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Abstract 
The increasing complexity of parallel multicore processors 
necessitates the use of correspondingly complex parallel 
algorithms.  These algorithms often exploit hierarchical 
data access patterns and pipeline execution.  To facilitate 
the discussion of these algorithms a mathematical notation 
for describing these algorithms is introduced.  This notation 
extends existing distributed array notation to handle 
hierarchical arrays.  In addition, pipeline constructs 
composed of “tasks” and “conduits” are put forth for the 
describing of general signal flow graphs.  This theoretical 
approach allows complex algorithms to be presented in a 
succinct mathematical form that is independent of the 
implementation.  The resulting algorithms have a clear a 
one-to-one correspondence between the data structures and 
the complex memory hierarchies of modern multicore 
processors. This correspondence allows algorithms to be 
developed with a high degree of data locality that is 
essential for achieving high performance. 
 
Introduction  

Effectively using parallel multicore 
processors requires developing complex 
algorithms that maximize the locality of data and 
minimize communication.  These algorithms 
often employ hierarchical descriptions of data 
and pipeline execution.  Describing these 
algorithms is difficult and can be facilitated with 
appropriate notation.  Such a notation is put forth 
here.  The notation builds upon the non-
hierarchical notation presented in the 
forthcoming SIAM texts “Parallel Programming 
in pMatlab” [Kepner 2008] and “Graph 
Algorithms in the Language of Linear Algebra” 
[Kepner & Gilbert 2008]. 

Using this notation it is possible to describe a 
wide range of parallel algorithms and data access 
patterns.  Many of these algorithms can be 
supported using existing technologies such as 
PVL, pMatlab, VSIPL++, pMatlabXVM, ROSA 
II, and PVTOL. 
 
Data Parallelism 

Describing parallel algorithms requires 
augmenting traditional mathematics with some 
additional notation.  In particular, the number of 
processors used by the computation will be given 

by NP.  When an algorithm is run in parallel, the 
same algorithm (or code) is run on every 
processor. This is referred to as the Single-
Program Multiple-Data (SPMD) computation 
model.  To differentiate the NP programs, each 
program is assigned a unique processor ID 
denoted by PID that ranges from 0 to NP-1. 

In distributed array programming, it is 
necessary to map the elements of an array onto a 
set of processors. “P Notation” provides a 
convenient shorthand for describing this 
mapping.  A matrix that is mapped such that each 
processor has a block of rows is denoted 

A : 
 P(N)×M

 
Likewise, a matrix that is mapped such that each 
processor has a block of columns is given by: 

A : 
N×P(M)

 
Decomposing along both rows and columns can 
be written as 

A : 
P(N)×P(M)

      or     A : 
P(N×M)

 
Given two matrices with different mappings A : 

P(N)×M
 and B : 

N×P(M)
, the statement 

B = A 
will cause the data to be remapped from A into 
the new mapping of B. 

Access to just the local part of a distributed 
array is denoted by the “.loc” appendage.  For A : 

P(N)×P(M)
  the local part is A.loc : 

(N/NP)×M
. This 

notation is very useful when specifying 
operations that are entirely local to each 
processor and require no communication.  Using 
this notation a canonical pulse compression 
followed by Doppler filtering application can be 
concisely be written as 
 
X : 

P(N)×M
       Y : 

N×P(M)
       c : 

M
  

for i=1:size(X.loc,1)  // pulse compress 
X.loc(i,:) = IFFT(FFT(X .loc(i,:)) .* c) 

Y = X    // cornerturn 
for j=1:size(Y.loc,m)  // doppler filter 

Y.loc(:,j) = FFT(X .loc(:,j)) 
 



Hierarchical Data 
Flat distributed arrays are very useful for 

describing non-hierarchical parallel algorithms.  
Modern multicore processors often have complex 
memory hierarchies (e.g. the Cell processor). Let 
each processor in the set P be responsible for an 
additional set of processors P.  This hierarchical 
mapping is denoted 

A : 
P(P(N))×M

 
The part of this array that belongs to a particular 
processor p and sub-processor p is denoted by 
A.locp.locp. Using this notation a parallel 
hierarchical pulse compression Doppler filtering 
application can be concisely be written as 
 
X : 

P(P(N))×M
       Y : 

N×P(P(M))
       c : 

M
  

for i=1:size(X.loc.loc,1) // pulse compress 
X.loc.loc(i,:) = IFFT(FFT(X .loc.loc(i,:)) .* c) 

Y = X    // cornerturn 
for j=1:size(Y.loc.loc,m) // doppler filter 

Y.loc.loc(:,j) = FFT(X .loc.loc(:,j)) 
 
In the above algorithm, each processor implicitly 
works on just the data it owns locally.  Likewise, 
if data movement is required to move data 
between layers in the hierarchy, this is also 
implicit.  Such data movements can be also made 
explicit if this is desired. 
 
 

Physical Abstraction: Kuck Diagram 
Data locality is critical to the performance of 

parallel algorithms.  Algorithms with high 
locality minimize the amount of communication 
required.  Hierarchical P notation allows this 
locality to be expressed across the multicore 
memory hierarchy.  This can be physically 
depicted via a Kuck diagram (see Figure 1).  The 
Kuck diagram notation [Kuck 1996] provides a 
clear way of describing a hardware architecture 
along with the corresponding memory and 
communication hierarchy. 
 
Summary 
This work describes a mathematical notation for 
complex multicore algorithms.  The notation 
includes hierarchical N dimensional block-cyclic 
array distributions and pipeline constructs for 
describing signal flow graphs.  This theoretical 
approach allows complex algorithms to be 
presented in a succinct mathematical form that is 
independent the implementation. 
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Figure 1: Kuck diagram and corresponding hierarchical arrays. Processing cores are indicated by the letter P. 
The subscript 0 indicates that the processors are at the 0th level of the hierarchy. There is an implicit superscript 
that ranges from 0 to the number of processing cores in a hierarchy level. The letter M stands for memory with the 
S signifying shared memory. M0 describes the local memory of each processor (such as a cache or a local store), 
while SM1 describes shared memory between processors. Similarly, “net” stands for network and “SM net” for 
shared memory network. Subscripts that end in .5 indicate that the memory access has to occur indirectly, via 
message passing or a similar approach. For example, a processor P0 would have to go over N0.5 to access another 
processor’s local memory, M0. 
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