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1 Introduction 

Modern DoD sensors continue to increase in fidelity 
and sampling rates, resulting in increasingly larger data 
sets. Form factor requirements remain the same or even 
shrink, e.g. UAV’s, while real-time processing continues 
to be a requirement. 

These factors lead to increasingly stringent 
requirements for real-time signal processing applications 
for these sensors. Data processing systems must increase 
processing power with limited power (e.g. 10’s to 100’s of 
Watts) and space (e.g. several cubic feet). Multicore 
architectures help hardware designers meet the required 
computational performance within these constraints. 
Multicore architectures, however, add complexity to the 
programming model that is unfamiliar to most 
programmers, e.g. parallel computation and explicit 
management of the memory hierarchy. This drives the 
need for technologies that hide this complexity, allowing 
programmers to focus on algorithms, not architectures. 

The Parallel Vector Tile Optimizing Library (PVTOL) 
is a high-performance C++ real-time signal processing 
middleware library. PVTOL provides high productivity via 
a partitioned global address space (PGAS) programming 
model and is portable across a range of traditional and 
multicore architectures [1]. PVTOL’s architecture has 
several layers, shown in Figure 1. This abstract describes 
API constructs that support task parallelism, data 
parallelism and computational functors. 
 
2 Tasks & Conduits 

PVTOL supports task parallelism, i.e. assigning 
different computational tasks to different processors, using 
the Task and Conduit classes. Tasks encapsulate single-
program multiple data (SPMD) code that executes on one 
or more processors. Processors can be either traditional or 
multicore processors. Conduits send data between tasks. 
Conduits hide the details of interconnect technologies, e.g. 
Gigabit Ethernet, PCI, etc., providing portability.  

Figure 2 shows a basic signal processing pipeline. An 
input task captures data from a source, e.g. sensor. An 
analysis task performs computation. An output task sends 
the results elsewhere, e.g. a network. The arrows indicate 
conduits that connect the tasks. 

 
3 Hierarchical Maps & Arrays 

PVTOL’s predecessors, PVL and VSIPL++, use maps 
to concisely describe how to allocate parallel arrays across 
multiple processors, enabling data parallelism. Multicore 
processors complicate matters by exposing the underlying 
processor and memory hierarchies. 

 
Figure 1: PVTOL Architecture 

 

 
Figure 2: Tasks and Conduits 

 
A processor hierarchy contains a main processor and 

one or more co-processors that depend on the main 
processor for program control. For example, IBM’s Cell 
Broadband Engine contains 9 cores: 1 PowerPC 
Processing Element (PPE) and 8 Synergistic Processing 
Elements (SPE). Applications start on the PPE, then spawn 
threads onto the SPE’s. This hierarchical model supports 
other co-processor architectures, e.g. GPU’s and FPGA’s. 

Each level in the processor hierarchy may have its 
own memory. Unlike caches, levels in the memory 
hierarchy may be disjoint, requiring explicit control over 
data movement through the hierarchy. On the Cell, the 
PPE first loads data into main memory, then SPE’s transfer 
data from main memory into local store via DMA’s. Table 
1 contains example processor and memory hierarchies. 

Figure 3 shows an example hierarchical array on a 
cluster of Cells. Hierarchical maps allocate hierarchical 
arrays across the processor and memory hierarchies. A 
hierarchical map for the Cell has three maps. The first two 
maps, cellMap and speMap, distribute the array across the 
Cell processor hierarchy. cellMap distributes an array 
across multiple Cell processors; speMap distributes data on 
each Cell across SPE’s. Since SPE’s have 256 KB of 
memory, subarrays are often broken into smaller blocks. 
The third map, speLsMap, distributes data across the Cell 
memory hierarchy by partitioning SPE data into blocks. 
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Table 1: Example processor hierarchies 
Architecture Main Processor / 

Memory 
Co-Processor / 
Memory 

IBM Cell PPE / XDR RAM SPE / Local store 
NVIDIA Any x86 CPU / 

RAM 
Tesla C870 GPU / 
GDDR3 RAM 

Cray XR1 AMD Opteron / 
DDR SDRAM 

Xilinx Virtex-4 / 
DDR SDRAM 

 

 
Figure 3: An example of a hierarchical array on two Cells. 

 

 
Figure 4: Unfused and fused versions of A=B+C*D on the Cell 
 
4 Functors 

A functor is an object that is called as if it were a 
function. In C++, functors define the () operator so that 
invoking a functor is syntactically identical to calling a 
function. A benefit of functors is the ability to store state, 
e.g. FFT twiddle factors or memory for intermediate 
values computed by SVD. 

Functors can be written using the PVTOL API. This 
provides an easy way for library developers to add new 
functors to the library and for application developers to 
write custom functors for their application. Functors use 
the hierarchical array’s get/put API to move data blocks 
across the memory hierarchy. Once loaded, data blocks are 
processed using optimized kernels, which range from 
assembly code to optimized vendor libraries, e.g. 
Mercury’s Scientific Algorithm Library for the Cell and 
Intel’s Integrated Performance Primitives. 

Functors can improve performance by fusing data-
parallel functors in an expression. Consider the expression 
A = B + C * D, which operates on hierarchical arrays. 
SPE’s process one block at a time. A naïve implementation 
would process the * for all blocks in C and D, then the +, 
requiring a temporary variable to store the result of the *, 

adding DMA transfers between local store and main 
memory. A more efficient implementation will fuse the 
operations so that the entire expression is applied to a set 
of blocks across all arrays. Figure 4 shows the memory 
transfers required for unfused and fused versions of this 
expression. PVTOL will automatically fuse operations at 
runtime. 
 
5 Results 

We are currently working on a project at the Lincoln 
Laboratory that is building a real-time image processing 
application on the Cell. The first implementation directly 
used Mercury’s MultiCore Framework (MCF). Figure 5 
compares performance and programmer effort of three 
prototype implementations of a key kernel, the image 
projective transform, using ANSI C, MCF and PVTOL. 
The PVTOL version achieves nearly the same level of 
performance as the MCF implementation while providing 
a similar level of effort as ANSI C. 

Our preliminary design for the application shows that 
PVTOL reduces the overall software lines of codes 
(SLOCs) from ~1600 to ~600. We are actively building 
PVTOL for this project and will present updated 
performance and productivity results. 
 

 
Figure 5: GOPS vs. SLOCs for the projective transform 

 
6 Summary 

PVTOL contains a number of programming constructs 
that hide the complexity of multicore architectures. Task 
and Conduits allow pipelining and round-robining of data. 
Hierarchical maps concisely describe how to allocate 
hierarchical arrays across processor and memory 
hierarchies and provide a simple API for moving data 
across the hierarchies. New functors can be easily 
developed using the PVTOL API and can be fused for 
more efficient computation. 

We are actively building PVTOL for Intel and Cell 
architectures. We intend to add more functors and will 
look at supporting more processing architectures, including 
other multicore architectures, GPU’s and FPGA’s. 
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