
Linear Algebraic Graph Algorithms
 for Back End Processing

Jeremy Kepner, Nadya Bliss and Eric Robinson {kepner,nt}@ll.mit.edu
MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
A natural byproduct of persistent surveillance and net-
centric sensing has been an explosion in post-detection
metadata. The processing required to exploit this
metadata in real-time is rapidly emerging as a critical
bottleneck. This meta-data is often represented as a
graph of entities (nodes) and relationships (edges), and
these graphs are analyzed using standard graph analysis
techniques. High performance graph algorithms are
difficult to implement for a two of reasons. First, the
complex memory access patterns make these algorithms
difficult to write in parallel. Second, these access
patterns are very inefficient on COTS processors. This
work addresses the parallel programming issue by
exploiting the well known graph/sparse-matrix duality
which leverages decades of research drawn from parallel
linear algebra. Using these linear algebraic graph
algorithms the bottlenecks in COTS processors can be
identified.

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Introduction

Persistent surveillance allows the long term
(weeks) observation of wide areas (kilometers)
in multiple networked sensor modalities
(optical, infrared, RADAR, …). This shift in
sensor operation has caused a corresponding
shift from using data (images, detects, …) to
meta-data (tracks, features, patterns, …) for
real-time exploitation. This meta-data is often
represented as a graph of entities (nodes) and
relationships (edges). Not surprisingly, graph
algorithms are the principal tools used for
analyzing this meta-data.

Historically, front end processing has
always dominated back end (post detection)
processing because the front end data rates
(GB/sec) are so much larger than post detection
rates (megatracks/day). This has changed for
three reasons. First, post-detection processing
windows are weeks in duration. Second, post-
detection algorithms are more complex, often
O(N2). Third, the efficiency of post-detection
algorithms is very low on COTS processors:
0.05%. The result is that post-detection
processing can now easily consume far more

electrical power than front end processing (see
Table 1).

Table 1: Front end vs back end requirements.
 Front End Back End
Input rate Gigasamples/sec Megatracks/day
Correlation time seconds weeks
Complexity O(N log(N)) O(N2)
Efficiency 50% 0.05%
Latency seconds minutes
Power required ~ 1 kWatt >> 100 kWatt

Graph Algorithms and Programming

Post detection processing typically relies on
graph algorithms. The essence of many
algorithms involves selecting a node, finding
the connecting nodes and then proceeding to
those nodes. While these algorithms often have
ample parallelism (often all nodes can be
evaluated independently), it is very difficult to
write parallel graph algorithms that exploit data
locality, which is essential for good
performance on COTS (Commercial Off The
Shelf) processors. One approach to addressing
this problem is to recast the graph as a sparse
adjacency matrix A, where A(i,j) = 1 if there is
an edge between node i and node j. Using this
duality, many graph algorithms can be recast as
linear algebraic operations (see Figure 1).

Figure 1: Graph/sparse-matrix duality. Using
this notation graph Breadth First Search (BFS)
corresponds to matrix vector multiply with the
graph adjacency matrix.

Analysis of a number of graph algorithms
indicates that nearly all can be efficiently recast
as matrix algorithms. Furthermore, these

algorithms overwhelmingly rely on a
generalization of sparse matrix multiply called
semi-ring products. In semi-ring notation a
standard matrix multiply (or BFS) can be
written as

A +.* x
which means that pairs of elements are first
multiplied and then these results are summed.
For the single-source shortest path (SSSP)
algorithm the semi-ring product operation is

A min.+ x
which means that pairs of elements are first
added and then the minimun of these results is
taken.

Recasting graph algorithms as linear
algebra on sparse matrices has a number of
benefits. First, the resulting algorithms are
often significantly shorter than their traditional
counterparts (see Figure 2). Second, parallel
implementations can leverage the decades of
experience with parallel linear algebra. Third,
performance issues on COTS parallel
processors become readily apparent.

Figure 2: Performance vs effort. Measured and
estimated performance and effort for various serial
and parallel implementations of the Graph Theory
benchmark [Bader & Madduri 2008]

Graph Algorithm Performance

The basic serial performance of graph
algorithms can be observed by comparing
dense and sparse matrix multiply (see Figure 3)
on “power law” graphs. It is readily apparent
that this fundamental graph operation is very
inefficient on a COTS processor. The primary
reason being that a cache architecture is ill-
suited to this operation.

Figure 3: Dense and sparse matrix multiply
performance.

The parallel performance of graph

algorithms can likewise be understood by
looking at the performance of parallel sparse
matrix multiply (see Figure 4). The sparse
matrix representation highlights the key issue
with parallel graph algorithms on COTS
parallel processors. Specifically, for every
operation performed an equivalent amount of
data needs to be moved.

Figure 4: Parallel speedup on graph theory
benchmark.

Summary
This work describes the challenges associated
with post-detection processing using graph
algorithms. A concise mathematical approach
to implementing the algorithms using sparse
matrix representation is presented. Using these
linear algebraic graph algorithms the
bottlenecks in COTS processors can be
identified.

References
[Bader & Madduri 2008] To appear in Graph

Algorithms in the Language of Linear
Algebra (J. Kepner & J. Gilbert eds.), SIAM,
Philadelpha, PA, 2008

	Summary
	References

