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Abstract 
A natural byproduct of persistent surveillance and net-
centric sensing has been an explosion in post-detection 
metadata.  The processing required to exploit this 
metadata in real-time is rapidly emerging as a critical 
bottleneck.  This meta-data is often represented as a 
graph of entities (nodes) and relationships (edges), and 
these graphs are analyzed using standard graph analysis 
techniques.  High performance graph algorithms are 
difficult to implement for a two of reasons.  First, the 
complex memory access patterns make these algorithms 
difficult to write in parallel.  Second, these access 
patterns are very inefficient on COTS processors.  This 
work addresses the parallel programming issue by 
exploiting the well known graph/sparse-matrix duality 
which leverages decades of research drawn from parallel 
linear algebra.  Using these linear algebraic graph 
algorithms the bottlenecks in COTS processors can be 
identified. 
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Introduction  

Persistent surveillance allows the long term 
(weeks) observation of wide areas (kilometers) 
in multiple networked sensor modalities 
(optical, infrared, RADAR, …).  This shift in 
sensor operation has caused a corresponding 
shift from using data (images, detects, …) to 
meta-data (tracks, features, patterns, …) for 
real-time exploitation.  This meta-data is often 
represented as a graph of entities (nodes) and 
relationships (edges).  Not surprisingly, graph 
algorithms are the principal tools used for 
analyzing this meta-data. 

Historically, front end processing has 
always dominated back end (post detection) 
processing because the front end data rates 
(GB/sec) are so much larger than post detection 
rates (megatracks/day).  This has changed for 
three reasons.  First, post-detection processing 
windows are weeks in duration.  Second, post-
detection algorithms are more complex, often 
O(N2).  Third, the efficiency of post-detection 
algorithms is very low on COTS processors: 
0.05%.  The result is that post-detection 
processing can now easily consume far more 

electrical power than front end processing (see 
Table 1). 
 

Table 1: Front end vs back end requirements. 
 Front End Back End 
Input rate Gigasamples/sec Megatracks/day 
Correlation time seconds weeks 
Complexity O(N log(N)) O(N2) 
Efficiency 50% 0.05% 
Latency seconds minutes 
Power required ~ 1 kWatt >> 100 kWatt 
 
Graph Algorithms and Programming 

Post detection processing typically relies on 
graph algorithms.  The essence of many 
algorithms involves selecting a node, finding 
the connecting nodes and then proceeding to 
those nodes.  While these algorithms often have 
ample parallelism (often all nodes can be 
evaluated independently), it is very difficult to 
write parallel graph algorithms that exploit data 
locality, which is essential for good 
performance on COTS (Commercial Off The 
Shelf) processors.  One approach to addressing 
this problem is to recast the graph as a sparse 
adjacency matrix A, where A(i,j) = 1 if there is 
an edge between node i and node j.  Using this 
duality, many graph algorithms can be recast as 
linear algebraic operations (see Figure 1). 

 

 
Figure 1: Graph/sparse-matrix duality. Using 
this notation graph Breadth First Search (BFS) 
corresponds to matrix vector multiply with the 
graph adjacency matrix. 

 
Analysis of a number of graph algorithms 
indicates that nearly all can be efficiently recast 
as matrix algorithms.  Furthermore, these 



algorithms overwhelmingly rely on a 
generalization of sparse matrix multiply called 
semi-ring products.  In semi-ring notation a 
standard matrix multiply (or BFS) can be 
written as 

A +.* x 
which means that pairs of elements are first 
multiplied and then these results are summed. 
For the single-source shortest path (SSSP) 
algorithm the semi-ring product operation is 

A min.+ x 
which means that pairs of elements are first 
added and then the minimun of these results is 
taken. 

Recasting graph algorithms as linear 
algebra on sparse matrices has a number of 
benefits.  First, the resulting algorithms are 
often significantly shorter than their traditional 
counterparts (see Figure 2).  Second, parallel 
implementations can leverage the decades of 
experience with parallel linear algebra.  Third, 
performance issues on COTS parallel 
processors become readily apparent. 
 

 
Figure 2: Performance vs effort. Measured and 
estimated performance and effort for various serial 
and parallel implementations of the Graph Theory 
benchmark [Bader & Madduri 2008] 

 
Graph Algorithm Performance 

The basic serial performance of graph 
algorithms can be observed by comparing 
dense and sparse matrix multiply (see Figure 3) 
on “power law” graphs.  It is readily apparent 
that this fundamental graph operation is very 
inefficient on a COTS processor.  The primary 
reason being that a cache architecture is ill-
suited to this operation. 
 

 
Figure 3: Dense and sparse matrix multiply 
performance. 

 
The parallel performance of graph 

algorithms can likewise be understood by 
looking at the performance of parallel sparse 
matrix multiply (see Figure 4).  The sparse 
matrix representation highlights the key issue 
with parallel graph algorithms on COTS 
parallel processors.  Specifically, for every 
operation performed an equivalent amount of 
data needs to be moved. 
 

 
Figure 4: Parallel speedup on graph theory 
benchmark.  

 
Summary 
This work describes the challenges associated 
with post-detection processing using graph 
algorithms.  A concise mathematical approach 
to implementing the algorithms using sparse 
matrix representation is presented. Using these 
linear algebraic graph algorithms the 
bottlenecks in COTS processors can be 
identified. 
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