
PVTOL: Designing Portability, Productivity and Performance for
Multicore Architectures

Hahn Kim, Nadya Bliss, Jim Daly, Karen Eng, Jeremiah Gale, James Geraci, Ryan Haney, Jeremy Kepner,
Sanjeev Mohindra, Sharon Sacco, Edward Rutledge

{hgk, nt, jdaly, keng, jgale, jrgeraci, haney, kepner, smohindra, ssacco, rutledge}@ll.mit.edu
MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420-9108

1 Introduction

Modern DoD sensors continue to increase in fidelity
and sampling rates, resulting in increasingly larger data
sets. Form factor requirements remain the same or even
shrink, e.g. UAV’s, while real-time processing continues
to be a requirement.

These factors lead to increasingly stringent
requirements for real-time signal processing applications
for these sensors. Data processing systems must increase
processing power with limited power (e.g. 10’s to 100’s of
Watts) and space (e.g. several cubic feet). Multicore
architectures help hardware designers meet the required
computational performance within these constraints.
Multicore architectures, however, add complexity to the
programming model that is unfamiliar to most
programmers, e.g. parallel computation and explicit
management of the memory hierarchy. This drives the
need for technologies that hide this complexity, allowing
programmers to focus on algorithms, not architectures.

The Parallel Vector Tile Optimizing Library (PVTOL)
is a high-performance C++ real-time signal processing
middleware library. PVTOL provides high productivity via
a partitioned global address space (PGAS) programming
model and is portable across a range of traditional and
multicore architectures [1]. PVTOL’s architecture has
several layers, shown in Figure 1. This abstract describes
API constructs that support task parallelism, data
parallelism and computational functors.

2 Tasks & Conduits

PVTOL supports task parallelism, i.e. assigning
different computational tasks to different processors, using
the Task and Conduit classes. Tasks encapsulate single-
program multiple data (SPMD) code that executes on one
or more processors. Processors can be either traditional or
multicore processors. Conduits send data between tasks.
Conduits hide the details of interconnect technologies, e.g.
Gigabit Ethernet, PCI, etc., providing portability.

Figure 2 shows a basic signal processing pipeline. An
input task captures data from a source, e.g. sensor. An
analysis task performs computation. An output task sends
the results elsewhere, e.g. a network. The arrows indicate
conduits that connect the tasks.

3 Hierarchical Maps & Arrays

PVTOL’s predecessors, PVL and VSIPL++, use maps
to concisely describe how to allocate parallel arrays across
multiple processors, enabling data parallelism. Multicore
processors complicate matters by exposing the underlying
processor and memory hierarchies.

Figure 1: PVTOL Architecture

Figure 2: Tasks and Conduits

A processor hierarchy contains a main processor and

one or more co-processors that depend on the main
processor for program control. For example, IBM’s Cell
Broadband Engine contains 9 cores: 1 PowerPC
Processing Element (PPE) and 8 Synergistic Processing
Elements (SPE). Applications start on the PPE, then spawn
threads onto the SPE’s. This hierarchical model supports
other co-processor architectures, e.g. GPU’s and FPGA’s.

Each level in the processor hierarchy may have its
own memory. Unlike caches, levels in the memory
hierarchy may be disjoint, requiring explicit control over
data movement through the hierarchy. On the Cell, the
PPE first loads data into main memory, then SPE’s transfer
data from main memory into local store via DMA’s. Table
1 contains example processor and memory hierarchies.

Figure 3 shows an example hierarchical array on a
cluster of Cells. Hierarchical maps allocate hierarchical
arrays across the processor and memory hierarchies. A
hierarchical map for the Cell has three maps. The first two
maps, cellMap and speMap, distribute the array across the
Cell processor hierarchy. cellMap distributes an array
across multiple Cell processors; speMap distributes data on
each Cell across SPE’s. Since SPE’s have 256 KB of
memory, subarrays are often broken into smaller blocks.
The third map, speLsMap, distributes data across the Cell
memory hierarchy by partitioning SPE data into blocks.

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government

Table 1: Example processor hierarchies
Architecture Main Processor /

Memory
Co-Processor /
Memory

IBM Cell PPE / XDR RAM SPE / Local store
NVIDIA Any x86 CPU /

RAM
Tesla C870 GPU /
GDDR3 RAM

Cray XR1 AMD Opteron /
DDR SDRAM

Xilinx Virtex-4 /
DDR SDRAM

Figure 3: An example of a hierarchical array on two Cells.

Figure 4: Unfused and fused versions of A=B+C*D on the Cell

4 Functors

A functor is an object that is called as if it were a
function. In C++, functors define the () operator so that
invoking a functor is syntactically identical to calling a
function. A benefit of functors is the ability to store state,
e.g. FFT twiddle factors or memory for intermediate
values computed by SVD.

Functors can be written using the PVTOL API. This
provides an easy way for library developers to add new
functors to the library and for application developers to
write custom functors for their application. Functors use
the hierarchical array’s get/put API to move data blocks
across the memory hierarchy. Once loaded, data blocks are
processed using optimized kernels, which range from
assembly code to optimized vendor libraries, e.g.
Mercury’s Scientific Algorithm Library for the Cell and
Intel’s Integrated Performance Primitives.

Functors can improve performance by fusing data-
parallel functors in an expression. Consider the expression
A = B + C * D, which operates on hierarchical arrays.
SPE’s process one block at a time. A naïve implementation
would process the * for all blocks in C and D, then the +,
requiring a temporary variable to store the result of the *,

adding DMA transfers between local store and main
memory. A more efficient implementation will fuse the
operations so that the entire expression is applied to a set
of blocks across all arrays. Figure 4 shows the memory
transfers required for unfused and fused versions of this
expression. PVTOL will automatically fuse operations at
runtime.

5 Results

We are currently working on a project at the Lincoln
Laboratory that is building a real-time image processing
application on the Cell. The first implementation directly
used Mercury’s MultiCore Framework (MCF). Figure 5
compares performance and programmer effort of three
prototype implementations of a key kernel, the image
projective transform, using ANSI C, MCF and PVTOL.
The PVTOL version achieves nearly the same level of
performance as the MCF implementation while providing
a similar level of effort as ANSI C.

Our preliminary design for the application shows that
PVTOL reduces the overall software lines of codes
(SLOCs) from ~1600 to ~600. We are actively building
PVTOL for this project and will present updated
performance and productivity results.

Figure 5: GOPS vs. SLOCs for the projective transform

6 Summary

PVTOL contains a number of programming constructs
that hide the complexity of multicore architectures. Task
and Conduits allow pipelining and round-robining of data.
Hierarchical maps concisely describe how to allocate
hierarchical arrays across processor and memory
hierarchies and provide a simple API for moving data
across the hierarchies. New functors can be easily
developed using the PVTOL API and can be fused for
more efficient computation.

We are actively building PVTOL for Intel and Cell
architectures. We intend to add more functors and will
look at supporting more processing architectures, including
other multicore architectures, GPU’s and FPGA’s.

References
[1] H.Kim, N. Bliss, R. Haney, J. Kepner, M. Marzilli, S.

Mohindra, S. Sacco, G. Schrader, E. Rutledge. “PVTOL: A
High-Level Signal Processing Library for Multicore
Proessors.” High Performance Embedded Computing
Workshop 2007. Lexington, MA. September 2007.

