

Section 1

\qquad

Algebra: Basic

```
Algebra Over a Field
    Types: \(\quad\) A set of elements \(A\), with underlying field \(K\)
    Functions: \(\quad: \quad A^{2} \rightarrow A\)
    \(+: A^{2} \rightarrow A\)
    \(K \times A \rightarrow A\)
    Relations:
    Properties: + is associative and commutative
        - is not assumed commutative or associative
            - distributes over +
            \(\times\) by \(k \in K\) represents scalar multiplication
            \((A,+, K)\) is a vector space not assumed commutative or associative
            - distributes over +
```


Section 2

Algebra:Commutative Algebras

Commutative Algebra

Types: \quad An algebra A
Functions:
Relations:
Properties: \quad is commutative

Differential Algebra

Types: A commutative algebra A
Functions: $\quad \partial_{i}: A \rightarrow A$
Relations:
Properties: There are finitely many ∂_{i} over A
All ∂_{i} satisfy the Leibniz product rule
∂_{i} is a homomorphism of A^{+}

Polynomial Algebra

Types: \quad A commutative Algebra $A[X]$
Functions: $1 \in A[X]$
Relations:
Properties: $\quad X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ where x_{i} is an indeterminate, $n \geq 1$

Heyting Algebra

Types: A distributive lattice H
Functions: $\longrightarrow: H^{2} \rightarrow H$
Relations:
Properties: $\quad(c \wedge a) \leq b \Leftrightarrow c \leq(a \longrightarrow b)$
Monoid $(H, \cdot, 1)$ has operation $\cdot=\wedge$

Boolean Algebra

```
Types: A complemented, distributive lattice and algebra \(B\)
    Functions: \(\quad \neg: B \rightarrow B\)
            \(\oplus: B^{2} \rightarrow B\)
    Relations:
    Properties: \(\quad \forall x \in B, x^{2}=x\)
            \(\neg\) is negation (complementation)
            \(x \oplus y=(x \vee y) \wedge \neg(x \wedge y)\)
            \(\oplus\) is algebra addition, \(\wedge\) is algebra multiplication
```


Relational Algebra

Types: \quad A commutative algebra R
Functions: $\quad \vee: R^{2} \rightarrow R$
$\wedge: R^{2} \rightarrow R$
$-: R \rightarrow R$

Relations:
Properties:

```
Associative Algebra
    Types: An Algebra A
    Functions:
    Relations:
    Properties: . is associative
```


Banach Algebra

Types: \quad An associative algebra A
Functions: $\quad\|\|: A \rightarrow \mathbb{R}$
Relations:
Properties: $\quad \forall x, y \in A:\|x y\| \leq\|x\|\|y\|$
A is also a Banach space

An associative algebra and locally finite poset, $A \delta: A \rightarrow A$

* : $A^{2} \rightarrow A *$ is algebra multiplication

Any $a \in A$ behaves such that $[b, c] \mapsto a(b, c)$
$a(b, c)$ is taken from a commutative ring of scalars δ is the identity function

Operator Algebra

Types: An associative Algebra A
Functions: $\quad \circ: A^{2} \rightarrow A$
Relations:
Properties: $\quad a \in A$ are continuous linear operators over a topological vector space

- is operator composition (and algebra multiplication)

Section 4

Algebra: Noncommutative Algebra

Noncommutative Algebra

Types: \quad An algebra A
Functions:
Relations:
Properties: - in A is need not be commutative

Free Algebra

Types: A noncommutative algebra $A[X]$
Functions: $\quad 1 \in A[X]$
Relations:
Properties: $\quad X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ where x_{i} is an indeterminate from an alphabet 1 is the empty word

Tensor Algebra

Types: A noncommutative Algebra T
Functions: $\oplus: T^{2} \rightarrow T$
$\otimes: T^{2} \rightarrow T$
Relations:
Properties: $\quad T$ is defined over any vector space V
$T^{k} V=V \otimes_{1} V \otimes_{2} \ldots \otimes_{k} V$
$T(V)=C \oplus V \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \ldots$
$T^{k} V \otimes T^{l} V=T^{k+l} V$
$T(V)$ is the most general algebra over V

Universal Enveloping Algebra

Types: A unital associative Algebra $\mathcal{U}(\mathfrak{g})$ of a Lie Group \mathfrak{g}
Functions:
Relations:
Properties: $\quad \mathcal{I}$ is the ideal generated from $x \otimes y-y \otimes x-[x, y] \forall x, y \in T(\mathfrak{g})$ $\mathcal{U}(\mathfrak{g})=\otimes \mathfrak{g}) / \mathcal{I}$

Symmetric Algebra

Types: An associative, commutative algebra $\bigvee(V)$ of a vector space V
Functions: $\quad 1 \in \bigvee(V)$
Relations:
Properties: $\quad \mathcal{I}$ is the ideal generated from $w \otimes v-v \otimes w, \forall w, v \in V$ $\vee(V)=T(V) / \mathcal{I}$
Division by the commutator makes $\bigvee(V)$ commutative

Exterior Algebra

Types: A nonassociative algebra $\wedge(V)$ of a vector space V
Functions:
Relations:
Properties: $\quad \mathcal{I}$ is the ideal generated from $w \otimes v+v \otimes w, \forall w, v \in V$
$\wedge(V)=T(V) / \mathcal{I}$
Division by the anticommutator makes $\bigvee(V)$ anticommutative

SECTION 5

Algebra: Nonassociative Algebra

Nonassocative Algebra

Types: An algebra A
Functions:
Relations:
Properties: . is need not be associative

Jordan Algebra
Types: A nonassociative algebra A
Functions:
Relations:
Properties: $\quad \forall x, y \in A:(x y)(x x)=(x(y(x x))$

Power Associative Algebra
Types: A nonassocative Algebra A
Functions:
Relations:
Properties: $\quad \forall x, y \in A: x(x(x x))=(x x)(x x)=(x(x x)) x$

Flexible Algebra

Types: A nonassociative Algebra A
Functions:
Relations:
Properties: $\quad \forall x, y \in A: x(y x)=(x y) x$

Alternative Algebra

Types:

A nonassociative Algebra A
Functions:
Relations:
Properties: $\quad \forall x, y \in A: x x(y)=x(x y)$

Lie Algebra

```
Types: A nonassociative Algebra \(\mathfrak{g}\)
Functions: \(\quad[]: \mathfrak{g}^{2} \rightarrow \mathfrak{g}\)
Relations:
Properties: \(\quad \forall x, y \in \mathfrak{g}:[x, y]=-[y, x]\)
    \(\forall x, y, z \in \mathfrak{g}:[x,[y, z]]+[y[z, x]]+[z,[x, y]]=0\)
    \(\forall x, y, z \in \mathfrak{g}:[a x+b y, z]=a[x, z]+b[y, z]\) and \([x, a y+b z]=a[x, y]+b[x, z]\)
    \([x, x]=0\)
```


SECtion 6

Algebra: Not further categorized

Zero Algebra

Types: An algebra A
Functions:
Relations:
Properties: $\quad \forall u, v \in A, u v=0$
A is inherently associative and commutative

Unital Algebra
Types: An algebra A
Functions: $1 \in A$
Relations:
Properties: 1 is the identity for •

Section 7

Fields: Basic

Field

$$
\begin{array}{ll}
\text { Types: } & \text { A ring } K \\
\text { Functions: } & +: K^{2} \rightarrow K \\
& \times: K^{2} \rightarrow K \\
& -{ }^{-1}: K \rightarrow K \\
& -\times-1: K /\{0\} \rightarrow K /\{0\} \\
& 0,1 \in K
\end{array}
$$

Relations:
Properties: $\quad+, \times$ both associate and commute
x distributes over +
0 is the identity for + and 1 is the identity for \times $(K,+)$ and (K, \times) are groups

Section 8

Fields: Topological + Related

Topological Field

Types:	A topological ring F
Functions:	$\cdot: R^{2} \rightarrow R:(x, y) \mapsto x \cdot y$
	$+: R^{2} \rightarrow R:(x, y) \mapsto x+y$
	$-{ }^{-1}: R \rightarrow R$
	$-\frac{+}{x}: F /\{0\} \rightarrow F /\{0\}$

Relations:
Properties: $\quad+, \cdot,,_{+}^{-1},-_{x}^{-1}$ are continuous mappings

Local Field

Types: \quad A topological Field K
Functions: $\quad \|: K \rightarrow \mathbb{R}_{\geq 0}$
Relations:
Properties:
$\forall u, v \in K, \exists \mathcal{U}, \mathcal{V} \in \tau: u \in \mathcal{U}, v \in \mathcal{V}, \mathcal{U} \cap \mathcal{V}=\varnothing$
if $C \subseteq \tau$ satisfies $X=\bigcup_{x \in C} x$, then there exists $F \subseteq C, F$ finite $X=\bigcup_{x \in F} x$

Archimedian Local Field

Types: \quad A local field K
Functions:
Relations:
Properties: The sequence $|n|_{n \geq 1}$ is unbounded

Nonarchimedian Local Field
Types: A local field K
Functions:
Relations:
Properties: The sequence $|n|_{n \geq 1}$ is bounded

Section 9

Fields: Characteristics

```
Characteristic Zero Field
    Types: A field K
    Functions:
    Relations:
    Properties: }\not\existsn\in\mathbb{N}:\mp@subsup{\underbrace}{n}{1+1+\ldots+1}=
```

 Ordered Field
 Types: A characteristic zero field \(K\)
 Functions:
 Relations: \(\leq\)
 Properties: \(\leq\) respects + and \(\times\)
 \(K\) is necessarily infinite

Characteristic Nonzero Field

Types: A field K

Functions:
Relations:
Properties: $\exists n \in \mathbb{N}: \underbrace{1+1+\ldots+1}=0$

Finite Field

Types: A characteristic nonzero field K
Functions:
Relations:
Properties: K has a finite number of elements
The order of some $k \in K$ is p^{n} for some p prime, $n \in \mathbb{N}$

Section 10
Fields: Not further categorized

Vector Space
Types: A set V over a field K
Functions: $\quad+: V^{2} \rightarrow V$
$-_{+}^{-1}: V \rightarrow V$
$K \times V \rightarrow V$
$0 \in V$
Relations:
Properties: + is associative and commutative
$K \times V$ is scalar multiplication by K $(V,+)$ is a group

Exponential Field
Types: A field K
Functions: $\quad \Phi: K^{+} \rightarrow K^{\times}$
Relations:
Properties: Φ is a homomorphism

Differential Field

Types: A polynomial field K
Functions: $\quad \partial_{i}: K \rightarrow K$
Relations:
Properties: Finitely many ∂_{i} exist over K ∂_{i} satisfies the Leibniz product rule ∂_{i} is a homomorphism of K^{+}

SEction 11

Fields: Algebraic

Splitting Field

Types: A polynomial field K
Functions:
Relations:
Properties: $\quad K$ is extended so that some polynomial (or set of polynomials) $k \in K$ can be written as the product n linear factors, where n is the degree of the polynomial

Algebraically Closed Field

Types: \quad A field K and a polynomial ring $K[X]$
Functions:
Relations:
Properties: All polynomials $x \in K[X]$ can be decomposed as the product of linear factors Equivalently, there is no proper algebraic extension of K

Section 12

Graphs: Basic

```
Simple Graph
    Types: A tuple G=(V,E),V,E are sets
    Functions:
    Relations: E
    Properties: E is composed of unordred pairs of V
    E is irreflexive and symmetric
```


Section 13

Graphs: Undirected Graphs

Undirected graph

Types: A graph $G=(V, E)$
Functions:
Relations:
Properties: ~ is irreflexive and symmetric

Tree
Types: \quad A undirectd graph $G=(V, E)$
Functions:
Relations:
Properties: There are no cycles in G G is connected

Forest
Types: An undirected graph $G=(V, E)$
Functions:
Relations:
Properties: $\quad G$'s connected component are trees, but G need not be connected

Rooted Tree
Types: \quad A tree G
Functions:
Relations:
Properties: One vertex is designated as the root

Line Graph

Types: \quad An undirected graph $L(G)=\left(V^{*}, E^{*}\right)$, with underlying undirected graph $G=(V, E)$
Functions: $\quad f: E \rightarrow V^{*}$
Relations: $\quad \sim^{*}=\left\{\{x, y\} \in E^{*}\right\} \mid$
Properties: $\quad f$ maps edges in G to vertexes in $L(G)$
An unordered pair of vertices $\left\{v_{i}^{*}, v_{j}^{*}\right\} \in E^{*}$ iff their corresponding edges in G share an endpoit

Section 14

Graphs: Directed Graphs

Simple Directed Graph

$$
\begin{array}{ll}
\text { Types: } & \text { A graph } G=(V, E) \\
\text { Functions: } & \\
\text { Relations: } & \rightarrow=\{(x, y) \in V \times V \mid(x, y) \in E\} \\
\text { Properties: } & \rightarrow \text { is irreflexive } \\
& \forall u, v \in V, u \rightarrow v \nRightarrow v \rightarrow u
\end{array}
$$

Polytree
Types: \quad A directed graph $G=(V, E)$
Functions:
Relations:
Properties: G's underlying undirected graph is a tree

Ordered Tree

Types: A directed graph $G=(V, E)$
Functions:
Relations:
Properties: The children of nodes in G are ordered

Arboresence and Antiarboresence

Functions:
Relations:
Properties: Every node has a directed path away from or toward the root

Cayley Graph

Types: A directed graph $\Gamma=\Gamma(G, S), S$ a generating set for group G
Functions: $\quad f: G \rightarrow V(G)$
$g: S \rightarrow C_{S}$
Relations: $\quad E(\Gamma)=\{(g, g s) \in G \times G \mid \forall g \in G, \forall s \in S\}$
Properties: $\quad f$ assigns each $g \in G$ to a vertex in Γ
g assigns each $s \in S$ to a unique color
The identity element generally is ignored, so the graph does not contain loops

Graph Algebra

Types:
Functions: $\cdot: V^{2} \rightarrow V \cup\{0\}$
Relations:
Properties: $\quad x \cdot y: \begin{cases}x & x, y \in V,(x, y) \in E \\ 0 & x, y \in V \cup\{0\},(x, y) \notin E\end{cases}$ $0 \notin V$

Section 15

Graphs: K-Partite Graphs

K-partite Graph

Types: \quad A graph $G=(V, E)$

Functions:

Relations:
Properties: $\quad V_{1}, V_{2}, \ldots, V_{n}$ are disjoint sets that partition G 's vertices All $e_{i} \in E$ can be written as $\left\{v_{i}, v_{j}\right\}$ where $v_{i} \in V_{i}, v_{j} \in V_{j}$ and $i \neq j$ G is k-colorable

Bipartite Graph

Types: A k-partite graph $G=(V, E)$
Functions:
Relations:
Properties: \quad Special case of k-partite graph for $k=2$
V_{1}, V_{2} are disjoint sets partition G 's vertices
All $e_{i} \in E$ can be written as $\left\{v_{i}, v_{j}\right\}$ for some $v_{i} \in V_{1}$ and $v_{j} i n V_{2}$ G has no odd cycles
G is 2-colorable

Hypercube Graph

Types: \quad A regular, bipartite graph $Q_{n}=(X, E)$
Functions:
Relations:
Properties: $\quad Q_{n}$ has 2^{n} vertices and $2^{n-1} n$ edges

Section 16

Graphs: Perfect Graph

Perfect Graph

Types: \quad A graph $G=(X, E)$
Functions: $\quad \omega: G \mapsto n$
$\chi: G \mapsto n$
Relations:
Properties: $\quad \omega(G)$ is the the size of the largest clique in G
$\chi(X)$ is the the chromatic number of G $\omega(G)=\chi(G)$

Perfectly Orderable Graphs

Types: A perfect graph $G=(V, E)$
Functions:
Relations: $\quad<=\{(x, y) \in V \times V \mid x<y\}$
Properties: < is a total order
For any chordless path $a b c d \in G$ and $a<b$, then $\mathrm{d} \nless \mathrm{c}$

Chordal Graph

Types: A perfectly orderable graph $G=(V, E)$
Functions:
Relations:
Properties: All induced cycles are of order 3 G has a perfect elimination order

Comparability Graph

Types: A perfect graph $C=(S, \perp)$
Functions:
Relations: $\quad \perp=\{(x, y) \in S \mid x<y\}$
Properties: $\quad S$ is the set of vertices
S is a poset under <
\perp is the edge relation
$(x, y),(y, z) \in E \Longrightarrow(x, z) \in E$

Section 17

Graphs: Not further categorized

> | Hyper Graph | |
| :--- | :--- |
| Types: | A tuple $H=(V, E)$ |
| Functions: | |
| Relations: | |
| Properties: | $E=\left\{e_{i} \mid i \in I_{e}, e_{i} \subseteq V\right\}$ |
| | I_{e} is an index set for edges in H |

Connected Graph
Types: \quad A graph $G=(V, E)$
Functions:
Relations:
Properties: There exists a path between any two $v \in V$ in the graph

Multigraph

Types:
Functions:
Relations:
Properties: E is a multiset
More than one edge may connect the same two vertices

Vertex Labeled Graph
Types: A graph $G=(V, E)$
Functions: $\quad f: V \rightarrow L$
Relations:
Properties: $\quad f$ maps vertexes to a set of labels L

Edge Labeled Graph
Types: \quad A graph $G=(V, E)$ and set L
Functions: $\quad f: E \rightarrow L$
Relations:
Properties: $\quad f$ maps edges to a set of labels L

Weighted Graph

Types: \quad An edge labeled graph $G=(V, E)$ and labels L
Functions:
Relations:
Properties: L is an ordered set

Regular Graph

Types: \quad A graph $G=(V, E)$
Functions:
Relations:
Properties: All $v \in V$ are connected to the same number of edges

SECtion 18

Groups: Prelims

Magma
Types: \quad A set M of elements
Functions: $\cdot: M^{2} \rightarrow M$
Relations:
Properties: $\quad \forall u, v \in M: u \cdot v \in M$

Semigroup
Types: A magma S of elements
Functions:
Relations:
Properties: . is associative

Monoid
Types: A semigroup S
Functions: $\quad 1 \in S$
Relations:
Properties: 1 is the identity for .
$1 \cdot u=u \cdot 1=u$

Quasigroup	
Types:	A magma Q
Functions:	$\backslash: Q^{2} \rightarrow Q$
	$\prime: Q^{2} \rightarrow Q$
	$1_{R}, 1_{L} \in Q$
Relations:	
Properties:	Q is a cancellative magma

Group

Types: $\quad \mathrm{A}$ set G
Functions: $\quad .: G^{2} \rightarrow G$
$-^{-1}: G \rightarrow G$
$1 \in G$
Relations:
Properties: . is associative
1 is the identity for .
$-^{-1}$ is the inverse map for \cdot

Section 19
Groups: Random/Uncatagorized

```
P Group
    Types: A group G
    Functions:
    Relations:
    Properties: }\forallg\inG,|g|=\mp@subsup{p}{}{n},p\mathrm{ prime, n }\in\mathbb{N
```


Torsion Free Group

Types: \quad A group G

Functions:
Relations:
Properties: $\exists g \in G, g \neq 1: g^{n}=1, n \in \mathbb{N}$

Simple Group

Types: \quad A group G
Functions:
Relations:
Properties: $N \triangleleft G \Longrightarrow N=\{1\}$ or G

Topological group

Functions:
Relations:
Properties: $\quad-{ }^{-1}$ and \times are continuous maps

```
Types: A group G
Types: A group G

\section*{Lie Group}
Types: A topological group \(G\)
Functions:
Relations:
Properties: \(\quad \forall p \in G, \exists \mathcal{U}_{p} \cong B_{r}(p)\), for some \(r>0\) \(-^{-1}\) and \(\times\) are smooth maps

Groups: Finite Groups

\section*{Finite Group}

Types: \(\quad\) A group \(G\)
Functions:
Relations:
Properties: \(|G|=n, n \in \mathbb{N}\)

\section*{Fintie Symmteric Group}
Types: A finite group \(S_{n}\)

Functions:
Relations:
Properties: \(\quad S_{n}=\{\sigma \mid \sigma: X \rightarrow X\) is bijective \(\}\)

\section*{Permutation Group}
Types: \(\quad\) A group \(P_{n}\)

Functions:
Relations:
Properties: \(\quad P_{n} \leq S_{p}\)

\section*{Primitive Group}

Types: \(\quad\) A permutation group \(G\) that acts on a set \(X\)
Functions:
Relations:
Properties: \(\quad G\) preserves only trivial partitions

\section*{Alternating Group}

Types: \(\quad\) A permutation group \(A_{n}\)
Functions:
Relations:
Properties: \(\quad A_{n}=\left\{\sigma \mid \sigma \in S_{n} \wedge \sigma\right.\) even \(\}\)

\section*{SEction 21}

Groups: Free Groups

\section*{Free Group}

Types: \(\quad\) A group \(F\)
Functions:
Relations:
Properties: \(\quad F\) is generated by a set \(S\)
There are no relations on \(F_{S}\) (beyond group axioms)

\section*{Free Abelian Group}

Types: \(\quad\) A group \(F\)
Functions:
Relations:
Properties: \(\quad F\) is generated by a set \(S\) The only relation on \(F\) is commutativity

\section*{SEction 22}

\section*{Groups: Abelian Groups}

\section*{Abelian Group}

Types: \(\quad\) A group \(G\)
Functions:
Relations:
Properties: . is commutative

\section*{SEction 23}

\section*{Groups: Group Presentations}

\section*{Finitely Generated Group}

Types: \(\quad\) A group \(G\)
Functions:
Relations:
Properties: \(\quad G\) is of the form \(\langle S \mid R\rangle, S\) a generating set, \(R\) relators \(|S|=n, n \in \mathbb{N}\)

\section*{Finitely Presented Group}

Types: \(\quad\) A finitely generated group \(G\)
Functions:
Relations:
Properties: \(|R|=n, n \in \mathbb{N}\)

SEction 24

\section*{Groups: Cyclic Groups}

\section*{Cyclic Group}

Types: \(\quad\) A group \(G\) with element \(a\)
Functions:
Relations:
Properties: \(\quad G\) can be generated from \(a\) and a set of relations \(R\) \(G\) is necessarily commutative

\section*{Virtually Cyclic Group}

Types: A group \(V\) with subgroup \(H\)
Functions:
Relations:
Properties: \(\quad \exists H \leq V: H\) is cyclic
\(|V: H|=n, n \in \mathbb{N}\)

\section*{Locally Cyclic Group}

Types: A group \(L\)
Functions:
Relations:
Properties: \(\quad \forall H \leq L\), if \(H\) is finitely generated, it is cyclic

\section*{Cyclically Ordered Group}

Types:
A group \(C\)
Functions:
Relations: \([,]=,\{(a, b, c) \in C \times C \times C \mid[a, b, c]\}\)
Properties: \(\quad[a, b, c]\) is cyclic, asymmetric, transitive and total

\section*{Polycyclic Group}

Types: \(\quad\) A group \(P\) with subgroups \(H_{i}\)
Functions:
Relations:
Properties: \(\quad P\) is necessarily finitely presented \(\left\{H_{i}\right\}_{i \in\{1,2, . ., n-1\}}: H_{i} / H_{i+1}\) is cyclic

\section*{Metacyclic Group}

Types: \(\quad\) A group \(G\)
Functions:
Relations:
Properties: \(n \leq 2\)

\section*{Section 25}
\(\qquad\)

\section*{Modules: Basic}

\section*{Module}
\begin{tabular}{ll} 
Types: & \(\mathrm{A} \operatorname{set} M\) \\
Functions: & \(+: M^{2} \rightarrow M\) \\
& \(-_{+}^{-1}: M \rightarrow M\) \\
& \(R \times M \rightarrow R\)
\end{tabular}

Relations:
Properties: + is associative and commutative
\((M,+)\) is an abelian group
\(R \times M\) is scalar multiplication by elements in a ring
Scalar multiplication is associative and distributes over addition

\section*{Section 26}

\section*{Modules: Not further categorized}

\section*{Semimodule}

Types: A set \(M\)
Functions: \(\quad+: M^{2} \rightarrow M\)
\(R \times M \rightarrow M\)
Relations:
Properties: + is associative and commutative
\((M,+)\) is an commutative monoid
\(R \times M\) is scalar multiplication by elements in a ring
Scalar multiplication is associative and distributes over addition

\section*{Simple Module}

Types: A module \(M\)
Functions:
Relations:
Properties: The only submodules of \(M\) are 0 and \(M\)

\section*{D Module}
Types: A module \(M[X]\)

Functions: \(\quad \partial_{R_{i}}: M \rightarrow M\)
Relations:
Properties: \(\quad X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) where \(x_{i}\) is an indeterminant
\(\partial_{R_{i}}\) is in the ring of scalar multiplication
\(\partial_{R_{i}}\) satisfies the Leibniz product rule

\section*{SECTION 27}

\section*{Modules: Chains}

\section*{Noetherian Module}

Types: A module \(M\)
Functions:
Relations:
Properties: For any chain of submodules \(S_{0} \subseteq S_{1} \subseteq \ldots \subseteq S_{k}\) there is some \(k \geq 0\) s.t. \(S_{k}=S_{k+1}\) All submodules of \(M\) are finitely generated

\section*{Artinian Module}

Types: \(\quad\) A module \(M\)
Functions:
Relations:
Properties: For any chain of submodules \(S_{0} \supseteq S_{1} \supseteq \ldots \supseteq S_{k}\) there is some \(k \geq 0\) s.t. \(S_{k}=S_{k+1}\)

\section*{Section 28}

\section*{Modules: Finitely Generated}

\section*{Finitely Generated Module}

Types: A module \(M\)
Functions:
Relations:
Properties: \(\quad M\) has a finite number of generators

\section*{Cyclic Module}

Types: A finitely generated module \(M\)
Functions:
Relations:
Properties: \(\quad M\) is generated from a single element

\section*{SECTION 29}

\section*{Modules: Toward Vector Space}

\section*{Torsion Free Module}

Types: A module M
Functions:
Relations:
Properties: \(\nexists m \in M, r, m \neq 0: r \cdot m=0\)

Flat Module
Types: A torsion Free module M
Functions:
Relations:
Properties: Taking the tensor product over \(M\) preserves exact sequences

\section*{Projective Module}

Types: A flat module \(M\)
Functions:
Relations:
Properties:

\section*{Free Module}

Types: A projective module \(M\)
Functions:
Relations:
Properties: \(\quad M\) has no further relations beyond module axioms \(M\) has a basis

Fintie DimensionalVector Space
Types: \(\quad\) A set \(V\) over a field \(K\)
Functions: \(\quad+: V^{2} \rightarrow V\)
\({ }_{+}^{-1}: V \rightarrow V\)
\(K \times V \rightarrow V\)
\(0 \in V\)
Relations:
Properties: + is associative and commutative
\(K \times V\) is scalar multiplication by \(K\)
\((V,+)\) is a group

SECtion 30
Posets and Lattices: Basics
\begin{tabular}{ll} 
Set & \\
\hline Types: & a collection of objects \\
Functions: & \(\subset, \cap, \cup, \backslash, \times, \wp, \Perp\) \\
Relations: & \(\epsilon\) \\
Properties: &
\end{tabular}

\section*{Preordered Set}

Types: A set \(P\)
Functions:
Relations: \(\leq=\{(x, y) \in P \times P \mid x \leq y\}\)
Properties: All elements need not be comparable under \(\leq\) \(\leq\) transitive and reflexive

\section*{Partially Ordered Set}

Types: \(\quad\) A set \(P\)
Functions:
Relations: \(\leq=\{(x, y) \in P \times P \mid x \leq y\}\)
Properties: All elements need not be comparable under \(\leq\) \(\leq\) transitive, reflexive and antisymmteric

\section*{Section 31}

\section*{Posets and Lattices: Posets not Further Catagorized}

\section*{Partially Ordered Space}

Types: \(\quad\) A poset \(X\) endowed with topology \(\tau\)
Functions:
Relations: \(\leq=\{(x, y) \in X \times X \mid x \leq y\}\)
Properties: \(\quad \forall x, y \in X, x \not \leq y: \exists \mathcal{U}, \mathcal{V} \subset \tau, x \in \mathcal{U}, y \in \mathcal{V}: u \notin v, \forall u \in \mathcal{U}, \forall v \in \mathcal{V}\)

\section*{Locally Finite Poset}

\section*{Types: A poset \(P\)}

Functions:
Relations:
Properties: \(\forall x, y \in P, x \leq y:[x, y]\) has finitely many elements

\section*{Partially Ordered group}

Types: A poset and group \(G\)
Functions: \(\quad+: G^{2} \rightarrow G\)
\({ }_{-}^{-1}: G \rightarrow G\)
\(0 \in G\)
Relations: \(\quad \leq=\{(x, y) \in G \times G \mid 0 \leq-x+y\}\)
Properties: \(\leq\) respects +

SEction 32
Posets and Lattices: Strict/Total Posets

\section*{Strict Poset}

Types: \(\quad\) A poset \(P\)
Functions:
Relations: \(<=\left\{(x, y) \in P^{2} \mid x<y\right\}\)
Properties: < is irreflexive, transitive, and asymmetric

\section*{Totally Ordered Set}

Types: \(\quad\) A poset \(P\)
Functions:
Relations:
Properties: All elements are comparable under \(\leq\)

\section*{Strict Totally Ordered Set}

Types: A poset \(P\)
Functions:
Relations: \(\quad<=\{(x, y) \in P \times P \mid x<y\}\)
Properties: < is irreflexive, transitive, asymmetric and trichotomous

SECtion 33
Posets and Lattices: Graded Stuff

\section*{Graded Poset}

Types: A poset \(P\)
Functions: \(\quad \rho: P \rightarrow \mathbb{N}\)
Relations: \(\quad<=\{(x, y) \in P \mid \nexists z: x<z<y\)
Properties: \(\quad x<y \Longrightarrow \rho(x)<\rho(y)\)
\(x \lessdot y \Longrightarrow \rho(y)=\rho(x)+1\)

Eulerian Poset
Types:
Functions:
Relations:
Properties:

\section*{SEction 34}

\section*{Posets and Lattices: Linked + Related}

\section*{Upward (Downward) Linked Set}

Types: \(\quad\) A subset \(S\) of poset \(P\)
Functions:
Relations:
Properties: \(\quad \forall x, y \in S: \exists z \in P\) s.t. \(x \leq(\geq) z\) and \(y \leq(\geq) z\)

\section*{Upwards (Downwards) Centered Set}

Types: \(\quad\) A linked subset \(S\) of poset \(P\)
Functions:
Relations:
Properties: \(\quad \forall Z \subseteq P, Z\) has an upper (lower) bound \(\in P\)

\section*{Upward (Downward) Directed Set}

Types: A preset \(P\)
Functions:
Relations:
Properties: \(\leq\) is a preorder
\(\forall x, y \in P: \exists z\) s.t. \(x \leq(\geq) z\) and \(y \leq(\geq) z\)

Algebraic Poset
Types: A poset \(P\)
Functions:
Relations:
Properties: each element is the least upper bound of the compact elements below it

\section*{Meet Semilatttice: Order Theoretic Edition}

Types:
Functions:
Relations: \(\leq=\{(x, y) \in P \times P \mid x \leq y\}\)
Properties: \(\quad \forall x, y \in S, \exists c: c \leq x, c \leq y\)
\(c\) is the unique greatest lower bound

Meet Semilattice: Algebraic Edition
Types: \(\quad\) A poset \(P\)
Functions: \(\wedge: P^{2} \rightarrow P\)
Relations:
Properties: \(\wedge\) is associative, commutative, and idempotent

Join Semilatttice: Order Theoretic Edition
\begin{tabular}{ll} 
Types: & A poset \(P\) \\
Functions: & \\
Relations: & \(\leq=\{(x, y) \in P \times P \mid x \leq y\}\) \\
Properties: & \(\forall x, y \in P, \exists c: x \leq c, y \leq c\) \\
& \(c\) is the unique least upper bound
\end{tabular}

Join Semilattice: Algebraic Edition
Types: \(\quad\) A poset \(P\)
Functions: \(\vee: P^{2} \rightarrow P\)
Relations:
Properties: \(\quad \vee\) is associative, commutative, and idempotent

\section*{Section 36}

\section*{Posets and Lattices: Lattices}

Lattice (order theory)
Types: A set \(L\)
Functions:
Relations: \(\leq=\{(x, y) \in L \times \mid x \leq y\}\)
Properties: \(\quad \forall x, y \in L, \exists c, d: c\) is the greatest lower bound and \(d\) is the least upper bound

\section*{Lattice (Algebra)}

Types: A set \(L\)
Functions: \(\quad \vee: L^{2} \rightarrow L\)
\(\wedge: L^{2} \rightarrow L\)
Relations:
Properties: \(\quad(L, \vee),(L, \wedge)\) are both semilattices connected by absorption laws \(\forall a, b \in L: a \vee(a \wedge b)=a, a \wedge(a \vee b)=a\)

\section*{Complete Lattice}
Types: \(\quad\) A lattice \(L\)

Functions:
Relations:
Properties: \(\quad \forall A \subseteq L, A\) has a greatest lower bound and least upper bound

\section*{Continuous Lattice}

Types: A complete lattice \(A\)
Functions:
Relations: \(\ll=\{(x, y) \in L \times L \mid \forall D \subseteq L: y \leq \sup D, \exists x \in L, \exists d \in D\) s.t. \(x \leq d\}\)
Properties: \(\quad \forall x \in P,\{a \mid a \ll x\}\) is directed and has least upper bound \(x\)

\section*{Algebraic Lattice}

Types: A continuous lattice \(A\)
Functions:
Relations:
Properties: Each element is the least of compact elements below it: those \(x\) who satisfy \(x \ll a\)

\section*{Section 37}

\section*{Posets and Lattices: A Big Web of Lattices}

\section*{Relatively Complemented Lattice}

Types: A lattice \(L\)
Functions:
Relations:
Properties: \(\quad \forall c \forall d \geq c,[c, d]: \forall a \in[c, d], \exists b\) s.t.:
\(a \vee b=d\)
\(a \wedge b=c\)
\(a\) and \(b\) are relative complements

\section*{Bounded Lattice}

Types: A lattice \(L\)
Functions:
Relations:
Properties: \(\quad \forall x \in L\) :
\(x \wedge 1=x\)
\(x \vee 1=1\)
\(x \vee 0=x\)
\(x \wedge 0=0\)

Complemented Lattice
Types: A lattice \(L\)
Functions:
Relations:
Properties: \(\quad \forall a \in L, \exists b \in L\) :
\(a \vee b=1\)
\(a \wedge b=0\)

\section*{Residuated Lattice}
\begin{tabular}{ll} 
Types: & A lattice \(L\) \\
Functions: & \(\cdot: L^{2} \rightarrow L\) \\
& \(1 \in L\) \\
Relations: & \\
Properties: & \((L, \cdot, 1)\) is a monoid \\
& \((L, \leq)\) is a lattice \\
& \(\forall z: \forall x\), there exists a greatest \(y\) and \(\forall y\), there exists a greatest \(x\) s.t. \(x \cdot y \leq z\)
\end{tabular}

\section*{Atomic Lattice}

Types: A lattice \(L\)
Functions:
Relations: \(<=\{(x, y) \in P \mid \nexists z: x<z<y\}\)
Properties: \(\quad \forall b \in L: 0 \wedge b=0\)
\(\exists a_{i} \in L: 0 \lessdot a_{i}\)
\(\forall b \neq a_{i}, \exists a_{i}: 0<a_{i}<b\)
\(\left\{a_{i}\right\}_{i \in I}\) is the set of atoms in \(L\)

\section*{Semimodular Lattice}

Types: A semimodular lattice \(L\)
Functions:
Relations:
Properties: \(\quad a \leq c \Longrightarrow a \vee(b \wedge c)=(a \vee b) \wedge c\)

\section*{Modular Lattice}

Types: A semimodular lattice \(L\)
Functions:
Relations:
Properties: \(\quad a \leq c \Longrightarrow a \vee(b \wedge c)=(a \vee b) \wedge c\)

\section*{Distributive Lattice}
\begin{tabular}{ll} 
Types: & A modular lattice \(L\) \\
Functions: & \\
Relations: & \\
Properties: & \(x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)\) \\
& \(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)\)
\end{tabular}

\section*{Orthomodular Lattice}

Types: A lattice \(L\)
Functions:
Relations:
Properties: \(\quad a \leq b \Longrightarrow b=a \vee\left(b \wedge a^{\perp}\right)\)

\section*{Orthocomplemented Lattice}

\section*{Types: A lattice \(L\)}

Functions: \(\quad \perp: L \rightarrow L\)
Relations:
Properties: \(\perp\) maps an element \(a\) to its complement
\(a \vee a^{\perp}=1\)
\(a \wedge a^{\perp}=0\)
\(\left(a^{\perp}\right)^{\perp}=a\)
\(a \leq b \Longrightarrow a^{\perp} \geq b^{\perp}\)

\section*{Geometric Lattice}

Types: A semimodular, atomic, algebraic Lattice \(L\)
Functions:
Relations:
Properties: \(L\) is finite

\section*{Heyting Algebra}

Types: \(\quad\) A distributive lattice \(H\)
Functions: \(\longrightarrow: H^{2} \rightarrow H\)
Relations:
Properties: \(\quad(c \wedge a) \leq b \Leftrightarrow c \leq(a \longrightarrow b)\)
Monoid \((H, \cdot, 1)\) has operation \(\cdot=\wedge\)

\section*{Complete Heyting Algebra}

Types: A heyting algebra \(H\)
Functions:
Relations:
Properties: \(\quad H\) is complete as a lattice

\section*{Boolean Algebra}

Types: A complemented, distributive lattice and algebra \(B\)
Functions: \(\quad \neg: B \rightarrow B\)
\(\oplus: B^{2} \rightarrow B\)
Relations:
Properties: \(\quad \forall x \in B, x^{2}=x\)
\(\neg\) is negation (complementation)
\(x \oplus y=(x \vee y) \wedge \neg(x \wedge y)\)
\(\oplus\) is algebra addition, \(\wedge\) is algebra multiplication

\section*{Rings: Basics}

> \begin{tabular}{ll}  Ring & \\ \hline Types: & A set \(R\) \\ Functions: & \(\cdot: R^{2} \rightarrow R\) \\ & \(+: R^{2} \rightarrow R\) \\ & \(--1: R \rightarrow R\) \\ & \(0 \in R\) \\ Relations: & \\ Properties: & \((R,+)\) is an abelian group \\ & - is a monoid and distributes over + \end{tabular}

Commutative Ring
Types: A ring \(R\)
Functions:
Relations:
Properties: . is commutative

\section*{Noncommutative Ring}

Types: \(\quad\) A ring \(R\)
Functions:
Relations:
Properties: • need not be commutative

\section*{Section 39}

Rings: Ideals + Related

\section*{Left (right) Ideal}

Types: A subgroup of a ring, \(I\)
Functions:
Relations:
Properties: \(\quad \forall x \in I, \forall r \in R: r x(x r) \in I\)

\section*{Ideal}

Types: A subgroup of a ring, \(I\)
Functions:
Relations:
Properties: The left and right ideals generated by a subgroup are equal \(\forall x \in I, \forall r \in R: r x \in I\)

Maximal ideal
Types: \(\quad\) A subgroup of elements, \(I\)
Functions:
Relations:
Properties: \(\quad I \subseteq J \Longrightarrow I=J\) or \(J=R\)

\section*{Principal ideal}

Types: A subgroup of elements, \(I\)
Functions:
Relations:
Properties: \(\quad I\) is generated by a single element

\section*{Prime Ideal}

Types: \(\quad\) A subgroup of elements \(I\)
Functions:
Relations:
Properties: \(\quad a b \in I \Longrightarrow a \in I\) or \(b \in I\)

\section*{Quotient Ring}

Types: A ring \(Q\)
Functions:
Relations: \(\quad \sim=\{(x, y\} \in R \times R \mid x-y \in I\}\)
Properties: \(\quad Q\) is constructed by dividing \(R\) with one of its ideals

\section*{Section 40}

\section*{Rings: Booleans + Related}

\section*{Boolean Ring}

Types: A commutative ring \(R\)
Functions:
Relations:
Properties: \(\quad \forall x \in R: x^{2}=x\)
\(\forall x \in R: 2 x=0\)

\section*{Boolean Algebra}

\section*{Types:}

Functions:
A complemented, distributive lattice and algebra \(B\)
\(\neg: B \rightarrow B\)
\(\oplus: B^{2} \rightarrow B\)
Relations:
Properties: \(\quad \forall x \in B, x^{2}=x\)
\(\neg\) is negation (complementation)
\(x \oplus y=(x \vee y) \wedge \neg(x \wedge y)\)
\(\oplus\) is algebra addition, \(\wedge\) is algebra multiplication

\section*{Sigma Algebra}

Types: A subset \(\Sigma\), of \(\wp(X), X\) a set
Functions: \(\cap, \cup, \backslash\)
Relations:
Properties: \(\quad X \in \Sigma\)
\(\cap, \cup\) closed under countable operations

\section*{SEction 41}

Rings: Randoms/Not further catagorized
\[
\begin{array}{ll}
\text { Semiring } & \\
\hline \text { Types: } & \mathrm{A} \text { set } R \\
\text { Functions: } & \cdot: R^{2} \rightarrow R \\
& +R^{2} \rightarrow R \\
& 0 \in R \\
\text { Relations: } & \\
\text { Properties: } & + \text { is a commutative monoid } \\
& \text {. is a monoid and distributes over }+
\end{array}
\]

\section*{Noetherian Ring}

\section*{Types:}

A ring \(R\)
Functions:
Relations:
Properties: For any \(I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{k}\) there is some \(k \geq 0\) s.t. \(I_{k}=I_{k+1}\)

\section*{Artinian Ring}

Types: A ring \(R\)
Functions:
Relations:
Properties: For any \(I_{0} \supseteq I_{1} \supseteq \ldots \supseteq I_{k}\) there is some \(k \geq 0\) s.t. \(I_{k}=I_{k+1}\)

\section*{Topological Ring}

Types: A ring \(R\) with topology \(\tau\)
Functions: \(\quad: \quad R^{2} \rightarrow R:(x, y) \mapsto x \cdot y\)
\(+: R^{2} \rightarrow R:(x, y) \mapsto x+y\)
\({ }_{+}^{-1}: R \rightarrow R\)
Relations:
Properties: . distributes over +
\(+, \cdot,-_{+}^{-1}\) are continuous mappings

\section*{SEction 42}

\section*{Rings: Valuation bs}

\section*{Domain}

Types: A ring \(R\)
Functions:
Relations:
Properties: \(\quad \forall a, b \in R, a b=0 \Longrightarrow a=0\) or \(b=0\)

\section*{Integral Domain}

Types: A ring \(R\)
Functions:
Relations:
Properties: . is additionally commutative

\section*{Unique Factorization Domain}

Types: \(\quad\) An integral domain \(R\)
Functions:
Relations:
Properties: All ideals are finitely generated
All irreducible elements are prime
\(\forall x \in R, x \neq 0, x=u p_{1} p_{2} \ldots p_{n}\) for \(u\) unit, \(p_{i}\) prime

\section*{Principal Ideal Domain}

Types: A unique factorization domain \(R\)
Functions:
Relations:
Properties: All ideals are principal
Any two elements have a greatet common divisor

\section*{Euclidean Domain}

Types: \(\quad\) A principal idea domain \(R\)
Functions: \(\quad f_{i}: R \backslash\{0\} \rightarrow R\)
Relations:
Properties: \(\quad f_{i}\) is the euclidean (gcf) algorithim
\(R\) may have many \(f_{i}\) or just one

\section*{SEction 43}

\section*{Rings: Budget versions of fields}

\section*{Field}

Types: A ring \(K\)
Functions: \(\quad+: K^{2} \rightarrow K\)
\(\times K^{2} \rightarrow K\)
\({ }_{+}^{-1}: K \rightarrow K\)
\(-_{x}^{-1}: K /\{0\} \rightarrow K /\{0\}\)
\(0,1 \in K\)
Relations:
Properties: \(\quad+, \times\) both associate and commute \(\times\) distributes over +

Module
Types: \(\quad\) An abelian group \((M,+\) )
Functions: \(\cdot: r \times M \rightarrow M\)
\(\cdot: M \times r \rightarrow M\)
Relations:
Properties: . is scalar multiplication by elements in a ring, \(R\) - associates and distributes over addition

\section*{Vector Space}

Types: \(\quad\) A set \(V\) over a field \(K\)
Functions: \(\quad+: V^{2} \rightarrow V\)
\(-_{+}^{-1}: V \rightarrow V\)
\(K \times V \rightarrow V\)
\(0 \in V\)
Relations:
Properties: + is associative and commutative
\(K \times V\) is scalar multiplication by \(K\)
\((V,+)\) is a group

\section*{Finite Field}

Types: A characteristic nonzero field \(K\)
Functions:
Relations:
Properties: \(\quad K\) has a finite number of elements
The order of some \(k \in K\) is \(p^{n}\) for some \(p\) prime and \(n \in \mathbb{N}\)

\section*{SEction 44}

\section*{Sets: Basics}
```

Set
Types: a collection of objects
Functions: \subset, \cap, \cup,\, ×,\wp,||
Relations: \epsilon
Properties:

```

Section 45

\section*{Sets: Countable}


Finite Countable Set
Types: \(\quad\) A set \(S\)
Functions:
Relations:
Properties: \(\quad|S|<\aleph_{0}\)

\section*{SEction 46}

\section*{Sets: Uncountable}

\section*{Uncountable Set}

Types: A set \(S\)
Functions:
Relations:
Properties: \(\quad|S|>\aleph_{0}\)

\section*{SECTION 47}

\section*{Sets: Classes}


\section*{Cardinal}
Types: \(\quad\) Ordinals \(\kappa\)

Functions:
Relations:
Properties: The cardinality \(\kappa\) is the least ordinal, \(\alpha\), s.t. there is a bijection between \(S\) and \(\alpha\)

\section*{Section 48}

\section*{Topologies: Basics}

\section*{Convergent Space}

Types: \(\quad\) A set \(S\) and filters on \(S, \mathcal{F}\)
Functions:
Relations: \(\rightarrow\)
Properties: \(\quad \forall F \in \mathcal{F}, x \in S, F \rightarrow x \Leftrightarrow F\) convergences to \(X\)
\(\rightarrow\) is centered, isotone, and directed \(\mathcal{N}(x)=\cap\{F \in \mathcal{F} \mid F \rightarrow x\}\)

Topological Space
Types: \(\quad\) A set \(X\) and \(\tau \subseteq \wp(X)\)
Functions:
Relations:
Properties: \(\quad X, \varnothing \in \tau\)
\(x_{i} \in \tau \Longrightarrow \bigcap_{i \in I} x_{i} \in \tau\) for finite \(I\)
\(x_{i} \in \tau \Longrightarrow \bigcup_{j \in J} x_{j} \in \tau\)

\section*{Section 49}

\section*{Topologies: Algebraic Topologies}

\section*{Topological Group}

Types: \(\quad\) A group \(G\) with topology \(\tau\)
Functions: \(\cdot: G^{2} \rightarrow G:(x, y) \mapsto x \cdot y\)
\(-^{-1}: G \rightarrow G\)
\(1 \in G\)
Relations:
Properties: \(\cdot,-^{-1}\) are continuous mappings

\section*{Topological Ring}

Types: A ring \(R\) with topology \(\tau\)
Functions: \(\quad \cdot: R^{2} \rightarrow R:(x, y) \mapsto x \cdot y\)
\(+: R^{2} \rightarrow R:(x, y) \mapsto x+y\)
\({ }_{-}^{-1}: R \rightarrow R\)
Relations:
Properties: . distributes over +
\(+, \cdot,-_{+}^{-1}\) are continuous mappings

Topological Field
\[
\begin{array}{ll}
\text { Types: } & \text { A topological ring } K \\
\text { Functions: } & \text { A field } K \text { with topology } \tau \\
\text { Relations: } & -: K^{2} \rightarrow K:(x, y) \mapsto x \cdot y \\
& +: K^{2} \rightarrow K:(x, y) \mapsto x+y \\
& -{ }_{+}^{-1}: K \rightarrow R \\
& -\frac{-}{\times}: K /\{0\} \rightarrow K /\{0\} \\
\text { Properties: } &
\end{array}
\]
\(+, \cdot,-_{+}^{-1},-^{-1}\) are continuous mappings

\section*{Topological Vector Space}

Types:
A vector space \(V\) over a topological field \(K\)
Functions: \(\quad+: V^{2} \rightarrow V\)
\(k \times V \rightarrow V\)
\(-_{+}^{-1}: V \rightarrow V\)
Relations:
Properties: \(\quad k \times V\) represents scalar multiplication by elements in a field \(K\) ,\(+-_{+}^{-1}\) and scalar multiplication are continuous

\section*{Section 50}

\section*{Topologies: Web I}

\section*{Uniform Space}
\[
\begin{array}{ll}
\text { Types: } & \text { A topological space } U \text { and entourages } \Phi \\
\text { Functions: } & \\
\text { Relations: } & U=\left\{(x, y) \mid x \approx_{u} y\right\} \\
\text { Properties: } & \Phi \text { is a nonempty collection of relations on } S \\
& U \in \Phi \text { and } U \subseteq V \subseteq X \times X \Longrightarrow V \in \Phi \\
& \forall U \in \Phi, \exists V \in \Phi, \forall x, y, z: V \circ V \subseteq \Phi: x \approx_{V} y, y \approx_{V} z \Longrightarrow x \approx_{U} z \\
& \forall U \in \Phi, \exists V \in \Phi, \forall x, y: V \circ V \subseteq \Phi: y \approx_{V} x \Longrightarrow x \approx_{U} y \\
& U, V \in \Phi \Longrightarrow U \cap V \in \Phi
\end{array}
\]

\section*{Complete Uniform Space}

Types: \(\quad\) A uniform Space \(U\)
Functions:
Relations:
Properties: \(\quad \forall F \forall U: \exists A \in F: A \times A \subseteq U, F\) converges

\section*{Manifold}

Types: A topological space, \(M\)
Functions:
Relations:
Properties: \(\quad \forall p \in M, \exists u \in \mathcal{U}(p): u \cong \mathbb{R}^{n}\)
Manifolds are not inherently metric or inner product spaces

\section*{Compact Manifold}

Types: A manifold \(M\)
Functions:
Relations:
Properties: \(\quad X=\bigcup_{x \in C} x\), then for \(F \subseteq C, F\) finite, \(X=\bigcup_{x \in F} x\)

\section*{Smooth Manifold}

Types: A manifold M
Functions:
Relations:
Properties: Derivatives of arbitrary orders exist

\section*{Riemann Manifold}

Types: A smooth manifold \(M\)
Functions: \(\quad g_{p}: T_{p} M^{2} \rightarrow \mathbb{R}\)
Relations:
Properties: \(\quad g_{p}\) is the inner product on the tangent space of a point \(p\)
\(g_{p}(X, Y)=g_{p}(Y, X)\)
\(g_{p}(a X+Y, Z)=a g_{p}(X, Z)+g_{p}(Y, Z)\)

\section*{Pseudo Riemann Manifold}

Types: A smooth manifold \(M\)
Functions: \(\quad g_{p}: T_{p} M^{2} \rightarrow \mathbb{R}\)
Relations:
Properties: \(\quad g_{p}\) is the inner product on the tangent space of a point \(p\) \(g_{p}(X, Y)=0 \forall Y \Longrightarrow X=0\)

Affine Space
Types: \(\quad\) A set \(A\) and vector space \(\vec{A}\)
Functions: \(\quad A \times \vec{A} \rightarrow A:(a, v) \mapsto a+v\)
Relations:
Properties: \(\vec{A}\) 's additive group acts freely and transitively on \(A\)
\(\forall v, w \in \vec{A}, \forall a \in A,(a+w)+u=a+(w+u)\)
\(\forall a, b \in A, \exists v \in \vec{R}: b=a+v\)
\(\forall a \in A, \vec{A} \rightarrow A: v \mapsto a+v\) is bijective

\section*{SEction 51}

Topologies: Web II

\section*{Metric Space}

Types: A topological space \(M\)
Functions: \(\quad d: M^{2} \rightarrow \mathbb{R}\)
Relations:
Properties: \(\quad d(x, y) \geq 0\)
\[
d(x, y)=0 \Leftrightarrow x=y
\]
\[
d(x, y)=d(y, x)
\]
\[
d(x, z) \leq d(x, y)+d(y, z)
\]

\section*{Complete Metric Space}

Types: A metric space \(M\)
Functions:
Relations:
Properties: \(\quad \forall F \forall U: \exists A \in F: A \times A \subseteq U, F\) converges

\section*{Normed Vector Space}

Types: \(\quad\) A metric and topological vector space \(V\)
Functions: \(\quad\|\|: V \rightarrow \mathbb{R}\)
Relations:
Properties: \(\quad\|x\|>0\) for \(x \neq 0\) and \(\|x\|=0\) iff \(x=0\)
\(\|\alpha x\|=|\alpha|\|x\|\)
\(\|x+y\| \leq\|x\|+\|y\|\)
\(\|\|\) induces a metric on \(V: d(x, y)=\| x-y \|\)

\section*{Banach Space}

Types: A vector space \(V\)
Functions:
Relations:
Properties: for any Cauchy Sequence \(\left\{x_{n}\right\} \lim _{x \rightarrow \infty}\left\|x_{n}-x\right\|=0\)

\section*{Inner Product Space}

Types: \(\quad\) A vector space \(V\) and field of scalars \(F\)
Functions: \(\langle\cdot, \cdot\rangle: V^{2} \rightarrow F\)
Relations:
Properties: \(\langle x, y\rangle=\overline{\langle y, x\rangle}\)
\(\langle x, x\rangle \geq 0\)
\(\langle x, x\rangle=0\) iff \(x=0\)
\(\langle a x, y\rangle=a\langle x, y\rangle\)
\(\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle\)

\section*{Hilbert Space}

Types: An inner product space \(H\)
Functions:
Relations:
Properties: A norm may be defined as \(\|x\|=\sqrt{\langle x, x\rangle}\) for any Cauchy Squence \(\left\{x_{n}\right\}, \lim _{x \rightarrow \infty}\left\|x_{n}-x\right\|=0\)

\section*{Euclidean Space}

Types: \(\quad\) A banach and hilbert space \(\mathbb{R}^{n}\)
Functions:
Relations:
Properties: A norm is defined as \(\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}\)
\[
d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
\]```

