affected by this explosion in data was
the Unity visualization platform.

The rendering of the additional nodes and game objects in
the 3D space was not impacted, however, when applying the
data to the nodes and subsequent updates the visualization
environment performance dropped off significantly. On every
update cycle the load time would stall 10+ seconds to parse
the .csv files and apply the updated data to the EcoPOD and
nodes. We applied a number of strategies to try address the
constant lagging. First, we decided to stagger the updates of
the EcoPOD and the nodes so the call was less expensive
and hopefully less noticeable to the user. This only led to
multiple slightly shorter lags in the game environment and a
more stuttered playing experience. Secondly, we tried to chunk
the updates so only a subset of the nodes would update at
a time. Unfortunately, this also did not resolve the issue as
the environment was constantly updating and the lags, while
smaller, were more frequent. We finally succumbed to the fact
that we had been carrying on too much legacy code and Unity
has made many updates since the 3.0 version we had originally

built the platform on. We decided to do a ground up rewrite of
the environment with more attention to scale and performance
Fig. 1.

Fig. 1. User perspective of the new visualization environment.

The original code was primarily written in UnityScript,
Unity’s JavaScript-like language available as an alternative
to C#. UnityScript however has no tangible advantage, little
documentation, and is in the deprecation process [10]. For
these reasons we opted to rewrite the environment using C#.

A major fault of the original environment was that it was too
modular. Every node was a game object with 4 scripts attached
each inherent from Unity’s MonoBehavior class meaning the
script has an update function called by the game engine every
frame. This is a clear source of overhead. Each frame the node
would check to see if their was new data ready to be processed.
When new data was available it retrieved this data and updated
it’s attributes and appearance. Under this model all nodes
updated concurrently causing the game engine to spend too
much time switching contexts resulting in long update times.

In the rewrite we redesigned the update procedure so that
everything would happen sequentially. Instead of having each
node update itself concurrently we created a script that to
manage all of the node updates reducing the number of scripts
attach to each node from four to zero, greatly reducing the
number of update calls per frame. When new data is ready
to be received the managing script, NodeMgr, uses utility
classes shown in Fig. 2 to load the new node data into a
Dictionary data structure, update the nodes appearance, update
the information on the display panel, and update the analytics
of the system state. By preforming a single update task on each
node sequentially we enforce spacial and temporal locality and
are able to better achieve the appearance of synchronization
than if the nodes were to update concurrently. A very similar
design model is used to update the EcoPOD.

The use of Dictionaries to store the data in key value format
and act as the aggregator to then query from within the game.
It allows us to pull the necessary request from either the end
user or the in-game analytics on demand. It also has a constant
look up time, ensuring us speed with scalability.

To retrieve data from the nodes or EcoPOD components
we use a raycast from the mouse pointer to identify the game
object, get its name, look it up in the Dictionary, and retrieve
the corresponding data. By using this approach, we eliminated

Nodes

Implaments
....._.........>.

Uses

e

T][]

Voo "
NodeMgr

Aggregate

Inherents from
MaonoBehaviour

NodeUpdater <}---"""
pd < .| +@liNodes: Dictionary<siring. Node>

& + allUsers: Dictionary<siring, User>

v

NodeScroliView

Fig. 2. Node Data Management Design Model

the need for each node to preform physics calculations for
collision detection with the mouse pointer or surrounding
game objects. This reduced the time spent calculating physics
and processing the huge push of data from the input files
directly to the assets in the game environment. The end result
was a reduction of over 5,000 method calls per frame during
an update to just three. This led to a dramatic improvement
in performance:

TABLE I
PERFORMANCE IMPROVEMENTS
Original M&M | Updated M&M
EcoPOD Update 11.26s 0.55s
Node Startup 27.19s 0.59s
Node Update 10.76s 0.65s

The performance was maintained even when we doubled
the in-game assets reflecting future expansions of an additional
data center and next generation supercomputing systems.

TABLE II
SCALING TEST RESULTS

Updated M&M | Updated M&M x2
EcoPOD Update 0.55s 0.58s
Node Startup 0.59s 0.68s
Node Update 0.65s 0.90s

By reorienting the data flow to be stored in memory and
using traditional efficient data structures to pull the data to
the game objects rather than pushed in a single update opened
up the platform to many more analytic possibilities.

By redesigning the data flow we were able to create an
efficient and scalable visualization platform granting us many
more analytic possibilities. Unity recently added support for Al
and Machine learning agents [8]. We can foresee the ability for
the game to identify conditions that could lead to component
failures and alerting the administration. This area of research
is beginning to pick up traction with the recently reported
collaboration of nlyte, a leading DCIM provider, and IBM
Watson to being identifying areas for operational efficiency

[9].

(1]

[2]

(3]
(4]
[3]

(6]

(71

[8]
[91

REFERENCES

Hubbell, Matthew, et al. ”Big Data strategies for Data Center Infras-
tructure management using a 3D gaming platform.” High Performance
Extreme Computing Conference (HPEC), 2015 IEEE. IEEE, 2015
Kepner, Jeremy, et al. "D4M 2.0 schema: A general purpose high perfor-
mance schema for the Accumulo database.” 2013 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2013.
www.unity3d.com

https://www.top500.org/green500/1ists/2016/11/

Reuther, Albert, et al. "Interactive supercomputing on 40,000 cores for
machine learning and data analysis.”” 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 2018.

Prout, Andrew, et al. “Enabling on-demand database computing
with MIT SuperCloud database management system.” arXiv preprint
arXiv:1506.08506 (2015).

Kepner, Jeremy, et al. ”Achieving 100,000,000 database inserts per second
using Accumulo and D4M.” High Performance Extreme Computing
Conference (HPEC), 2014 1EEE. IEEE, 2014
https://unity3d.com/machine-learning

Ascierto, Rhonda. Watson IoT in the datacenter; nLyte hooks into IBM
Mat 29th, 2018. 451 Research

[10] https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-oft-into-

the-sunset/

