

Section 1 _____

Algebra: Basic

	A set of elements A , with underlying field K
Functions:	$\cdot : A^2 \to A$
	$+: A^2 \to A$
	$K \times A \to A$
Relations:	
Properties:	+ is associative and commutative
	\cdot is not assumed commutative or associative
	\cdot distributes over +
	\times by $k \in K$ represents scalar multiplication
	$(A, +, K)$ is a vector space not assumed commutative or associative \cdot distributes over +

Section 2

Algebra: Commutative Algebras

Commutative Algebra

Types:	An algebra A
Functions:	
Relations:	
Properties:	\cdot is commutative

Types:	A commutative algebra A
Functions:	$\partial_i: A \to A$
Relations:	
Properties:	There are finitely many ∂_i over A
	All ∂_i satisfy the Leibniz product rule
	∂_i is a homomorphism of A^+

Polynomial Algebra

```
Types:A commutative Algebra A[X]Functions:1 \in A[X]Relations:X = \{x_1, x_2, ..., x_n\} where x_i is an indeterminate, n \ge 1
```

Heyting AlgebraTypes:A distributive lattice HFunctions: $\rightarrow: H^2 \rightarrow H$ Relations:properties: $(c \land a) \le b \Leftrightarrow c \le (a \longrightarrow b)$ Monoid $(H, \cdot, 1)$ has operation $\cdot = \land$

Boolean Alg	gebra
Types:	A complemented, distributive lattice and algebra B
Functions:	$\neg: B \rightarrow B$
	$\oplus: B^2 \to B$
Relations:	
Properties:	$\forall x \in B, x^2 = x$
	\neg is negation (complementation)
	$x \oplus y = (x \lor y) \land \neg (x \land y)$
	\oplus is algebra addition, \wedge is algebra multiplication

```
Relational AlgebraTypes:A commutative algebra RFunctions:\vee: R^2 \rightarrow R\wedge: R^2 \rightarrow R-: R \rightarrow RRelations:Properties:
```

Section 3 $_$

Algebra: Associative Algebra

 $\begin{array}{c|c} \textbf{Associative Algebra} \\ \hline Types: & \text{An Algebra } A \\ Functions: \\ Relations: \\ Properties: & \cdot \text{ is associative} \\ \end{array}$

Banach Algebra	
Types:	An associative algebra A
Functions:	$\ \ : A \to \mathbb{R}$
Relations:	
Properties:	$\forall x, y \in A : xy \le x y $
	${\cal A}$ is also a Banach space

An associative algebra and locally finite poset, $A \ \delta : A \to A$ *: $A^2 \to A$ * is algebra multiplication Any $a \in A$ behaves such that $[b, c] \mapsto a(b, c)$ a(b, c) is taken from a commutative ring of scalars δ is the identity function

Types:	An associative Algebra A
Functions:	$\circ: A^2 \to A$
Relations:	
Properties:	$a \in A$ are continuous linear operators over a topological vector space \circ is operator composition (and algebra multiplication)

Section 4

Algebra: Noncommutative Algebra

Types:	An algebra A
Functions:	
Relations:	
Properties:	\cdot in A is need not be commutative

Free Algebr	a
Types:	A noncommutative algebra $A[X]$
Functions:	$1 \in A[X]$
Relations:	
Properties:	$X = \{x_1, x_2,, x_n\}$ where x_i is an indeterminate from an alphabet
	1 is the empty word

Types:	A noncommutative Algebra T
Functions:	$\oplus: T^2 \to T$
	$\otimes: T^2 \to T$
Relations:	
Properties:	T is defined over any vector space V
	$T^k V = V \otimes_1 V \otimes_2 \dots \otimes_k V$
	$T(V) = C \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \dots$
	$T^k V \otimes T^l V = T^{k+l} V$
	T(V) is the most general algebra over V

Universal E	Universal Enveloping Algebra	
Types:	A unital associative Algebra $\mathcal{U}(\mathfrak{g})$ of a Lie Group \mathfrak{g}	
Functions:		
Relations:		
Properties:	\mathcal{I} is the ideal generated from $x \otimes y - y \otimes x - [x, y] \forall x, y \in T(\mathfrak{g})$	
	$\mathcal{U}(\mathfrak{g}) = \otimes \mathfrak{g})/\mathcal{I}$	

Symmetric	Algebra
Types:	An associative, commutative algebra $\forall (V)$ of a vector space V
Functions:	$1 \in \bigvee(V)$
Relations:	
Properties:	\mathcal{I} is the ideal generated from $w \otimes v - v \otimes w, \forall w, v \in V$ $\bigvee(V) = T(V)/\mathcal{I}$
	Division by the commutator makes $\vee(V)$ commutative

Types:	A nonassociative algebra $\wedge(V)$ of a vector space V
Functions:	
Relations:	
Properties:	\mathcal{I} is the ideal generated from $w \otimes v + v \otimes w, \forall w, v \in V$ $\wedge(V) = T(V)/\mathcal{I}$
	Division by the anticommutator makes $\vee(V)$ anticommutative

Section 5 $_$

Algebra: Nonassociative Algebra

Nonassocative Algebra

Types:An algebra AFunctions:Relations:Properties: \cdot is need not be associative

Jordan Algebra

Types:A nonassociative algebra AFunctions:Relations:Properties: $\forall x, y \in A : (xy)(xx) = (x(y(xx)))$

Power Associative AlgebraTypes:A nonassocative Algebra AFunctions:Relations:Properties: $\forall x, y \in A : x(x(xx)) = (xx)(xx) = (x(xx))x$

Flexible Algebra Types: A nonassociative Algebra A Functions: Relations:

Properties: $\forall x, y \in A : x(yx) = (xy)x$

Alternative AlgebraTypes:A nonassociative Algebra AFunctions:Relations:Properties: $\forall x, y \in A : xx(y) = x(xy)$

Types: A	A nonassociative Algebra \mathfrak{g}
Functions:	$]:\mathfrak{g}^2 \to \mathfrak{g}$
Relations:	
Properties: \forall	$\forall x, y \in \mathfrak{g} : [x, y] = -[y, x]$
\forall	$[x, y, z \in \mathfrak{g} : [x, [y, z]] + [y[z, x]] + [z, [x, y]] = 0$
A	$[x, y, z \in g: [ax + by, z] = a[x, z] + b[y, z] \text{ and } [x, ay + bz] = a[x, y] + b[x, z]$

Section 6

Algebra: Not further categorized

Zero Algebra	
--------------	--

Types:	An algebra A
Functions:	
Relations:	
Properties:	$\forall u, v \in A, uv = 0$
	\boldsymbol{A} is inherently associative and commutative

Unital Algebra

0	
Types:	An algebra A
Functions:	$1 \in A$
Relations:	
Properties:	1 is the identity for \cdot

Section 7 _____

BASIC

Types:	A ring K
Functions:	$+: K^2 \to K$
	$\times: K^2 \to K$
	$-^{-1}_{+}: K \to K$
	$-\frac{1}{x}: K/\{0\} \to K/\{0\}$
	$0, 1 \in K$
Relations:	
Properties:	$+, \times$ both associate and commute
	\times distributes over +
	0 is the identity for + and 1 is the identity for \times
	$(K, +)$ and (K, \times) are groups

Section 8

FIELDS: TOPOLOGICAL + RELATED

Topological	Field
Types:	A topological ring F
Functions:	$\cdot : R^2 \to R : (x, y) \mapsto x \cdot y$
	$+: R^2 \rightarrow R: (x, y) \mapsto x + y$
	$-^{-1}_{+}: R \to R$
	$-^{-1}_{\times}: F/\{0\} \to F/\{0\}$
Relations:	
Properties:	+,,-,-,+,-,+ are continuous mappings

Local Field	
Types:	A topological Field K
Functions:	$: K \to \mathbb{R}_{\geq 0}$
Relations:	
Properties:	$\forall u, v \in K, \exists \mathcal{U}, \mathcal{V} \in \tau : u \in \mathcal{U}, v \in \mathcal{V}, \mathcal{U} \cap \mathcal{V} = \emptyset$
-	if $C \subseteq \tau$ satisfies $X = \bigcup_{x \in C} x$, then there exists $F \subseteq C, F$ finite $X = \bigcup_{x \in F} x$

Archimedian Local Field

Types:A local field KFunctions:Relations:Properties:The sequence $|n|_{n\geq 1}$ is unbounded

Nonarchimedian Local Field

Types:A local field KFunctions:Relations:Properties:The sequence $|n|_{n\geq 1}$ is bounded

Section 9 ____

FIELDS: CHARACTERISTICS

Characteristic Zero FieldTypes:A field KFunctions:Relations:Properties: $\nexists n \in \mathbb{N} : 1 + 1 + ... + 1 = 0$

Ordered Field

A characteristic zero field K
\leq
\leq respects + and \times
K is necessarily infinite

Characteristic Nonzero Field

A field K
$\exists n \in \mathbb{N} : 1 + 1 + \ldots + 1 = 0$
\sum_{n}

Finite Field	
Types:	A characteristic nonzero field K
Functions:	
Relations:	
Properties:	K has a finite number of elements
-	The order of some $k \in K$ is p^n for some p prime, $n \in \mathbb{N}$

Section 10 _____

FIELDS: NOT FURTHER CATEGORIZED

Types:	A set V over a field K
Functions:	$+: V^2 \rightarrow V$
	$-^{-1}_{+}: V \to V$
	$K \times V \to V$
	$0 \in V$
Relations:	
Properties:	+ is associative and commutative
	$K \times V$ is scalar multiplication by K
	(V, +) is a group

Exponential Field	
Types:	A field K
Functions:	$\Phi:K^+\to K^\times$
Relations:	
Properties:	Φ is a homomorphism

Differential Field		
Types:	A polynomial field K	
Functions:	$\partial_i: K \to K$	
Relations:		
Properties:	Finitely many ∂_i exist over K	
	∂_i satisfies the Leibniz product rule	
	∂_i is a homomorphism of K^+	

Section 11 _____

FIELDS: ALGEBRAIC

Splitting Field		
Types:	A polynomial field K	
Functions:		
Relations:		
Properties:	K is extended so that some polynomial (or set of polynomials) $k \in K$ can be written as the product a linear factors, where n is the degree of the polynomial	
	be written as the product n linear factors, where n is the degree of the polynomial	

Algebraically Closed Field		
Types:	A field K and a polynomial ring $K[X]$	
Functions:		
Relations:		
Properties:	All polynomials $x \in K[X]$ can be decomposed as the product of linear factors Equivalently, there is no proper algebraic extension of K	

Section 12 _____

GRAPHS: BASIC

Types:	A tuple $G = (V, E), V, E$ are sets
Functions:	
Relations:	E
Properties:	E is composed of unordred pairs of V
-	E is irreflexive and symmetric

Section 13 _____

GRAPHS: UNDIRECTED GRAPHS

Types:	A graph $G = (V, E)$
Functions:	
Relations:	
Properties:	~ is irreflexive and symmetric

Tree	
Types:	A undirectd graph $G = (V, E)$
Functions:	
Relations:	
Properties:	There are no cycles in G
-	G is connected

Forest	
Types:	An undirected graph $G = (V, E)$
Functions:	
Relations:	
Properties:	$G\sp{s}$ connected component are trees, but G need not be connected

Rooted Tree		
Types:	A tree G	
Functions:		
Relations:		
Properties:	One vertex is designated as the root	

Line Graph	
Types:	An undirected graph $L(G) = (V^*, E^*)$, with underlying undirected graph $G = (V, E)$
Functions:	$f: E \to V^*$
Relations:	$\sim^* = \{\{x, y\} \in E^*\}$
Properties:	f maps edges in G to vertexes in $L(G)$
-	An unordered pair of vertices $\{v_i^*, v_j^*\} \in E^*$ iff their corresponding edges in G share an endpoint

Section 14 _____

GRAPHS: DIRECTED GRAPHS

Simple Directed Graph

```
Types:A graph G = (V, E)Functions:\rightarrow = \{(x, y) \in V \times V \mid (x, y) \in E\}Relations:\rightarrow = \{(x, y) \in V \times V \mid (x, y) \in E\}Properties:\rightarrow is irreflexive\forall u, v \in V, u \rightarrow v \Rightarrow v \rightarrow u
```

Polytree	
Types:	A directed graph $G = (V, E)$
Functions:	
Relations:	
Properties:	G's underlying undirected graph is a tree

Ordered Tree		
Types:	A directed graph $G = (V, E)$	
Functions:		
Relations:		
Properties:	The children of nodes in G are ordered	

Arboresence and Antiarboresence		
A rooted polytree, $G = (V, E)$		
Every node has a directed path away from or toward the root		

Types:	A directed graph $\Gamma = \Gamma(G, S), S$ a generating set for group G
Functions:	$f: G \to V(G)$
	$g: S \to C_S$
Relations:	$E(\Gamma) = \{ (g, gs) \in G \times G \mid \forall g \in G, \forall s \in S \}$
Properties:	f assigns each $g \in G$ to a vertex in Γ
	g assigns each $s \in S$ to a unique color
	The identity element generally is ignored, so the graph does not contain loops

```
Graph AlgebraTypes:<br/>Functions::: V^2 \rightarrow V \cup \{0\}<br/>Relations:Properties:x \cdot y : \begin{cases} x \quad x, y \in V, (x, y) \in E \\ 0 \quad x, y \in V \cup \{0\}, (x, y) \notin E \\ 0 \notin V \end{cases}
```

Section 15 ____

GRAPHS: K-PARTITE GRAPHS

Types:	A graph $G = (V, E)$
Functions:	
Relations:	
Properties:	$V_1, V_2,, V_n$ are disjoint sets that partition G's vertices
	All $e_i \in E$ can be written as $\{v_i, v_i\}$ where $v_i \in V_i, v_i \in V_i$ and $i \neq j$

Types:	A k-partite graph $G = (V, E)$
Functions:	
Relations:	
Properties:	Special case of k-partite graph for $k = 2$
	V_1, V_2 are disjoint sets partition G's vertices
	All $e_i \in E$ can be written as $\{v_i, v_i\}$ for some $v_i \in V_1$ and $v_i i n V_2$
	G has no odd cycles
	G is 2-colorable

H	Hypercube Graph		
	Types:	A regular, bipartite graph $Q_n = (X, E)$	
	Functions:		
	Relations:		
	Properties:	Q_n has 2^n vertices and $2^{n-1}n$ edges	

SECTION 16 _____

GRAPHS: PERFECT GRAPH

Perfect Gra	-
Types:	A graph $G = (X, E)$
Functions:	$\omega: G \mapsto n$
	$\chi: G \mapsto n$
Relations:	
Properties:	$\omega(G)$ is the the size of the largest clique in G
-	$\chi(X)$ is the the chromatic number of G
	$\omega(G) = \chi(G)$
	$\omega(0) - \chi(0)$

Perfectly Orderable Graphs

Types:	A perfect graph $G = (V, E)$
Functions:	
Relations:	$<=\{(x,y)\in V\times V\mid x< y\}$
Properties:	< is a total order
	For any chord less path $abcd \in G$ and $a < b,$ then d $\not <$ c

Chordal Graph		
Types:	A perfectly orderable graph $G = (V, E)$	
Functions:		
Relations:		
Properties:	All induced cycles are of order 3	
*	G has a perfect elimination order	

Comparabil	ity Graph
Types:	A perfect graph $C = (S, \bot)$
Functions:	
Relations:	$\perp = \{(x, y) \in S \mid x < y\}$
Properties:	S is the set of vertices
	S is a poset under <
	\perp is the edge relation
	$(x,y), (y,z) \in E \implies (x,z) \in E$

SECTION 17 _____

GRAPHS: NOT FURTHER CATEGORIZED

Hyper GraphTypes:A tuple H = (V, E)Functions:Relations:Properties: $E = \{e_i | i \in I_e, e_i \subseteq V\}$

 I_e is an index set for edges in H

Types:	A graph $G = (V, E)$
Functions:	
Relations:	
Properties:	There exists a path between any two $v \in V$ in the graph

Multigraph	
Types:	
Functions:	
Relations:	
Properties:	E is a multiset
-	More than one edge may connect the same two vertices

Vertex Labeled Graph		
Types:	A graph $G = (V, E)$	
Functions:	$f: V \to L$	
Relations:		
Properties:	f maps vertexes to a set of labels L	

Edge Label	ed Graph
Types:	A graph $G = (V, E)$ and set L
Functions:	$f: E \to L$
Relations:	
Properties:	f maps edges to a set of labels L
	f maps edges to a set of labels L

Weighted Graph

Types:An edge labeled graph G = (V, E) and labels LFunctions:Relations:Properties:L is an ordered set

Regular Graph

Types:A graph G = (V, E)Functions:Relations:Properties:All $v \in V$ are connected to the same number of edges

Section 18 $_$

GROUPS: PRELIMS

Magma

Types:A set M of elementsFunctions: $\cdot : M^2 \rightarrow M$ Relations: $\forall u, v \in M : u \cdot v \in M$

Semigroup

A magma S of elements
\cdot is associative

Monoid

Types:	A semigroup S
Functions:	$1 \in S$
Relations:	
Properties:	1 is the identity for \cdot
	$1 \cdot u = u \cdot 1 = u$

Types:	A magma Q
Functions:	$\searrow: Q^2 \to Q$
	$\land : Q^2 \to Q$
	$1_R, 1_L \in Q$
Relations:	
Properties:	Q is a cancellative magma

A quasigroup Q
$1 \in Q$
1 is the identity for \cdot
$1 \cdot x = x \cdot 1 = x$

Group	
.	
Types:	A set G
Functions:	$\cdot: G^2 \to G$
	$-^{-1}: G \to G$
	$1 \in G$
Relations:	
Properties:	\cdot is associative
	1 is the identity for \cdot
	$-^{-1}$ is the inverse map for \cdot

Section 19 _____

GROUPS: RANDOM/UNCATAGORIZED

Types:	A group G
Functions:	0
Relations:	
Properties:	$\forall g \in G, g = p^n, p \text{ prime}, n \in \mathbb{N}$

Torsion F	ree Group
-----------	-----------

Types: A group G Functions: Relations:

 $Properties: \quad \nexists g \in G, g \neq 1 : g^n = 1, n \in \mathbb{N}$

- $\begin{array}{c|c} \textbf{Simple Group} \\ \hline Types: & \textbf{A group } G \\ \hline Functions: \\ Relations: \\ Properties: & N \lhd G \Longrightarrow N = \{1\} \text{ or } G \end{array}$
- Topological groupTypes:A group GFunctions:Relations:Properties: $-^{-1}$ and × are continuous maps

Lie Group	
Types:	A topological group G
Functions:	
Relations:	
Properties:	$\forall p \in G, \exists \mathcal{U}_p \cong B_r(p), \text{ for some } r > 0$ $-^{-1}$ and \times are smooth maps

Section 20

GROUPS: FINITE GROUPS

Finite Grou	р
Types:	A group G
Functions:	
Relations:	
Properties:	$ G =n,n\in\mathbb{N}$

Fintie Symmteric Group		
Types:	A finite group S_n	
Functions:		

Relations:

Properties: $S_n = \{\sigma | \sigma : X \to X \text{ is bijective } \}$

 $\begin{array}{c|c} \textbf{Permutation Group} \\ \hline Types: & A \mbox{group } P_n \\ Functions: \\ Relations: \\ Properties: & P_n \leq S_p \end{array}$

Primitive Group		
Types:	A permutation group G that acts on a set X	
Functions:		
Relations:		
Properties:	G preserves only trivial partitions	

Alternating Group		
Types:	A permutation group A_n	
Functions:		
Relations:		
Properties:	$A_n = \{\sigma \sigma \in S_n \land \sigma \text{ even } \}$	

Section 21 _____

GROUPS: FREE GROUPS

A group F
F is generated by a set S
There are no relations on F_S (beyond group axioms)

Free Abelian Group		
Types:	A group F	
Functions:		
Relations:		
Properties:	F is generated by a set S	
	The only relation on F is commutativity	

Section 22 _____

GROUPS: ABELIAN GROUPS

	Abelian Group		
-	Types:	A group G	
	Functions:		
	Relations:		
	Properties:	\cdot is commutative	

Section 23 _____

GROUPS: GROUP PRESENTATIONS

Functions:	
Relations:	
Properties: G is of the form $\langle S R \rangle$, S a g	enerating set, R relators

Finitely Presented Group		
Types:	A finitely generated group G	
Functions:		
Relations:		
Properties:	$ R = n, n \in \mathbb{N}$	

Section 24

GROUPS: CYCLIC GROUPS

Cyclic Group		
Types:	A group G with element a	
Functions:		
Relations:		
Properties:	G can be generated from a and a set of relations RG is necessarily commutative	

Virtually Cyclic Group

Types:A group V with subgroup HFunctions:Relations:Properties: $\exists H \leq V : H$ is cyclic $|V:H| = n, n \in \mathbb{N}$

Locally Cyclic Group

Types:A group LFunctions:Relations:Properties: $\forall H \leq L$, if H is finitely generated, it is cyclic

Types:	A group C
Functions:	
Relations:	$[,,] = \{(a,b,c) \in C \times C \times C [a,b,c]\}$
Properties:	[a, b, c] is cyclic, asymmetric,
	transitive and total

Polycyclic Group		
Types:	A group P with subgroups H_i	
Functions:		
Relations:		
Properties:	P is necessarily finitely presented	
-	${H_i}_{i \in {1,2,,n-1}} : H_i/H_{i+1}$ is cyclic	

Metacyclic Group		
Types:	A group G	
Functions:		
Relations:		
Properties:	$n \leq 2$	

Section 25 _____

MODULES: BASIC

Module	
Types:	A set M
Functions:	$+: M^2 \to M$
	$-^{-1}_{+}: M \to M$
	$R \times M \to R$
Relations:	
Properties:	+ is associative and commutative
-	(M, +) is an abelian group
	$R \times M$ is scalar multiplication by elements in a ring
	Scalar multiplication is associative and distributes over addition

Section 26

Modules: Not further categorized

Semimodule	
01	A set M
Functions:	$+: M^2 \to M$
	$R \times M \to M$
Relations:	
Properties:	+ is associative and commutative
	(M, +) is an commutative monoid
	$R \times M$ is scalar multiplication by elements in a ring
	Scalar multiplication is associative and distributes over addition

Simple Module

Types:	A module M
Functions:	
Relations:	
Properties:	The only submodules of ${\cal M}$ are 0 and ${\cal M}$

D Module	
Types:	A module $M[X]$
Functions:	$\partial_{R_i}: M \to M$
Relations:	
Properties:	$X = \{x_1, x_2,, x_n\}$ where x_i is an indeterminant
	∂_{R_i} is in the ring of scalar multiplication
	∂_{R_i} satisfies the Leibniz product rule
	·v –

Section 27 _____

MODULES: CHAINS

Types:	A module M
Functions:	
Relations:	
Properties:	For any chain of submodules $S_0 \subseteq S_1 \subseteq \subseteq S_k$ there is some $k \ge 0$ s.t. $S_k = S_{k+1}$ All submodules of M are finitely generated

Types:	A module M
Functions:	
Relations:	
Properties:	For any chain of submodules $S_0 \supseteq S_1 \supseteq \supseteq S_k$ there is some $k \ge 0$ s.t. $S_k = S_{k+1}$

Section 28 ____

Modules: Finitely Generated

Finitely Generated Module

Types:A module MFunctions:Relations:Properties:M has a finite number of generators

Cyclic Module

Types:A finitely generated module MFunctions:Relations:Properties:M is generated from a single element

Section 29 _____

MODULES: TOWARD VECTOR SPACE

Torsion Free Module

Types:A module MFunctions:Relations:Properties: $\nexists m \in M, r, m \neq 0 : r \cdot m = 0$

Flat Module

Types:A torsion Free module MFunctions:Relations:Properties:Taking the tensor product over M preserves exact sequences

Projective Module

A flat module M

Free Module	
Types:	A projective module M
Functions:	
Relations:	
Properties:	M has no further relations beyond module axioms
	M has a basis

Types:	A set V over a field K
Functions:	$+: V^2 \rightarrow V$
	$-^{-1}_{+}: V \to V$
	$K \times V \to V$
	$0 \in V$
Relations:	
Properties:	+ is associative and commutative
	$K \times V$ is scalar multiplication by K
	(V, +) is a group

Section 30 _____

Posets and Lattices: Basics

\mathbf{Set}	
Types:	a collection of objects
Functions:	$\subset,\cap,\cup,\smallsetminus,\times,\wp, \amalg$
Relations:	E
Properties:	

Preordered Set

ricoracica	
Types:	A set P
Functions:	
Relations:	$\leq = \{(x, y) \in P \times P x \leq y\}$
Properties:	All elements need not be comparable under \leq
	\leq transitive and reflexive

Partially Ordered Set		
Types:	A set P	
Functions:		
Relations:	$\leq = \{(x, y) \in P \times P x \leq y\}$	
Properties:	All elements need not be comparable under \leq	
	\leq transitive, reflexive and antisymmetric	

Section 31 _____

Posets and Lattices: Posets not Further Catagorized

Types:	A poset X endowed with topology τ
Functions:	
Relations:	$\leq = \{(x, y) \in X \times X x \leq y\}$
Properties:	$\forall x, y \in X, x \nleq y : \exists \mathcal{U}, \mathcal{V} \subset \tau, x \in \mathcal{U}, y \in \mathcal{V} : u \nleq v, \forall u \in \mathcal{U}, \forall v \in \mathcal{V}$

Locally Finite Poset

Types:A poset PFunctions: $\forall x, y \in P, x \leq y : [x, y]$ has finitely many elements

Partial	llv	Ordered	group
I ai uiai	L L Y	Oracica	SIVUP

I di tidiij oi	dorod Broup
Types:	A poset and group G
Functions:	$+:G^2 \to G$
	$-^{-1}_+: G \to G$
	$0 \in G$
Relations:	$\leq = \{(x, y) \in G \times G \mid 0 \leq -x + y\}$
Properties:	\leq respects +

Section 32 $_$

Posets and Lattices: Strict/Total Posets

Strict Poset

- Types: Functions:
- Relations: $\langle = \{(x, y) \in P^2 \mid x < y\}$ Properties: \langle is irreflexive, transitive, and asymmetric

A poset P

Totally Ordered Set

Types:A poset PFunctions:Relations:Properties:All elements are comparable under \leq

Strict Totally Ordered Set

Types:	A poset P
Functions:	
Relations:	$<=\{(x,y)\in P\times P\mid x< y\}$
Properties:	< is irreflexive, transitive, asymmetric and trichotomous

Section 33 _____

Posets and Lattices: Graded Stuff

Graded Pos	\mathbf{et}
Types:	A poset P
Functions:	$\rho: P \to \mathbb{N}$
Relations:	$\leq \{(x, y) \in P \mid \nexists z : x < z < y\}$
Properties:	$x < y \implies \rho(x) < \rho(y)$
-	$x \lessdot y \implies \rho(y) = \rho(x) + 1$

Eulerian Poset
Types:
Functions:
Relations:
Properties:
1

Section 34 ____

Posets and Lattices: Linked + Related

Upward (Downward) Linked Set

Types:A subset S of poset PFunctions:Relations:Properties: $\forall x, y \in S : \exists z \in P \text{ s.t. } x \leq (\geq)z \text{ and } y \leq (\geq)z$

Upwards (Downwards) Centered SetTypes:A linked subset S of poset PFunctions:Relations:Properties: $\forall Z \subseteq P, Z$ has an upper (lower) bound $\in P$

Upward (Downward) Directed Set		
Types:	A preset P	
Functions:		
Relations:		
Properties:	\leq is a preorder	
	$\forall x, y \in P : \exists z \text{ s.t. } x \leq (\geq)z \text{ and } y \leq (\geq)z$	

Algebraic Poset		
Types:	A poset P	
Functions:		
Relations:		
Properties:	each element is the least upper bound of the compact elements below it	

Section 35 _____

Posets and Lattices: Semilattices

Meet Semilattice: Order Theoretic EditionTypes:A poset PFunctions: $\leq = \{(x,y) \in P \times P \mid x \leq y\}$ Relations: $\leq = \{(x,y) \in P \times P \mid x \leq y\}$ Properties: $\forall x, y \in S, \exists c : c \leq x, c \leq y$ c is the unique greatest lower bound

Meet Semilattice: Algebraic Edition Types: A poset P

Functions: $\wedge : P^2 \to P$ Relations: Properties: \wedge is associative, commutative, and idempotent

Join Semilatttice: Order Theoretic Edition

Types:A poset PFunctions:Relations: $\leq = \{(x, y) \in P \times P \mid x \leq y\}$ Properties: $\forall x, y \in P, \exists c : x \leq c, y \leq c$ c is the unique least upper bound

Join Semilattice: Algebraic EditionTypes:A poset PFunctions: $\vee: P^2 \rightarrow P$ Relations: \vee is associative, commutative, and idempotent

Section 36 $_$

Posets and Lattices: Lattices

Lattice (ord	ler theory)
Types:	A set L
Functions:	
Relations:	$\leq = \{(x, y) \in L \times \mid x \leq y\}$
Properties:	$\forall x, y \in L, \exists c, d : c \text{ is the greatest lower bound and } d \text{ is the least upper bound}$

Complete Lattice		
Types:	A lattice L	
Functions:		
Relations:		
Properties:	$\forall A \subseteq L, A$ has a greatest lower bound and least upper bound	
-		

Continuous Lattice		
Types:	A complete lattice A	
Functions:		
Relations:	$\ll = \{(x, y) \in L \times L \mid \forall D \subseteq L : y \le \sup D, \exists x \in L, \exists d \in D \text{ s.t. } x \le d\}$	
Properties:	$\forall x \in P, \{a \mid a \ll x\}$ is directed and has least upper bound x	

Algebraic Lattice

Types:	A continuous lattice A
Functions:	
Relations:	
Properties:	Each element is the least of compact elements below it: those x who satisfy $x \ll a$

SECTION 37 _____

Posets and Lattices: A Big Web of Lattices

Relatively C	Complemented Lattice
Types:	A lattice L
Functions:	
Relations:	
Properties:	$\forall c \forall d \ge c, [c, d] : \forall a \in [c, d], \exists b \text{ s.t.}:$
	$a \lor b = d$
	$a \wedge b = c$
	a and b are relative complements

Bounded Lattice

Types:	A lattice L
Functions:	
Relations:	
Properties:	$\forall x \in L:$
	$x \wedge 1 = x$
	$x \lor 1 = 1$
	$x \lor 0 = x$
	$x \wedge 0 = 0$

Complemen	ted Lattice
Types:	A lattice L
Functions:	
Relations:	
Properties:	$\forall a \in L, \exists b \in L:$
	$a \lor b = 1$
	$a \wedge b = 0$

Functions: $\therefore L^2 \rightarrow L$ $1 \in L$ Relations:	
Relations:	
Properties: $(L, \cdot, 1)$ is a monoid	
(L, \leq) is a lattice	

Atomic Lattice		
Types:	A lattice L	
Functions:		
Relations:	$\leq = \{(x, y) \in P \mid \nexists z : x < z < y\}$	
Properties:	$\forall b \in L : 0 \land b = 0$	
	$\exists a_i \in L : 0 \lessdot a_i$	
	$\forall b \neq a_i, \exists a_i : 0 < a_i < b$	
	$\{a_i\}_{i\in I}$ is the set of atoms in L	

Semimodular Lattice

Types:A semimodular lattice LFunctions:Relations:Properties: $a \leq c \implies a \lor (b \land c) = (a \lor b) \land c$

Modular Lattice

Types:A semimodular lattice LFunctions:Relations:Properties: $a \leq c \implies a \lor (b \land c) = (a \lor b) \land c$

Distributive Lattice

Types:A modular lattice LFunctions:Relations:Properties: $x \land (y \lor z) = (x \land y) \lor (x \land z)$ $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

Orthomodular Lattice

Types:A lattice LFunctions:Relations:Properties: $a \le b \implies b = a \lor (b \land a^{\perp})$

Types:	A lattice L
Functions:	$\bot : L \to L$
Relations:	
Properties:	\perp maps an element <i>a</i> to its complement
	$a \lor a^{\perp} = 1$
	$a \wedge a^{\perp} = 0$
	$(a^{\perp})^{\perp} = a$
	$a < b \implies a^{\perp} > b^{\perp}$

Geometric Lattice

Types:A semimodular, atomic, algebraic Lattice LFunctions:Relations:Properties:L is finite

Heyting Algebra		
Types:	A distributive lattice H	
Functions:	\longrightarrow : $H^2 \rightarrow H$	
Relations:		
Properties:	$(c \land a) \le b \Leftrightarrow c \le (a \longrightarrow b)$	
	Monoid $(H, \cdot, 1)$ has operation $\cdot = \land$	

Complete Heyting Algebra

Types:A heyting algebra HFunctions:Relations:Properties:H is complete as a lattice

Boolean Algebra

Types:	A complemented, distributive lattice and algebra B
Functions:	$\neg: B \rightarrow B$
	$\oplus: B^2 \to B$
Relations:	
Properties:	$\forall x \in B, x^2 = x$
	\neg is negation (complementation)
	$x \oplus y = (x \lor y) \land \neg (x \land y)$
	\oplus is algebra addition, \wedge is algebra multiplication

Section 38 -

RINGS: BASICS

Ring	
Types:	A set R
Functions:	$\cdot : R^2 \to R$
	$+: R^2 \to R$
	$-^{-1}_{+}: R \to R$
	$0 \in R$
Relations:	
Properties:	(R, +) is an abelian group
-	\cdot is a monoid and distributes over +

Commutative Ring

Types:	A ring R
Functions:	
Relations:	
Properties:	\cdot is commutative

Noncommutative Ring

Types:A ring RFunctions:Relations:Properties: \cdot need not be commutative

Section 39 ____

Rings: Ideals + Related

Left (right) IdealTypes:A subgroup of a ring, IFunctions:Relations:Properties: $\forall x \in I, \forall r \in R : rx (xr) \in I$

Ideal Types:	A subgroup of a ring, I
Functions:	$\mathbf{G} = \mathbf{G} + \mathbf{T}$
Relations:	
Properties:	The left and right ideals generated by a subgroup are equal

Maximal ideal

Types:A subgroup of elements, IFunctions:Relations:Properties: $I \subseteq J \implies I = J$ or J = R

Principal ideal

Types:A subgroup of elements, IFunctions:Relations:Properties:I is generated by a single element

Prime Ideal

Types:A subgroup of elements IFunctions:Relations:Properties: $ab \in I \implies a \in I \text{ or } b \in I$

Quotient Ri	Quotient Ring		
Types:	A ring Q		
Functions:			
Relations:	$\sim = \{(x, y) \in R \times R \mid x - y \in I\}$		
Properties:	Q is constructed by dividing R with one of its ideals		

Section 40 ____

RINGS: BOOLEANS + RELATED

Boolean	Ring
---------	------

Types:A commutative ring RFunctions:Relations:Properties: $\forall x \in R : x^2 = x$ $\forall x \in R : 2x = 0$

Boolean Alg	gebra
Types:	A complemented, distributive lattice and algebra B
Functions:	$\neg: B \to B$
	$\oplus: B^2 \to B$
Relations:	
Properties:	$\forall x \in B, x^2 = x$
-	\neg is negation (complementation)
	$x \oplus y = (x \lor y) \land \neg (x \land y)$
	\oplus is algebra addition, \wedge is algebra multiplication

Sigma Alge	bra
Types:	A subset Σ , of $\wp(X)$, X a set
Functions:	$\cap, \cup, \smallsetminus$
Relations:	
Properties:	$X \in \Sigma$
	\cap, \cup closed under countable operations

SECTION 41 _

RINGS: RANDOMS/NOT FURTHER CATAGORIZED

Types:	A set R
Functions:	$\cdot : R^2 \to R$
	$+R^2 \rightarrow R$
	$0 \in R$
Relations:	
Properties:	+ is a commutative monoid
1 roperties.	· is a monoid and distributes over +

Noetherian Ring

 $\begin{array}{ll} Types: & \mbox{A ring } R \\ Functions: & \\ Relations: & \\ Properties: & \mbox{For any } I_0 \subseteq I_1 \subseteq \ldots \subseteq I_k \mbox{ there is some } k \geq 0 \mbox{ s.t. } I_k = I_{k+1} \end{array}$

Artinian Ring

 $\begin{array}{ll} Types: & \mbox{A ring } R \\ Functions: \\ Relations: \\ Properties: & \mbox{For any } I_0 \supseteq I_1 \supseteq \ldots \supseteq I_k \mbox{ there is some } k \ge 0 \mbox{ s.t. } I_k = I_{k+1} \end{array}$

Ring
A ring R with topology τ
$\cdot : R^2 \to R : (x, y) \mapsto x \cdot y$
$+: R^2 \rightarrow R: (x, y) \mapsto x + y$
$-^{-1}_{+}: R \to R$
\cdot distributes over +
$+, \cdot,{+}^{-1}$ are continuous mappings

Section 42

RINGS: VALUATION BS

D	•
Don	nam

Types:A ring RFunctions:Relations:Properties: $\forall a, b \in R, ab = 0 \implies a = 0 \text{ or } b = 0$

Integral Domain

Types:A ring RFunctions:Relations:Properties: \cdot is additionally commutative

Unique Fact	torization Domain
Types:	An integral domain R
Functions:	
Relations:	
Properties:	All ideals are finitely generated
-	All irreducible elements are prime

 $\forall x \in R, x \neq 0, x = up_1p_2...p_n \text{ for } u \text{ unit, } p_i \text{ prime}$

Principal Id	eal Domain
Types:	A unique factorization domain R
Functions:	
Relations:	
Properties:	All ideals are principal Any two elements have a greatet common divisor

Euclidean I	Domain
Types:	A principal idea domain R
Functions:	$f_i: R \smallsetminus \{0\} \to R$
Relations:	
Properties:	f_i is the euclidean (gcf) algorithm
	R may have many f_i or just one

Section 43 _____

RINGS:	Budget	VERSIONS	OF	FIELDS
--------	--------	----------	----	--------

Field	
Types:	A ring K
Functions:	$+: K^2 \to K$
	$\times K^2 \to K$
	$-^{-1}_{+}: K \to K$
	${\times}^{-1}: K/\{0\} \to K/\{0\}$
	$0, 1 \in K$
Relations:	
Properties:	$+, \times$ both associate and commute
-	\times distributes over +

elements in a ring, R

Types:	A set V over a field K
Functions:	$+: V^2 \rightarrow V$
	$-^{-1}_+: V \to V$
	$K \times V \to V$
	$0 \in V$
Relations:	
Properties:	+ is associative and commutative
	$K \times V$ is scalar multiplication by K
	(V, +) is a group

Finite Field	
Types:	A characteristic nonzero field K
Functions:	
Relations:	
Properties:	K has a finite number of elements
-	The order of some $k \in K$ is p^n for some p prime and $n \in \mathbb{N}$

SECTION 44

Sets: Basics

Set	
Types:	a collection of objects
Functions:	$\subset, \cap, \cup, \smallsetminus, \times, \wp, $
Relations:	E
Properties:	

Section 45 _____

Sets: Countable

Countable S	Set
Types:	A set S
Functions:	
Relations:	
Properties:	$ S \leq \aleph_0$

Infinite Countable Set

Types:A set SFunctions:Relations:Properties: $|S| = \aleph_0$ bijection into N

Finite Countable Set

Types:A set SFunctions:Relations:Properties: $|S| < \aleph_0$

Section 46 $_$

Sets: Uncountable

Section 47 _____

Sets: Classes

Proper Clas	S
Types:	a collection, C of sets
Functions:	$\varphi(x)$
Relations:	
Properties:	$\varphi(x)$ is a membership function
-	C is not a set

Ordinal	
Types:	A collection of sets, X_i
Functions:	$\times, +, X^n, S(n)$
Relations:	>
Properties:	$X_k = \{0, 1, 2, \dots X_{k-1}\}$
	> is trichotomous, transitive, and wellfounded

Cardinal	
Types:	Ordinals κ
Functions:	
Relations:	
Properties:	The cardinality κ is the least ordinal, α , s.t. there is a bijection between S and α

Section 48 $_$

TOPOLOGIES: BASICS

Convergent	Space
Types:	A set S and filters on S, \mathcal{F}
Functions:	
Relations:	\rightarrow
Properties:	$\forall F \in \mathcal{F}, x \in S, F \rightarrow x \Leftrightarrow F \text{ convergences to } X$
	\rightarrow is centered, isotone, and directed
	$\mathcal{N}(x) = \bigcap \{ F \in \mathcal{F} F \to x \}$

Section 49 $_$

TOPOLOGIES: ALGEBRAIC TOPOLOGIES

Topological	Group
Types:	A group G with topology τ
Functions:	$\cdot : G^2 \to G : (x, y) \mapsto x \cdot y$
	$-^{-1}: G \to G$
	$1 \in G$
Relations:	
Properties:	$\cdot, -^{-1}$ are continuous mappings
1	,

Topological	Ring
Types:	A ring R with topology τ
Functions:	$\cdot : R^2 \to R : (x, y) \mapsto x \cdot y$
	$+: R^2 \to R: (x, y) \mapsto x + y$
	$-^{-1}_{+}: R \rightarrow R$
Relations:	
Properties:	\cdot distributes over +
1	$+,\cdot,{+}^{-1}$ are continuous mappings

Types:	A topological ring K
Functions:	A field K with topology τ
Relations:	$\cdot : K^2 \to K : (x, y) \mapsto x \cdot y$
	$+: K^2 \to K: (x, y) \mapsto x + y$
	$-^{-1}_{+}: K \to R$
	${\times}^{-1}: K/\{0\} \to K/\{0\}$

 $+,\cdot,-_{+}^{-1},-_{\cdot}^{-1}$ are continuous mappings

Types:	A vector space V over a topological field K
Functions:	$+: V^2 \rightarrow V$
	$k \times V \to V$
	$-^{-1}_+: V \to V$
Relations:	
Properties:	$k \times V$ represents scalar multiplication by elements in a field K

Section 50

TOPOLOGIES: WEB I

Uniform Sp	ace
Types:	A topological space U and entourages Φ
Functions:	
Relations:	$U = \{(x, y) x \approx_u y\}$
Properties:	Φ is a nonempty collection of relations on S
	$U \in \Phi$ and $U \subseteq V \subseteq X \times X \implies V \in \Phi$
	$\forall U \in \Phi, \exists V \in \Phi, \forall x, y, z : V \circ V \subseteq \Phi : x \approx_V y, y \approx_V z \implies x \approx_U z$
	$\forall U \in \Phi, \exists V \in \Phi, \forall x, y : V \circ V \subseteq \Phi : y \approx_V x \implies x \approx_U y$
	$U, V \in \Phi \implies U \cap V \in \Phi$

Complete Uniform Space

Types:A uniform Space UFunctions:Functions:Relations: $\forall F \forall U : \exists A \in F : A \times A \subseteq U, F$ converges

Manifold

Types:A topological space, MFunctions:Relations:Properties: $\forall p \in M, \exists u \in \mathcal{U}(p) : u \cong \mathbb{R}^n$
Manifolds are not inherently metric or inner product spaces

Compact Manifold

Types:A manifold MFunctions:Relations:Properties: $X = \bigcup_{x \in C} x$, then for $F \subseteq C, F$ finite, $X = \bigcup_{x \in F} x$

Smooth Manifold

Types:A manifold MFunctions:Relations:Properties:Derivatives of arbitrary orders exist

Riemann M	anifold
Types:	A smooth manifold M
Functions:	$g_p: T_p M^2 \to \mathbb{R}$
Relations:	
Properties:	g_p is the inner product on the tangent space of a point p
	$g_p(X,Y) = g_p(Y,X)$
	$g_p(aX+Y,Z) = ag_p(X,Z) + g_p(Y,Z)$

Pseudo Riemann Manifold

Types:	A smooth manifold M
Functions:	$g_p: T_p M^2 \to \mathbb{R}$
Relations:	
Properties:	g_p is the inner product on the tangent space of a point p
	$g_p(X,Y) = 0 \ \forall Y \implies X = 0$

Affine Space Types:	A set A and vector space \overrightarrow{A}
Functions:	$A \times \overrightarrow{A} \to A : (a, v) \mapsto a + v$
Relations:	
Properties:	\vec{A} 's additive group acts freely and transitively on A
	$\forall v, w \in \overrightarrow{A}, \forall a \in A, (a+w) + u = a + (w+u)$
	$\forall a, b \in A, \exists v \in \overrightarrow{R} : b = a + v$
	$\forall a \in A, \overrightarrow{A} \to A : v \mapsto a + v$ is bijective

Section 51 _____

TOPOLOGIES: WEB II

Functions: $d: M^2 \to \mathbb{R}$ Relations: Properties: $d(x, y) \ge 0$ $d(x, y) = 0 \Leftrightarrow x = y$ d(x, y) = d(y, y)	Types:	A topological space M
Properties: $d(x,y) \ge 0$ $d(x,y) = 0 \Leftrightarrow x = y$	Functions:	$d:M^2\to\mathbb{R}$
$d(x,y) = 0 \Leftrightarrow x = y$	Relations:	
	Properties:	$d(x,y) \ge 0$
d(m, u) = d(u, m)	-	$d(x,y) = 0 \Leftrightarrow x = y$
a(x,y) = a(y,x)		d(x,y) = d(y,x)

Complete M	letric Space
Types:	A metric space M
Functions:	
Relations:	
Properties:	$\forall F \forall U : \exists A \in F : A \times A \subseteq U, F \text{ converges}$

Normed Ve	ctor Space
Types:	A metric and topological vector space V
Functions:	$\ \ : V \to \mathbb{R}$
Relations:	
Properties:	$ x > 0$ for $x \neq 0$ and $ x = 0$ iff $x = 0$
	$\ \alpha x\ = \alpha \ x\ $
	$ x + y \le x + y $
	$\ \ $ induces a metric on $V : d(x, y) = \ x - y\ $

Banach Space

Types:	A vector space V
Functions:	
Relations:	
Properties:	for any Cauchy Sequence $\{x_n\} \lim_{x\to\infty} x_n - x = 0$

Inner Produ	uct Space
Types:	A vector space V and field of scalars F
Functions:	$\langle \cdot, \cdot \rangle : V^2 \to F$
Relations:	
Properties:	$\langle x, y \rangle = \overline{\langle y, x \rangle}$
	$\langle x, x \rangle \ge 0$
	$\langle x, x \rangle = 0$ iff $x = 0$
	$\langle ax, y \rangle = a \langle x, y \rangle$
	$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$

Hilbert Spa	ce
Types:	An inner product space H
Functions:	
Relations:	
Properties:	A norm may be defined as $ x = \sqrt{\langle x, x \rangle}$ for any Cauchy Squence $\{x_n\}, \lim_{x \to \infty} x_n - x = 0$

Types:	A banach and hilbert space \mathbb{R}^n
Functions:	
Relations:	
Properties:	A norm is defined as $ x = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} (x_i)^2}$