
TabulaROSA: Tabular Operating System Architecture
Jeremy Kepner1−4, Ron Brightwell5, Alan Edelman2,3, Vijay Gadepally1,2,4, Hayden Jananthan1,4,6, Michael Jones1,4, Sam Madden2,

Peter Michaleas1,4, Hamed Okhravi4, Kevin Pedretti5, Albert Reuther1,4, Thomas Sterling7, Mike Stonebraker2

1MIT Lincoln Laboratory Supercomputing Center, 2MIT Computer Science & AI Laboratory, 3MIT Mathematics Department,
4MIT Lincoln Laboratory Cyber Security Division, 5Sandia National Laboratories Center for Computational Research,

6Vanderbilt University Mathematics Department, 7Indiana University Center for Research in Extreme Scale Technologies

References:
[1] Dynamic distributed dimensional data model (D4M) database and computation system, Kepner et al, ICASSP 2012.
[2] TabulaROSA: Tabular Operating System Architecture for Massively Parallel Heterogeneous Compute Engines,
Kepner et al, IEEE HPEC 2018

Performance ResultsSimulation
• Operating system equations provide a mathematical

specification for a Tabular Operating System Architecture
(TabulaROSA) that can be implemented on any platform

• Simulations of forking in TabularROSA are performed using an
associative array implementation using D4M[1] and
compared to Linux on a 32,000+ core supercomputer[2]

• The TabulaROSA simulations show 20x higher performance as
compared to Linux while managing 2000x more processes in
fully searchable tables

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702- 15-D-0001 and National Science Foundation grants DMS-1312831 and CCF- 1533644. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering or the National Science
Foundation.

Overview
• The rise in computing hardware choices is driving a reevaluation of operating systems
• An operating system can be viewed as software that brokers and tracks the resources of the compute engines and is akin to a

database management system
• To explore the idea of using a database in an operating system role, this work defines key operating system functions in terms of

rigorous mathematical semantics that are directly translatable into database operations

Compute/Data
Intensive
Operations

Massively Parallel
Heterogeneous
Hardware

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

bob

alice

carl

cited

cited

BigDAWG

SQL NoSQL NewSQL SQL NoSQL NewSQL

Tabular
Instruction Set

Hardware
Isolation

C = A Å B C = A Ä C
C = A Å.Ä B

Process Manager

Admission Control

Connection Manager

Request
Processor

Parser

Request Rewriter

Optimizer

Executor

Shared Utilities

Memory Manager

Storage Manager

Replication Services

Admin Utilities

Transaction Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

TabulaR
Operating
System
Architecture

Dynamic Binding of
Instructions, Data &

Authorizations to
Hardware

TabulaROSA (D4M)

Operating System (Linux)

La
un

ch
es

 p
er

 S
ec

on
d

Number of Simultaneous Launches

109

108

107

106

105

104

100 101 102 103 104 105 106

TabulaROSA (D4M)

Operating System (Linux)

N
um

be
r o

f P
ro

ce
ss

es
 M

an
ag

ed

Number of Simultaneous Launches

1011

1010

109

108

107

106

105

100 101 102 103 104 105 106

2000x more
processes

20x faster

