
• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 181

Software Technologies for
High-Performance Parallel
Signal Processing
Jeremy Kepner and James Lebak

■ Real-time signal processing consumes the majority of the world’s computing
power. Increasingly, programmable parallel processors are used to address a wide
variety of signal processing applications (e.g., scientific, video, wireless, medical,
communication, encoding, radar, sonar, and imaging). In programmable
systems the major challenge is no longer the speed of the hardware but the
complexity of optimized software. Specifically, the key technical hurdle lies in
mapping an algorithm onto a parallel computer in a general manner that
preserves performance while providing software portability. We have developed
the Parallel Vector Library (PVL) to allow signal processing algorithms to be
written with high-level mathematical constructs that are independent of the
underlying parallel mapping. Programs written using PVL can be ported to a
wide range of parallel computers without sacrificing performance. Furthermore,
the mapping concepts in PVL provide the infrastructure for enabling new
capabilities such as fault tolerance and self-optimization. This article discusses
PVL with a particular emphasis on quantitative comparisons with standard
parallel signal programming practices.

R - is critical to a
wide variety of applications, including radar
signal processing, sonar signal processing,

digital encoding, wireless communication, video
compression, medical imaging, and scientific data
processing. These applications feature large and grow-
ing computation and communication requirements
that can be met only through the use of multiple pro-
cessors and fast low-latency networks. A balance be-
tween computation and communication is one of the
key characteristics of this type of processing. Ad-
vanced software techniques are needed to manage the
large number of processors and complex networks re-
quired and achieve the desired performance.

Military sensing platforms employ a variety of sig-
nal processing systems at all stages: initial target de-
tection, tracking, target discrimination, intercept,

and engagement assessment. Although high-perfor-
mance embedded computing is widely used through-
out commercial enterprises, the Department of
Defense (DoD) often has the most demanding re-
quirements, particularly for radar, sonar, and imaging
sensor platforms. Figure 1 shows many of these plat-
forms, along with a graph that illustrates the growth
in computational requirements for future real-time
signal processing applications. The challenge for these
systems is the cost-effective implementation of com-
plex algorithms on complex hardware. This challenge
is made all the more difficult by the need to stay
abreast of rapidly changing commercial off-the-shelf
(COTS) hardware. The key to meeting this challenge
lies in utilizing advanced software techniques that al-
low new hardware to be inserted while preserving the
software investment.

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

182 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

FIGURE 1. Military platforms are among the largest drivers
of embedded real-time signal processing applications. De-
partment of Defense (DoD) systems in the 2010 time frame
are projected to require multiple teraflops of computation.

The standard approach to writing high-perfor-
mance signal processing applications has been to use
vendor-supplied computation and communication li-
braries that are highly optimized to a specific vendor
platform and guaranteed to deliver the highest pos-
sible performance. Unfortunately, this approach usu-
ally leads to software that is difficult to write, is not
compatible with other platforms, and is dependent
on the number of processors on which the application
is deployed.

The Parallel Vector Library

Our answer to the challenge of writing reusable soft-
ware has been to develop the Parallel Vector Library
(PVL). The major goals of the library are (1) to make
the job of writing distributed signal processing soft-
ware easier, (2) to provide for portability of applica-
tion level code, (3) to separate the job of mapping dis-
tributed data and computations from the job of signal
processor development, and (4) to achieve high per-
formance on many different parallel platforms.

The primary technical challenge in deploying par-
allel processing systems is the assignment of different
parts of the algorithm to processors in the parallel
computing hardware. This process, illustrated in Fig-
ure 2, is referred to as mapping. The mapping of an
application needs to be optimized for each system the
application runs on. Thus, for a program to run on a
variety of systems, the algorithm description must not
depend on details of the parallel hardware; that is, it
must be map independent.

Map independence is an important element of
portability that goes beyond the simple, standards-
based portability of recent efforts. Standards such as
the Message-Passing Interface (MPI) [1] and the Vec-
tor, Signal, and Image Processing Library (VSIPL) [2]
provide a portable interface to parallel applications,
that is, one that is the same for different platforms.
However, unless special care is taken with the design
of a program using MPI and VSIPL, the application
code must be modified every time the number of
hardware elements used changes, as illustrated in Fig-
ure 3. Such modifications may be required, for ex-
ample, when moving the application program from a
single-processor prototyping environment to a full-
scale deployed parallel system, or when moving an ap-

19951990 2000 2005 2010
0.001

0.01

0.1

1

10

100
Projected
growth

Near-term
applications

Year

Te
ra

flo
ps

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 183

FIGURE 2. Parallel mapping is the process of assigning different parts of an algorithm to separate processing el-
ements in the parallel-computing hardware. Mapping needs to be optimized for each system the application runs
on. Here a three-stage pipeline, consisting of a beamformer, a finite impulse response (FIR) filter, and a detector,
is mapped to distinct sets of processors in a parallel computer. A program that runs on a variety of systems, and
doesn’t depend on the specific details of the parallel hardware implementation, is said to be map independent.

plication from one generation of technology to an-
other. PVL avoids the need for such modifications
through the concept of map independence.

Map independence is achieved by raising the level
of abstraction at which signal processing applications

are written. In current practice, it is common for the
application writer to have to deal with multiple ob-
jects describing the same memory area. For example,
a buffer containing a vector may need an MPI object
for communication operations and a VSIPL object

FIGURE 3. The challenge of portability and scalability in parallel systems. Consider a basic al-
gorithm and mapping, where Stage 1 is mapped to processor nodes 1 and 2 and sends data to
Stage 2, which is mapped onto nodes 3 and 4. Existing software approaches typically hard-
code the processor mapping information directly into the application, and thus require signifi-
cant changes to run the application on a different number of processors. When processor
nodes 5 and 6 are added to Stage 2, the code for the new mapping must be modified, as shown
above. The challenge is to create algorithms that are map independent, and don’t need modifi-
cations when moved to different processing systems.

Parallel computer

Mapping

Signal processing algorithm

Beamform
Xout = W*Xin

Filter
Xout = FIR(Xin)

Detect
Xout = |Xin|> c

Code for mapping 1

Stage 1

Algorithm + Mapping

Processor
1

Processor
2

Stage 2

Processor
3

Processor
4

Processor
5

Processor
6

while (!done)
{
 if (rank ()= =1|| rank()= =2)
 stage 1();
 else if (rank ()= =3|| rank()= =4)
 stage 2();
}

while (!done)
{
 if (rank ()= =1|| rank()= =2)
 stage 1();
 else if (rank ()= =3|| rank()= =4)||
 rank ()= =5|| rank()= =6)
 stage 2();
}

Code for mapping 2

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

184 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

FIGURE 4. Evolution of the parallel vector library (PVL). Over the past decade, there has been a continuous tran-
sition of computing technology from non-real-time scientific computing to the real-time domain, and the devel-
opment focus has shifted from procedural languages such as Fortran to object-oriented languages such as C++.
Thus much of the functionality of the Fortran-based linear algebra package (LAPACK) was made suitable for em-
bedded computing in the Vector, Signal, and Image Processing Library (VSIPL). The deployment of the Mes-
sage-Passing Interface (MPI) made possible the development of the Fortran-based scalable version of LAPACK,
called ScaLAPACK. PVL, which evolved from the earlier C-based parallel Space-Time Adaptive Processing Li-
brary (STAPL), builds on MPI and VSIPL in a way analogous to the way ScaLAPACK builds on MPI and
LAPACK, also incorporating new object-oriented technologies such as those in the portable expression tem-
plate engine (PETE) that makes mathematical programming easier and more efficient.

for computation operations. Coordinating these de-
scriptions can be a tedious and error-prone task. PVL
provides objects useful for both computation and
communication, and handles the coordination of
these operations without explicit direction from the
application programmer. This coordination has the
added benefit of making the job of writing distrib-
uted signal processing software easier.

PVL is based on earlier work on the Space-Time
Adaptive Processing Library (STAPL), which was
used to field a 1000-CPU embedded signal processor
[3]. PVL incorporates the lessons learned from the
STAPL project into a new object-oriented library
written in the C++ programming language. C++ was
selected because of its growing acceptance in the em-
bedded community and its powerful abstraction ca-
pabilities that allow more to be done with fewer lines

of code. Figure 4 shows how PVL’s capabilities build
on industry standards and previous libraries. The base
version of PVL is actually built on the open standards
of VSIPL and MPI to provide an added level of port-
ability. PVL has been successfully implemented on a
wide range of workstation, cluster, and embedded ar-
chitectures, as illustrated in Figure 5.

In summary, PVL achieves its goals of increasing
productivity and portability by allowing the indepen-
dence of map and application and increasing the level
of abstraction. We discuss the implementation of
these concepts in more detail in the following section
on the PVL programming model. The subsequent
section on PVL performance shows how we achieve
these goals without sacrificing our primary goal of
high performance. A later section describes ongoing
research involving PVL.

Parallel
processing

library

Parallel
communications

Single
processor

library

Applicability

Scientific (non-real-time) computing

Real-time signal processing

STAPL

PVL

VSIPL

PETE

MPI

LAPACK

ScaLAPACK

• Fortran
• Object-based

 • Fortran

• C
• Object-based

• C
• Object-based

• C
• Object-based

• C++
• Object-oriented

• C++
• Object-oriented

Time

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 185

FIGURE 5. PVL layered architecture. The main purpose of a software library as middleware is to insulate the
application from the hardware. The user writes an application in the high-productivity layer. The middleware
implements constructs necessary to deliver high performance on parallel computers. The portability of the
middleware is achieved by isolating the hardware-specific details to a math kernel such as VSIPL and a mes-
saging kernel such as MPI.

Application
(productivity) Input Analysis Output

Vector/matrix Computation Conduit Task

User interface

MapGrid DistributionParallel Vector Library
(performance)

Hardware
(portability)

Workstation

Intel cluster
PowerPC

cluster

Embedded
multi-computer

Embedded
board

Math kernel (VSIPL) Messaging kernel (MPI)

Hardware interface

The PVL Programming Model

Real-time signal processing applications generally
make use of two types of parallelism. The first is data-
parallel operations on vectors and matrices, which
means operating on a vector or matrix that is itself
distributed. The second is task-parallel operation,
which may be used to construct pipelines or to pro-
cess incoming data sets in a round-robin fashion. A
PVL program can make use of both of these types of
parallelism.

The core capability of PVL is that of assigning, or
mapping, the portions of a parallel program to be ex-
ecuted on or stored in specific components of the
machine. The assignment information is contained in
a map object. PVL programs are written using four
user-level signal processing and control objects: data
objects (i.e., vectors and matrices), computations,

tasks, and conduits. These objects are illustrated in
Figure 6. The mapping of the user-level objects to
processors is controlled by the mapping objects
shown in the same figure.

In broad terms, users obtain task parallelism by
writing an application as a set of tasks and conduits. A
task represents a scope for a particular computation
stage; the effect of multiple tasks is to allow different
processor groups to perform different computations
at the same time. Within a task, operations are per-
formed with vectors, matrices, and computations,
using a single-program multiple-data paradigm that
allows for data parallelism. Conduits allow communi-
cation of data objects between different scopes or
tasks.

The overall effect of these objects is to make it pos-
sible to write multistage algorithms independent of
the underlying hardware. For example, a simple data

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

186 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

parallel implementation of a basic frequency-domain
filter can be constructed, as shown in Figure 7(a). A
complete filtering system can then be constructed by
inserting the basic filtering algorithm into a task and
adding appropriate input tasks and output tasks con-

nected by conduits, as shown in Figure 7(b). In each
case, the application code does not include any refer-
ences to the number of processors being used and can
therefore be mapped to any parallel architecture.

In the following sections, we give more detail re-

FIGURE 7. (a) Development of a basic frequency-domain filtering application, using an FFT and an inverse FFT (IFFT)
on input data. PVL vector/matrix and computation objects allow signal processing algorithms to be implemented
quickly by using high-level constructs. (b) PVL tasks and conduit objects allow complete filtering systems to be built.

FFT

IFFT Xout

Files

Input task Analysis task: Xout = IFFT[W*FFT(Xin)] Output task

Input
conduit

Output
conduit

Xout

Files

File

FFT

IFFT Xout

(a)

(b)

File

Xin

W

Xin

W

Xin

W

FIGURE 6. PVL objects. PVL is based on four basic user-level signal processing and control objects
(highlighted in color): vectors and matrices, computations (for example, a fast Fourier transform, or
FFT), tasks, and conduits. Each of these is independently mappable onto a grid of processors.

S
ig

n
al

 p
ro

ce
ss

in
g

 a
n

d
 c

o
n

tr
o

l
M

ap
p

in
g

Data and
task

Data

Task and
pipeline

Task and
pipeline

Data, task,
and pipeline

ParallelismDescriptionClass

Used to perform matrix/vector algebra on data
spanning multiple processorsVector/matrix

Performs signal/image processing functions on
matrices/vectors (e.g., FFT, FIR, QR decomposition)Computation

Supports algorithm decomposition
(i.e., the boxes in a signal flow diagram)Task

Specifies how tasks, vectors/matrices, and
computations are distributed on processorsMap

Supports data movement between tasks
(i.e., the arrows on a signal flow diagram)Conduit

Organizes processors into a two-dimensional layoutGrid

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 187

garding the mapping, data parallel features, and task
parallel features of PVL.

Maps

Maps consist of a set of processor nodes and a descrip-
tion of how those nodes are to be used. Objects that
can have a map are called mappable. There are three
general classes of mappable type, and three corre-
sponding types of maps. User functions, data, and
calculations are represented in the library by tasks,
distributed data objects, and distributed computation
objects, respectively. Conduits are not themselves
mappable types, but each endpoint of a conduit is a
task object.

The map contains all information specific to how
the object is placed onto the processors. Within each
map is a two-dimensional grid with a specific list of
nodes and a distribution description specific to the
type of object. For example, a distribution description
for a data object such as a matrix or vector determines
how data are to be distributed among processors
(block, cyclic, or block-cyclic) and includes an over-
lap description that describes whether elements

should be duplicated on multiple processors (this
may be done, for example, to support boundary con-
ditions). Figure 8 shows the structure of a map object.

Data Parallel Operations

A PVL application program performs mathematical
operations on distributed data objects (matrices and
vectors). These operations are written at a high level,
using mathematical expressions. Objects are assigned
to particular nodes by using the map object. The dis-
tribution descriptions for data objects allow the user
to specify an arbitrary block-cyclic distribution for
each matrix or vector. (For a complete description of
the block-cyclic data distribution, see the high-per-
formance Fortran specification [4].)

As an example, Figure 9 shows three simple distri-
butions of a vector of length eight: (a) a block distri-
bution on three processors, (b) a block distribution
over two processors, and (c) a cyclic distribution over
four processors. The application program does not

FIGURE 8. Structure of a PVL map object. All PVL user ob-
jects contain a map. Each map is composed of three compo-
nents: a grid, a distribution description, and an overlap de-
scription. Within the grid is the list of physical nodes onto
which the PVL object is mapped.

FIGURE 9. Example distributions of a vector of length eight:
(a) block distribution on three processor nodes, (b) block
distribution on two processor nodes, (c) cyclic distribution
on four processor nodes.

Map

Grid

Vector/matrix Computation Conduit Task

Distribution Overlap

List of nodes
(e.g., {0, 2, 4, 6, 8, 10})

(a)

(b)

A0A A1 A2 A3 A4 A5 A6 A7

B0B B1 B2 B3 B4 B5 B6 B7

(c)

C0C C1 C2 C3 C4 C5 C6 C7

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

188 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

explicitly specify the distribution, but merely includes
a reference to the map, which is itself stored in an ex-
ternal file. The map can be changed without chang-
ing the application code. Also, vectors or matrices
used in an expression are not required to have the
same distribution. In the expression C = A + B, the
vectors A, B, and C are not required to be distributed
in the same way (though there may be compelling
performance advantages to doing so).

PVL computation objects allow complex opera-
tions such as a fast Fourier transform (FFT) to be set
up in advance and to be executed in a parallel man-
ner. Advance setup, or early binding, of computation
is common practice in embedded signal processing.
As with computation objects (such as the FFT) in
VSIPL, distributed computation objects provide a
convenient place for the library to store constants and
precalculated data without exposing them to the ap-
plication programmer.

Furthermore, these objects allow computations to
be mapped to special-purpose hardware, and they
manage the communication into and out of that
hardware. The map associated with the distributed
computation object specifies where the computation
takes place. It may also specify characteristics of the
algorithm to be used to perform the computation; for
example, the particular FFT algorithm to be used
may be specified in the map of an FFT object.

Task Parallel Operations

A PVL program consists of a set of tasks connected by
conduits. Within a task, an application is written us-
ing distributed matrix and vector objects as previ-
ously described. Operations within a task are written
using a single-program multiple-data paradigm. Dis-
tributed data objects are communicated between dif-
ferent tasks by using conduits. An individual data ob-
ject exists only in the scope of one particular task at a
time; by using a conduit, the data contained in these
items can be sent to and received from other tasks in a
non-blocking way, possibly with multibuffering. The
use of the conduit abstraction separates the applica-
tion programmer from the details of the communica-
tion service being used, and provides more opportu-
nity to optimize the communication operation.

Conduits are critical because, in many signal pro-

cessing applications, the primary challenge is not per-
forming the computations but moving data so that
the data are in a position to be acted upon. One of the
most common examples of this data movement is the
corner turn operation, which, in its simplest form,
can be described as a matrix transpose operation. This
operation is performed on almost every system with
multiple input channels (such as radar, sonar, and
communications); typically, processing within a par-
ticular channel is followed by processing that cuts
across channels.

For a two-dimensional data object, a corner turn is
necessary when two consecutive operations require
access to data in different ways, one by rows and one
by columns. A corner turn between the two opera-
tions permits each operation to operate on data stored
in a favorable access pattern, maximizing memory
performance. In a local corner turn, data associated
with an object are merely moved in memory. In a dis-
tributed corner turn, all-to-all communication be-
tween processor groups may be required in addition
to local data movement. By using the conduit object,
the corner turn is no more difficult for the program-
mer to orchestrate than any other data movement.

Efficient performance of a collective communica-
tion operation requires a considerable amount of
setup or early binding of communication. At pro-
gram setup time, a PVL application program specifies
the tasks that each conduit connects. During this
connection operation, the PVL conduit object can
compute in advance the source and destination of all
messages, set up all necessary buffers, create multiple
buffers if necessary, and set up special hardware for
communication.

PVL Benefits

PVL supports both task and data parallelism. Data
parallelism is a well-understood way to achieve speed-
up for dense matrix calculation. The major benefit of
PVL’s task-parallel features is that the stages may be
run on separate hardware (for example, separate pro-
cessors of a parallel machine). By breaking the system
up into multiple stages, the system designer gains an
extra level of parallelism. This process, which is re-
ferred to as pipelining, allows customization of the
system resources for each individual stage. An alterna-

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 189

tive approach would be to have all the system re-
sources work on an individual data set in turn, before
going on to the next one. The latency for each indi-
vidual data set processed by the system will probably
be greater in the pipelined scheme than in the uni-
form processing scheme. However, an increase in
throughput is attained with the pipelined approach
because several data sets are being processed at the
same time. In addition, gains in efficiency may be re-
alized because of the smaller number of processing re-
sources assigned to each stage, and because communi-
cation may occur concurrently with computation.

Another major benefit of PVL is the portability
and reusability of software modules. Beyond the obvi-
ous benefits for technology refresh and system up-
grades, this eases system development, because appli-
cation writers can gradually introduce parallelism. An
application may be tested with single-processor maps
and then retested with the maps for a parallel proces-
sor after the code has been verified. The separation of
application and mapping also makes it easier to de-
bug on inexpensive platforms such as networks of
workstations, reducing contention for embedded tar-
get hardware.

From a software engineering perspective, the use of
tasks and conduits in the PVL programming model
provides an effective framework for integrating mod-
ules developed by different software engineers. Appli-
cation developers can concentrate on the signal pro-
cessing and linear algebra requirements of their piece
of the algorithm independently of other pieces.

Performance Results

Parallel machines have various complex memory hier-
archies, and the capabilities of the individual proces-
sors vary greatly from machine to machine. Ideally,
mapping the application to the hardware should be
entirely separate from the application code writing.
As we have described, PVL uses abstractions to hide
the details of single-processor computation and the
transfer of data between processors, allowing the ap-
plication to become scalable to different numbers of
processors. These same abstractions therefore provide
for portability of the application between different
parallel machines or succeeding generations of the
same parallel machine.

Use of a high level of abstraction may have two ef-
fects on performance. High-level objects may intro-
duce overhead and reduce performance; however, a
high level of abstraction may also enable library opti-
mizations to be hidden from the application pro-
grammer. In this section, we describe the perfor-
mance of PVL from both of these perspectives. First,
in the following subsection, we demonstrate that PVL
does not introduce an unacceptable amount of com-
putational overhead for complex FFT operations.
Then, in the subsequent subsection, we demonstrate
that the level of abstraction introduced in PVL can
result in improved performance in some cases.

Abstraction and Overhead

A major goal of PVL is that a reasonably mapped ap-
plication should be able to achieve performance close
to that which can be achieved by native mathematical
and message-passing libraries on a given platform. To
examine our success in this goal, we measured the
amount of overhead PVL adds to an optimized FFT
operation. This section describes these performance
results in more detail.

Understanding the PVL FFT. The use of the PVL
FFT can be divided into three phases: declaration,
setup, and execution. The distinguishing characteris-
tics of the PVL FFT are that the input vector and the
output vector each have a map associated with them
that describes how they are distributed, and that, in
addition, a computation map is associated with the
FFT object that can be different from either the input
or the output vector map. The computation map de-
scribes how and where the computations take place.

Methodology. We measured computation times for
out-of-place complex-to-complex vector FFT opera-
tions using vectors of length L = 2n, n ∈ {8, 9, …, 14}
(i.e., L ranged from 256 to 16,384). These numbers
were picked because they reflect a good range of inter-
est for the embedded processing space. Each function
of interest was run a given number of iterations and
the total time was recorded. The first iteration was
not counted because cache effects were likely to be
most pronounced the first time the function was
called. Measured times considered only the computa-
tion portion of the program, and did not include time
to create or construct the FFT object, allocate

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

190 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

memory for the vectors, or perform other functions.
Computation rates were calculated by assuming 5nL
floating-point operations per complex FFT. In all
cases we ran the measurement program six times, av-
eraged the time over a thousand iterations each time,
and used the minimum of the six results.

FIGURE 10. Overhead for PVL fast Fourier transform (FFT)
execution time, relative to that of the Fastest Fourier Trans-
form in the West (FFTW) library for vectors of various
lengths. In all cases the overhead is less than 2%.

FIGURE 11. C++ expression templates. C++ typically requires the use of temporary variables in order to write high-level
mathematical expressions. Obtaining high performance from C++ requires technology such as expression templates
that eliminate the normal creation of temporary variables in an expression.

Performance Results. The PVL FFT object whose
performance is measured here used the Fastest Fourier
Transform in the West (FFTW) library [5]. Because
this library is a collection of self-optimizing FFT rou-
tines that has been shown to outperform vendor-opti-
mized libraries in some cases, we can be confident
that it represents a well-performing FFT operation.
Figure 10 shows the execution time of PVL relative to
FFTW. It is clear that PVL adds very little overhead
to the underlying FFTW call.

Abstraction and Optimization

PVL is implemented by using the C++ programming
language, which allows the user to write programs us-
ing high-level mathematical constructs such as

A B C D= + ∗ ,

where A, B, C, and D are all distributed vectors or
matrices. Such expressions are enabled by the opera-
tor overloading feature of C++ [6]. A naive imple-
mentation of operator overloading in C++ results in
the creation of temporary data structures for each

1.020

1.016

1.012

1.008

1.004

1.0
256 1024 4096 16384

Vector length

R
el

at
iv

e
pe

rf
or

m
an

ce
 o

f
P

V
L

Operator +

Main

Operator =

Pass expression tree
reference to operator

Calculate result and
perform assignment

Pass B and C
references to
operator +

Create expression
parse tree

Return expression
parse tree

AB + C

1.

2.

3.

4.

5.

B&

C&

B& C&

copy

copy &

Expression

A = B + C

Binarynode<opassign, vector,
Binarynode<opadd, vector,
 vector >>

Parse tree Expression type

Expression

templates

=

A +

B C

Parse trees, not vectors, created

+

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 191

substep of the expression, such as the intermediate
multiply C D∗ , which can result in a significant per-
formance penalty. This penalty can be avoided by the
use of expression templates, which allow the compiler
to analyze a chained expression and eliminate the
temporary variables. A tool called the Portable Ex-
pression Template Engine (PETE), developed by the
Advanced Computing Laboratory at the Los Alamos
National Laboratory, allows easy generation of ex-
pression template code for user-defined types. Figure
11 illustrates this process for the simpler expression
A = B + C. In many instances it is possible to achieve
better performance with expression templates than
with standard C-based libraries because the C++ ex-

pression-template code can achieve superior cache
performance for long expressions [7].

Figures 12, 13, and 14 show the performance PVL
obtained with three different templated expressions
on an eight-node processor cluster. For long expres-
sions, PVL code that uses templated expressions is
able to equal or exceed the performance of existing
signal processing libraries (VSIPL and MPI).

Advanced Research and Future Work

This section describes some of the current research
work being done to add new capabilities to PVL in
the areas of fault tolerance, self-optimization, and dy-
namic parallelism.

FIGURE 12. Comparison of single-processor performance of VSIPL (C), PVL (C++) on top of VSIPL (C), and
PVL (C++) on top of the Portable Expression Template Engine (PETE) (C++) for three different expressions with
different vector lengths. PVL with VSIPL or PETE is able to equal or improve upon the performance of VSIPL.

0.6

0.8

0.9

1.0

1.2

0.7

1.1

0.8

0.9

1.1

1.0

0.9

1.0

1.1

1.2

1.3

Vector length

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

1.2
VSIPL
PVL/VSIPL
PVL/PETE

A = B + C A = B + C*D A = B + C*D/E + FFT(F)

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

VSIPL
PVL/VSIPL
PVL/PETE

VSIPL
PVL/VSIPL
PVL/PETE

FIGURE 13. Comparison of multiprocessor (no communication) performance of VSIPL (C), PVL (C++) on top of
VSIPL (C), and PVL (C++) on top of PETE (C++) for three different expressions with different vector lengths.
PVL with VSIPL or PETE is comparable to or better than the performance of VSIPL.

0.6

0.8

0.9

1.0

1.4

1.2

1.3

0.7

1.1

0.9

1.0

0.9

1.0

1.3

1.5

1.1

1.2

1.4

Vector length

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

1.1

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

C
C++/VSIPL
C++/PETE

C
C++/VSIPL
C++/PETE

C
C++/VSIPL
C++/PETE

A = B + C A = B + C*D A = B + C*D/E + FFT(F)

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

192 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

FIGURE 15. Dynamic mapping for fault tolerance. The separation of mapping from the algorithm allows the appli-
cation to adapt more easily to changing hardware by modifying mapping at runtime. Remapping a matrix, for ex-
ample, allows the program to react to failed processors and assign the work load to a spare processor, without re-
quiring any fundamental change in the signal processing algorithm.

FIGURE 14. Comparison of multiprocessor (with communication) performance of VSIPL (C), PVL (C++) on top
of VSIPL (C), and PVL (C++) on top of PETE (C++) for three different expressions with different vector lengths.
PVL with VSIPL or PETE is comparable to the performance of VSIPL.

Fault Tolerance and Dynamic Mapping

One of the key challenges in bringing massively paral-
lel computing to real-time signal processing is how to
implement fault-tolerance capabilities in software.
Signal processors need to be able to adjust quickly to
processor failure so that they can continue to carry
out their mission. The simplest approach is to double

or triple the size of the computer and use a redundant
voting scheme. Unfortunately, there are many situa-
tions in which this solution is too costly or the system
is physically too large. In addition, this type of redun-
dancy will not catch certain errors.

In theory, massively parallel systems present an op-
portunity for greatly increasing the fault tolerance of
the system by adding only a few additional proces-

Parallel processor Spare

Failure

Nodes: 0, 1
Grid: 2 × 1
Distribution: rows

Map0

Nodes: 0, 2
Grid: 2 × 1
Distribution: columns

Map1

Nodes: 1, 3
Grid: 2 × 1
Distribution: columns

Map2

Input task

Xin

Output task

Xout

C
C++/VSIPL
C++/PETE

0.8

0.9

1.1

1.0

0.9

1.0

0.9

1.5

1.0

Vector length

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

1.1

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

Vector length

8 32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

C
C++/VSIPL
C++/PETE

C
C++/VSIPL
C++/PETE

A = B + C A = B + C*D A = B + C*D/E + FFT(F)

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 193

sors. Exploiting this capability requires software that
can abstract the functionality of the program away
from the hardware and allow processing tasks to be
easily moved from one processor to another. In terms
of the PVL library, the fault-recovery problem can be
summarized as finding an efficient and dynamic way
to give an object a new map after a failure has been
detected, as illustrated in Figure 15.

We have implemented three fault-recovery strate-
gies that solve this problem in different ways. In the
first, referred to as remapping, the task object is de-
stroyed and rebuilt from scratch on a new set of
nodes. In the second strategy, referred to as redundant
objects, a task object is built for each different possible
failure scenario, and the appropriate object is used
when a fault is detected. In the third strategy, the li-
brary allows a task to be mapped to a larger set of pro-
cessors and only a subset is used at any given time.
The set of nodes associated with the object can dy-
namically change to be a new subset of the larger set.
This strategy is referred to as rebinding.

These three strategies have different effects on the
complexity of the application (in terms of memory
use and code size) and the performance of the appli-
cation (in terms of samples processed per second).
The remapping strategy is the least complicated of the
three, but has the largest performance impact. The re-
dundant object strategy has the best performance of
the three, but is very complicated for the application
programmer. The rebinding strategy puts the burden
of complexity on the library developer and offers bet-
ter performance than the remapping strategy. A more
detailed description of our results in this area can be
found elsewhere [8].

Self-Optimization

PVL allows algorithm concerns to be separated from
mapping concerns. However, the issue of determin-
ing the mapping of an application has not changed.
As a software application is moved from one piece of
hardware to another, the optimal mapping needs to
change, as illustrated in Figure 16. Currently, people

FIGURE 16. Optimal mapping challenge. Real applications can easily involve several complicated processing
stages with potentially thousands of mapped vectors, matrices, and computations. The maps that produce the
best performance will change, depending on the hardware. Automated capabilities are necessary to generate
maps and to determine which maps are optimal.

Application

Different optimal maps

Workstation

Intel cluster
PowerPC

cluster

Embedded
multicomputer

Embedded
board

Xin

Input

W1

Xin FIR1 FIR2 Xout

W2

Low-pass filter

W3

Xin * Xout

Beamform Matched filter

W4

Xin FFT

IFFT Xout

Hardware

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

194 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

FIGURE 18. S3P performance. The S3P framework is tested on two different problem sizes in a four-stage appli-
cation with two different criteria: minimize latency for a given number of processors and maximize the through-
put for a given number of processors. In all cases S3P picks the correct mapping, as shown by the four-compo-
nent processor assignment string, and predicts the performance of the best map to within a few percent.

with knowledge of both the algorithm and the paral-
lel computer use intuition and simple rules to try to
estimate what the best mapping will be for a particu-
lar application on a particular hardware. Unfortu-
nately, this method is time consuming, labor inten-
sive, and inaccurate, and it does not in any way
guarantee an optimal solution.

The generation of optimal mapping is an impor-
tant problem because without this key piece of infor-
mation it is not possible to write truly portable paral-
lel software. To address this problem, we developed a
framework called Self-optimizing Software for Signal
Processing (S3P) [9].

The S3P framework, which is illustrated conceptu-
ally in Figure 17, requires certain capabilities from an
application. First, the application must be made of

FIGURE 17. Self-optimizing Software for Signal Processing
(S3P). This framework combines the dynamic mapping ca-
pabilities found in PVL with the self-optimizing software
techniques developed in FFTW. The resulting framework al-
lows an optimal mapping to be found automatically for any
application on any parallel architecture. Each available path
is a complete system mapping, and the best path (shown in
green) is the optimal system mapping.

Number of processors

La
te

nc
y

(s
ec

)

Large (48 × 128k)Small (48 × 4k)

T
hr

ou
gh

pu
t (

fr
am

es
/s

ec
)

4 5 6 7 8 4 5 6 7 8

25

20

15

10

0.25

0.20

0.15

0.10

1.5

1.0

0.5

Predicted
Achieved

Predicted
Achieved

Predicted
Achieved

Predicted
Achieved

5.0

4.0

3.0

2.0

Number of processors

1-1-1-1

1-1-1-1

1-1-1-1
1-1-1-1

1-1-2-1

1-2-2-1

1-2-2-2 1-3-2-2

1-1-2-1

1-1-2-2

1-2-2-2
1-3-2-2

1-1-1-2

1-1-2-2

1-2-2-2
1-2-2-3

1-1-2-1

1-2-2-1

1-2-2-2
2-2-2-2

La
te

nc
y

(s
ec

)
T

hr
ou

gh
pu

t (
fr

am
es

/s
ec

)

Beamform Filter Detect

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 195

tasks that are capable of being mapped to multiple
configurations of hardware. Furthermore, each task
needs to be able to measure its computing resources
(e.g., number of processors, memory, execution time)
in each configuration. Given these capabilities, S3P
can assemble a system graph that contains all possible
mappings and find the best path through this graph,
which corresponds to the optimal mapping. Because
the resource measurements are empirical there is no
need for ad hoc modeling, and the entire process is au-
tomatic. This framework has been tested on different
problem sizes and with different criteria, and it is able
to pick the correct mapping and to predict the perfor-
mance of the best map to within a few percent. Figure
18 shows S3P performance for two problem sizes and
two performance criteria—latency and throughput.

In each example, S3P finds the correct mapping and
clearly predicts the achieved performance.

Dynamic Load Balancing

Another key area for continued development is the
need to be able to address problems where the work
load is dynamic. A typical example of this is post-de-
tection processing in a signal processing system in
which the amount of work done is proportional to
the number of targets found. This situation is diffi-
cult to address with a parallel computer because it is
not possible to predict how to distribute the data so
that the workload is even.

The challenge presented by dynamic work loads is
classically described by the “balls into bins” problem.
Typically data in a signal processing system are dis-

FIGURE 19. The problem of dynamic load balancing. A typical signal or image processing pipeline, shown in the upper
row, begins by performing many regular operations such as detection that depend only upon the size of the input data, fol-
lowed by additional operations such as estimation that depend upon the precise location of objects of interest within the
data. The detection processing lends itself naturally to parallel computing by statically chopping up the data into equal re-
gions, as shown in the lower row. This partition of the data results in a balanced work load among the parallel processors.
The estimation processing, however, is dynamic in nature and a static distribution leads to unbalanced work loads on the
parallel processors. Researchers are seeking solutions that dynamically distribute the work load among the processors on
an as-needed basis.

Image processing pipeline

 0.13

 0.15

 0.24

 0.97

 0.08 0.11

 0.30

 0.10

Work load is static,
and proportional
to the number of

pixels in the image

Detection Estimation

Static parallel implementation

 0.13

 0.15

 0.24

 0.97

 0.11

 0.30

 0.10
 0.08

Work load is dynamic,
and proportional
to the number of

detections in the image

Work load is
balanced

Work load is
unbalanced

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

196 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

tributed uniformly on a parallel processor, but targets
or detections are randomly distributed in these data,
which results in some processors having more work
than others. The nonuniformity of the distribution of
work can quickly lead to the vast majority of proces-
sors being idle while the application waits for one
processor to finish working. Figure 19 illustrates this
problem with an image processing pipeline, showing
how a static parallel implementation results in an un-
balanced work load. The solution to this problem lies
in the ability to dynamically distribute the work on
an as-needed basis. Figure 20 shows how a dynamic
distribution can dramatically improve processing effi-
ciency, compared to static distribution. This improve-
ment becomes particularly significant as the number
of processors increases. A variety of technologies are
useful in making this type of solution feasible on a
parallel computer, including shared memory, fast
broadcast, and multithreading.

Summary

Exploiting parallel processing for real-time streaming
applications presents unique software challenges. We
have developed a software library to address many of

FIGURE 20. Static versus dynamic load balancing. Randomly distributed targets in data
that are statically distributed on a parallel processor always result in an unbalanced pro-
cessor distribution because of random fluctuations in the work load. This unbalance leads
to a decrease in processing efficiency as the number of processors increases. If the work
can be distributed dynamically among the processors on an as-needed basis, the effi-
ciency can be much higher and is limited only by the granularity of the work.

1

10

100

1000

1 4 16 64 256 1024

Linear

Dynamic

Static

50% efficient

P
ar

al
le

l s
pe

ed
up

Number of processors

15% efficient

50% efficient

94% efficient

these challenges. The library exploits advanced fea-
tures of C++ to easily express data and task parallelism
without making the application dependent on the
underlying parallel hardware. This approach delivers
high-performance execution comparable to or better
than standard approaches.

Our future efforts will focus on adding to the fea-
tures of this technology to exploit dynamic parallel-
ism, integrate high-performance parallel software un-
derneath mainstream programming environments,
and use self-optimizing techniques to maintain per-
formance.

Acknowledgments

We would like to thank the entire PVL software de-
velopment team, including Matt Anderson, Robert
Bond, Hector Chan, Jim Daly, Mike DiMare, Ted
Hall, Mike Harrison, Andy Heckerling, Paul Hergt,
Hank Hoffmann, Michael Moore, Fran Rayson,
Patrick Richardson, Ed Rutledge, and Glenn
Schrader.

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 197

R E F E R E N C E S

1. “MPI: A Message-Passing Interface Standard,” Message-Pass-
ing Interface Forum (University of Tennessee, Knoxville,
Tenn., Apr. 1994), <http://www.mpi-forum.org>.

2. D.A. Schwartz, R.R. Judd, W.J. Harrod, and D.P. Manley,
“Vector, Signal, and Image Processing Library (VSIPL) 1.0 Ap-
plication Programmer’s Interface,” Technical Report (Georgia
Tech Research Corporation, Atlanta, Ga., Mar. 2000), <http:
//www.vsipl.org>.

3. C.M. DeLuca, C.W. Heisey, R.A. Bond, and J.M. Daly, “A
Portable Object-Based Parallel Library and Layered Frame-
work for Real-Time Radar Signal Processing,” ISCOPE ’97:
First Conference on International Scientific Computing in Ob-
ject-Oriented Parallel Environments, Marino del Rey, Calif., 8–
11 Dec. 1997, pp. 241–248.

4. “High-Performance Fortran Language Specification,” High-
Performance Fortran Forum, Scientific Programming 2 (1),
1993, pp. 1–170.

5. M. Frigo and S.G. Johnson, “An Adaptive Software Architec-
ture for the FFT,” Proc 1998 IEEE International Conference on
Acoustics, Speech, and Signal Processing 3, Seattle, 12–15 May
1998, pp. 1381–1384.

6. B. Stroustrup, The C++ Programming Language, 3rd ed.
(Addison-Wesley, Reading, Mass., 1997).

7. S. Haney, J. Crotinger, S. Karmesin, and S. Smith, “Easy Ex-
pression Templates Using PETE, the Portable Expression Tem-
plate Engine,” Dr. Dobb’s J. 24 (10), 1999.

8. J.M. Lebak, J.V. Kepner, and H. Hoffmann, “Software Fault
Recovery for Real-Time Signal Processing on Massively Paral-
lel Computers,” Proc. Tenth SIAM Conf. on Parallel Processing
for Scientific Computing, Portsmouth, Va., 12–14 Mar. 2001.

9. H. Hoffmann, J.V. Kepner, and R.A. Bond, “S3P: Automatic,
Optimized Mapping of Signal Processing Applications to Par-
allel Architectures,” Proc. Fifth Annual High-Performance Em-
bedded Computing (HPEC) Workshop, Nov. 2001.

• KEPNER AND LEBAK
Software Technologies for High-Performance Parallel Signal Processing

198 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 2, 2003

is a staff member in the Em-
bedded Digital Systems group.
His research has addressed the
development of parallel algo-
rithms and tools, and the
application of massively paral-
lel computing to a variety of
data-intensive problems. He
received a B.A. degree in
astrophysics from Pomona
College, and a Ph.D. degree in
astrophysics from Princeton
University in 1998, after
which he joined Lincoln
Laboratory.

is a staff member in the Em-
bedded Digital Systems group.
He is interested in parallel and
numerical algorithms for
digital signal processing. He
received B.S. degrees in math-
ematics and electrical engi-
neering in 1989, and an M.S.
degree in electrical engineering
in 1991, from Kansas State
University. He received a
Ph.D. degree in electrical
engineering from Cornell
University in 1997.

