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Performance ResultsSimulation
• Operating system equations provide a mathematical 

specification for a Tabular Operating System Architecture 
(TabulaROSA) that can be implemented on any platform

• Simulations of forking in TabularROSA are performed using an 
associative array implementation using D4M[1] and 
compared to Linux on a 32,000+ core supercomputer[2] 

• The TabulaROSA simulations show 20x higher performance as 
compared to Linux while managing 2000x more processes in 
fully searchable tables
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Overview
• The rise in computing hardware choices is driving a reevaluation of operating systems
• An operating system can be viewed as software that brokers and tracks the resources of the compute engines and is akin to a 

database management system
• To explore the idea of using a database in an operating system role, this work defines key operating system functions in terms of 

rigorous mathematical semantics that are directly translatable into database operations
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architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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