
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Theory of Multicore Algorithms
Jeremy Kepner and Nadya Bliss {kepner,nt}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
The increasing complexity of parallel multicore processors
necessitates the use of correspondingly complex parallel
algorithms. These algorithms often exploit hierarchical
data access patterns and pipeline execution. To facilitate
the discussion of these algorithms a mathematical notation
for describing these algorithms is introduced. This notation
extends existing distributed array notation to handle
hierarchical arrays. In addition, pipeline constructs
composed of “tasks” and “conduits” are put forth for the
describing of general signal flow graphs. This theoretical
approach allows complex algorithms to be presented in a
succinct mathematical form that is independent of the
implementation. The resulting algorithms have a clear a
one-to-one correspondence between the data structures and
the complex memory hierarchies of modern multicore
processors. This correspondence allows algorithms to be
developed with a high degree of data locality that is
essential for achieving high performance.

Introduction

Effectively using parallel multicore
processors requires developing complex
algorithms that maximize the locality of data and
minimize communication. These algorithms
often employ hierarchical descriptions of data
and pipeline execution. Describing these
algorithms is difficult and can be facilitated with
appropriate notation. Such a notation is put forth
here. The notation builds upon the non-
hierarchical notation presented in the
forthcoming SIAM texts “Parallel Programming
in pMatlab” [Kepner 2008] and “Graph
Algorithms in the Language of Linear Algebra”
[Kepner & Gilbert 2008].

Using this notation it is possible to describe a
wide range of parallel algorithms and data access
patterns. Many of these algorithms can be
supported using existing technologies such as
PVL, pMatlab, VSIPL++, pMatlabXVM, ROSA
II, and PVTOL.

Data Parallelism

Describing parallel algorithms requires
augmenting traditional mathematics with some
additional notation. In particular, the number of
processors used by the computation will be given

by NP. When an algorithm is run in parallel, the
same algorithm (or code) is run on every
processor. This is referred to as the Single-
Program Multiple-Data (SPMD) computation
model. To differentiate the NP programs, each
program is assigned a unique processor ID
denoted by PID that ranges from 0 to NP-1.

In distributed array programming, it is
necessary to map the elements of an array onto a
set of processors. “P Notation” provides a
convenient shorthand for describing this
mapping. A matrix that is mapped such that each
processor has a block of rows is denoted

A :
 P(N)×M

Likewise, a matrix that is mapped such that each
processor has a block of columns is given by:

A :
N×P(M)

Decomposing along both rows and columns can
be written as

A :
P(N)×P(M)

 or A :
P(N×M)

Given two matrices with different mappings A :

P(N)×M
 and B :

N×P(M)
, the statement

B = A
will cause the data to be remapped from A into
the new mapping of B.

Access to just the local part of a distributed
array is denoted by the “.loc” appendage. For A :

P(N)×P(M)
 the local part is A.loc :

(N/NP)×M
. This

notation is very useful when specifying
operations that are entirely local to each
processor and require no communication. Using
this notation a canonical pulse compression
followed by Doppler filtering application can be
concisely be written as

X :

P(N)×M
 Y :

N×P(M)
 c :

M

for i=1:size(X.loc,1) // pulse compress
X.loc(i,:) = IFFT(FFT(X .loc(i,:)) .* c)

Y = X // cornerturn
for j=1:size(Y.loc,m) // doppler filter

Y.loc(:,j) = FFT(X .loc(:,j))

Hierarchical Data
Flat distributed arrays are very useful for

describing non-hierarchical parallel algorithms.
Modern multicore processors often have complex
memory hierarchies (e.g. the Cell processor). Let
each processor in the set P be responsible for an
additional set of processors P. This hierarchical
mapping is denoted

A :
P(P(N))×M

The part of this array that belongs to a particular
processor p and sub-processor p is denoted by
A.locp.locp. Using this notation a parallel
hierarchical pulse compression Doppler filtering
application can be concisely be written as

X :

P(P(N))×M
 Y :

N×P(P(M))
 c :

M

for i=1:size(X.loc.loc,1) // pulse compress
X.loc.loc(i,:) = IFFT(FFT(X .loc.loc(i,:)) .* c)

Y = X // cornerturn
for j=1:size(Y.loc.loc,m) // doppler filter

Y.loc.loc(:,j) = FFT(X .loc.loc(:,j))

In the above algorithm, each processor implicitly
works on just the data it owns locally. Likewise,
if data movement is required to move data
between layers in the hierarchy, this is also
implicit. Such data movements can be also made
explicit if this is desired.

Physical Abstraction: Kuck Diagram
Data locality is critical to the performance of

parallel algorithms. Algorithms with high
locality minimize the amount of communication
required. Hierarchical P notation allows this
locality to be expressed across the multicore
memory hierarchy. This can be physically
depicted via a Kuck diagram (see Figure 1). The
Kuck diagram notation [Kuck 1996] provides a
clear way of describing a hardware architecture
along with the corresponding memory and
communication hierarchy.

Summary
This work describes a mathematical notation for
complex multicore algorithms. The notation
includes hierarchical N dimensional block-cyclic
array distributions and pipeline constructs for
describing signal flow graphs. This theoretical
approach allows complex algorithms to be
presented in a succinct mathematical form that is
independent the implementation.

References
[Kepner 2008] J. Kepner, Parallel Programming

in pMatlab, SIAM, Philadelpha, PA, 2008
[Kepner & Gilbert 2008] J. Kepner & J. Gilbert,

Graph Algorithms in the Language of Linear
Algebra, SIAM, Philadelpha, PA, 2008

[Kuck 1996] D. Kuck, High Performance
Computing. Oxford Univ. Press, NY, 1996

Figure 1: Kuck diagram and corresponding hierarchical arrays. Processing cores are indicated by the letter P.
The subscript 0 indicates that the processors are at the 0th level of the hierarchy. There is an implicit superscript
that ranges from 0 to the number of processing cores in a hierarchy level. The letter M stands for memory with the
S signifying shared memory. M0 describes the local memory of each processor (such as a cache or a local store),
while SM1 describes shared memory between processors. Similarly, “net” stands for network and “SM net” for
shared memory network. Subscripts that end in .5 indicate that the memory access has to occur indirectly, via
message passing or a similar approach. For example, a processor P0 would have to go over N0.5 to access another
processor’s local memory, M0.

	Summary
	References

