
3-D Graph Processor
William S. Song, Jeremy Kepner, Huy T. Nguyen, Joshua I. Kramer, Vitaliy Gleyzer, James R. Mann, Albert H. Horst, Larry

L. Retherford, Robert A. Bond, Nadya T. Bliss, Eric I. Robinson, Sanjeev Mohindra, Julie Mullen

Lincoln Laboratory, Massachusetts Institute Technology, Lexington, MA 02420

{song, kepner, hnguyen, joshua.kramer, vgleyzer, jmann, ahorst, retherford, rbond, nt, erobinson, smohindra, jsm}

@ll.mit.edu

Introduction
1

Graph algorithms are used for numerous database

applications such as analysis of financial transactions,

social networking patterns, and internet data. While graph

algorithms can work well with moderate size databases,

processors often have difficulty providing sufficient

throughput when the databases are large. This is because

the processor architectures are poorly matched to the graph

computational flow. For example, most modern processors

utilize cache based memory in order to take advantage of

highly localized memory access patterns. However,

memory access patterns associated with graph processing

are often random in nature and can result in high cache miss

rates. In addition, graph algorithms require significant

overhead computation for dealing with indices of vertices

and edges. Figure 1 shows example computational

throughput differences between conventional processing

and graph processing. Shown in blue is a matrix multiply

kernel running on the PowerPC and Intel Zeon processors.

In contrast, shown in red is a graph edge traversal kernel

running on the identical processors. The graph computation

throughput is approximately 1,000 times lower, which is

consistent with typical application codes.

Figure 1: Computational Throughput Differences

between Conventional and Graph Processing.

The multi-core processors can help the graph algorithms

run faster by providing higher computational throughput.

However, because commercial multi-core processors tend

to rely on cache based memory architecture, the

This work was sponsored by DARPA under Air Force Contract FA8721-

05-C-0002. Opinions, interpretations, conclusions and recommendations
are those of the authors and are not necessarily endorsed by the United

States Government.

performance gain tends to be limited. Networked parallel

processors can also accelerate graph processing by

distributing computation over multiple processors.

However, the speed up factor quickly levels off with a

small number of processors due to immense inter-processor

communication requirements generated by non-localized

database structures.

3-D Graph Processor Architecture
In order to achieve significantly higher graph computation

performance, MIT Lincoln Laboratory has developed an

advanced multiprocessor architecture that is optimized for

graph algorithms analyzing large databases. The processor

instruction set is based on sparse matrix algebra operations.

The graph operations are first converted into sparse matrix

operations before they are run on the processor [1].

Although the computations are equivalent in both

approaches, the sparse matrix approach simplifies both the

instruction set and the multiprocessor architecture design.

Figure 2: Sparse Matrix Representation of Graph.

Graphs can be represented as sparse matrices as shown in

Figure 2. The graph G(V, E) with vertices V and edges E

can be represented with the sparse matrix A where the

matrix element Aij represents the edge between the vertex i

and vertex j. In this example, Aij is set to 1 when there is an

edge between the vertices i and j. If there is no edge

between the vertices i and j, then Aij would be zero and thus

would have no entry in the sparse matrix. Once the graphs

have been converted to the sparse matrix format, the sparse

matrix operations can be used to implement the graph

algorithms. Important kernels include sparse matrix

multiply, addition, subtraction, and division operations.

Individual element level operators within these matrix

operations, such as multiply and accumulate operators in

the matrix multiply operation, may need be replaced with

other arithmetic or logical operators such as maximum,

minimum, AND, OR, XOR, etc. in order to implement

general graph algorithms. Numerous graph algorithms have

already been converted to sparse matrix algorithms [1].

The new graph processor architecture is a parallel processor

interconnected in 3-D toroidal configuration using very

high bandwidth links [2] as shown in Figure 3. The 3-D

toroid provides much higher communication performance

than 2-D toroid due to higher bisection bandwidth. In order

to minimize communication link lengths, the 2-D toroidal

cluster is placed on a circuit board and multiple circuit

boards are stacked on top of each other to form the 3-D

toroid. The links between the circuit boards are enabled by

an array of electromagnetic coupling connectors [3] that can

communicate at high data rates without requiring physical

conductor connections. Custom designed high-speed I/O

circuitries provide high-bit-rate low-power communication

for 2-D links within the board and 3-D links between the

boards. Each node processor is designed to be capable of

over 1 trillion bits per second communication rate to keep

up with the communication demands of graph algorithms.

Figure 3: 3-D Graph Processor with Electromagnetic

Coupling Communications between Processor Boards.

The communication network is a packet routing network

optimized to support small packet sizes that are as small as

a single sparse matrix element. The network scheduling

and protocol are designed so that successive

communication packets from a node would have

randomized destinations in order to minimized network

congestions [4]. This is a great contrast to typical multi-

processor message routing schemes that are based on much

larger message sizes and globally arbitrated routing.

According to the simulations, the randomized destination

packet switching network can provide up to six times

higher communication data rates for graph algorithms than

conventional parallel processor networks with identical link

bandwidths.

The individual node processor architecture is also a great

departure from cache-based von Neumann machines. It

utilizes specialized modules connected through a high

bandwidth network as shown in Figure 3 [2]. There is no

cache, since the cache miss rates tend to be high in graph

processing. Most of the sparse matrix computation is done

by the specialized modules that are designed to optimally

perform the given tasks. The matrix reader and writer take

care of all the overhead memory accesses required in

dealing with the sparse matrix indices. The sorter module

is used for finding matching element indices for matrix

operations and sorting results for storage. This module is

critical since over 95% of computational throughput can be

associated sorting of indices. The systolic k-way merge

sorter architecture [5] was developed to provide up to an

order of magnitude higher throughput than the conventional

merge sorter. The custom systolic sorter module can

provide up to two orders of magnitude higher sorter

throughput than prevailing microprocessor based sorting.

Advanced process mapping algorithms and sparse matrix

compiler are also being developed to optimize

computational load balancing and to enable simplified user

interface.

Figure 4: Node Processor Architecture.

Simulation and Performance Projection
Detailed simulation of the architecture was performed to

verify the design and to estimate the performance. The bit-

level accurate simulation models were used to simulate the

entire 1024-node processor running the graph algorithm

kernels. The performance projection was achieved by

extrapolating the existing computation circuits to the target

fabrication process at 60nm. The new custom

communication circuitry was developed to provide 3-D

interconnect based on coupling connectors. Figure 5 shows

the computational throughput projections versus number of

processor nodes assuming that the database size scales with

the number of processors. It is projected that the processor

would provide several orders of magnitude higher graph

computational throughput compared to the commercial

alternatives. The power efficiency was also projected to be

several orders of magnitude higher.

Figure 5: Performance Projection via Simulation.

Acknowledgement
We would like to acknowledge late Dennis Healy at

DARPA MTO, who made this work possible.

References
[1] Jeremy Kepner and John Gilbert, "Graph Algorithms in the

Language of Linear Algebra," SIAM Press, 2010. (To be

published)

[2] William S. Song, “High-Performance Processor for Large

Graph Algorithm and Sparse Matrix Computations,” MIT

Invention Disclosure, March 2010.

[3] William S. Song, “Electromagnetic Coupling Connector for

Three-Dimensional Electronic Circuits,” US Patent No.

6,891,447, May 10, 2005.

[4] William S. Song, “Multiprocessor Communication Networks,”

US Patent Pending No. 12,703,938, February 11, 2010.

[5] William S. Song, “Systolic Merge Sorter,” US Patent Pending

No. 12,403,903, March 13, 2009.

