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Abstract 
New architectures require thoughtful testing to explore the 
performance potential of the processor.  Here the HPEC 
Challenge Benchmarks are used to explore the Cell 
processor to understand the realistic performance as well as 
how that performance can be attained.  More specifically, 
for the time domain FIR benchmark, we find that a 
significant fraction (86%) of the peak performance can be 
achieved (as expected).  However, this performance does 
come at significant coding cost. 

Introduction to Cell 
The Cell processor, a joint venture among IBM, Sony, and 
Toshiba, is an exciting, commercially available multi-
processor on a single chip.  A simple block diagram of its 
configuration is shown in Fig. 1. 

 Fig. 1 Block Diagram for Cell Processor (adapted from IBM’s 
“Cell Broadband Engine Hardware Initialization Guide”) 

Each Cell processor consists of a PowerPC Processing 
Element (PPE), eight Synergistic Processing elements, an 
Element Interconnect Bus (EIB), a Memory Interface 
Controller (MIC) with XIO, and a Broadband Engine 
Interface (BEI) with FlexIO. 

The PPE has a 64-bit PowerPC with 32 KB L1 data and 
instruction caches and a 512 KB unified L2 cache.  The L1 
instruction cache is two-way set associative.  The L1 data 
cache is four-way set associative and write through.  The 
L2 cache can be configured to be eight-way set associative 
and write back. Cache lines in all caches are 128 bytes. The 
PPE can read 32-bytes per cycle and store 16-bytes per 
cycle.   

The PPE also supports the Vector/SIMD Multimedia 
Extensions.  There are some subtle differences in this 
implementation when compared to other implementations.  
This version does not generate floating point exception 
interrupts, even when JAVA mode is selected. 

Each SPE consists of the Synergistic Processing Unit 
(SPU), 256KB of local store (LS), and a Memory Flow 

Controller (MFC) that provides an interface between the 
SPU and anything connected to the EIB. The MFC has built 
in DMA engines that can deliver information to or from 
main memory or other processors.  For general processor to 
processor DMAs, memory must be aliased. 

The SPU is a vector computational unit with 128 16-byte 
SIMD registers.  While there are similarities to the vector 
unit on the PPE, they are not the same.  Each has a unique 
instruction set with little exact overlap.  While the PPE 
vector unit is stronger in permutation and summing over 
registers, the SPU has a rich set of instructions with 
immediate values. The SPU supports all data types found 
on the PPE’s vector unit plus 64-bit floating point.  
However, there is very limited support for 8-bit integer. 

The SIMD register set is the universal register set for most 
things on the SPU.  As a result, the instructions support 
scalar operations such as addressing for loads and stores, 
loop control, and conditional results in the SIMD registers.  
Generally, these scalar quantities will occupy a register by 
themselves. 

The EIB consists of four ring buses, two running clockwise 
and two running counter clockwise.  Each ring is 16-bytes 
wide and can transfer 128 bytes at a time.  The EIB’s 
maximum bandwidth is 96 bytes per cycle.  It supports up 
to 100 outstanding DMA transfers from the SPEs at any 
given time. 

HPEC Challenge Benchmark Suite
The HPEC Challenge Benchmark Suite[5] is a publicly 
available collection of common signal processing 
algorithms to use to compare HPEC systems.  It consists of  
eight kernel benchmarks (finite impulse response filtering 
(FIR), QR decomposition (QR), singular value 
decomposition (SVD), constant false-alarm rate detection 
(CFAR), pattern matching (PM), genetic algorithm (GA), 
data base (DB), corner turn (CT)) as well as  a SAR System 
Benchmark.  All of these benchmarks have their roots in 
DARPA’s Polymorphous Computing Architecture (PCA) 
or High-Productivity Computing Systems (HPCS) 
programs. 

Time Domain FIR on a Single SPU 
Marketing brochures always quote a theoretical maximum 
speed for a processor based on the number of floating point 
operations that can be started in a single cycle times the 
frequency of the processor.  Most processor designs cannot 
sustain these speeds other than for a few cycles at most.  
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The question becomes how do we measure practical speeds 
that are the best? 

Time domain FIR filters are the most efficient algorithms 
on floating point processors given that the numbers of 
additions and multiplies are nearly the same.  This is the 
heart of the time domain version of the HPEC Challenge 
benchmark FIR.  The code for the Cell SPU was written for 
split complex format in three versions, simple scalar C, a 
simple version using the SIMD C extensions, and a highly 
optimized hand coded assembly version.  This format was 
chosen since it does not require extra data movement to 
separate real and imaginary parts.  Since the purpose of this 
test was to measure the practical maximum performance of 
the SPU, only the FIR was timed.  The number of FIR 
filters was chosen not to exceed the SPU local memory. 

Coding productivity is a requirement for any processor.  If 
coding is too difficult, the processor will require serious 
support from professional algorithm groups.  Users who do 
code in these circumstances are less productive than for 
processors well designed for compilers.  Fig. 2 describes 
the ease of coding for the Cell SPU.  The lines of code for 
each style of time-domain FIR do not include comments or 
blank lines.  Note that the SIMD C and assembly programs 
have size restrictions.  As another measure of coding 
productivity, the units of time to describe how long it takes 
to do a task are given for design, coding and debugging for 
each implementation.   

The efficiency of the code (the factor of peak performance) 
is also included.  This was measured on a Mercury “Cell 
Technology Evaluation System” running at 2.4 GHz.  The 
clock used for timing was the decrementer register on the 
SPU.  This clock was chosen for its proximity to the 
calculation which reduces the overhead in reading it.  Due 
to the small size of the LS, the number of filters specified in 
the time domain FIR benchmark could not be supported.  
The efficiency was measured for a case with kernel size 12, 
input vector size 1024, and two filters.  This was repeated 
10 times to form the timing.  
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of Code 

C 33 Minute Minute Minute .014 

SIMD 
C 

110 Hour Hour Minute .27 

Hand 
coding 

371 Hour Day Day .86 

Fig. 2 Ease of Coding and Performance Metrics for single SPU 
Time Domain FIR 

Note that the efficiency of the hand coding is 14% lower 
than the theoretical maximum limit.  Most of this is due to 
an inherent inefficiency in the architecture of the Cell.  In 
the Cell, at most only a single computation can be started 
on any given cycle.  The consequence of this design choice 
is that address updates and loop counters cannot be covered 

by floating point operations.  Loop unrolling will minimize 
this effect, but it will always be visible. 

Parallelizing the Time Domain FIR 
The time domain FIR will be parallelized across multiple 
SPEs.  This decomposition is known to be “embarrassingly 
parallel”.  However, despite the simplicity of the 
decomposition, how that is implemented and the resulting 
performance based on those choices will be explored.  How 
many processors for a given size, how does the DMA size 
affect the performance, and can the DMAs be covered by 
computation are all important questions that demand 
exploration. 

Other Benchmarks 
Other HPEC Challenge Benchmark kernels will also be 
examined.  These will include the frequency domain FIR, 
CFAR and PM.  These benchmarks should verify the 
lessons from time domain FIR and perhaps expand 
understanding of the Cell.  

Cell Lessons Learned 
In performing these explorations, much can be learned 
about the processor.  The most noticeable fact is that 
although the SPU can process normal “vanilla” C code, it 
doesn’t do it well.  Vectorization techniques will improve 
performance noticeably, even if limited to simple C 
extension programs.  However, approaching the theoretical 
limit of performance is limited by the architecture. 

Maximizing the use of the SPUs will also require parallel 
techniques.  Given the small size of the local stores and the 
number of available SPUs, an application of any reasonable 
size will benefit from optimizing DMA techniques as well 
as spreading the application over many processors, if 
possible. 

Timers are available on both the PPU and the SPUs.  Which 
clocks are chosen for timing will depend on the locality of 
the code that is timed, the time length, and the existence of 
other applications such as profilers that access a particular 
clock.   
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