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Abstract—The rise of graph analytic systems has created a
need for new ways to measure and compare the capabilities
of graph processing systems. The MIT/Amazon/IEEE Graph
Challenge has been developed to provide a well-defined com-
munity venue for stimulating research and highlighting inno-
vations in graph analysis software, hardware, algorithms, and
systems. GraphChallenge.org provides a wide range of pre-
parsed graph data sets, graph generators, mathematically defined
graph algorithms, example serial implementations in a variety
of languages, and specific metrics for measuring performance.
Graph Challenge 2017 received 22 submissions by 111 authors
from 36 organizations. The submissions highlighted graph an-
alytic innovations in hardware, software, algorithms, systems,
and visualization. These submissions produced many comparable
performance measurements that can be used for assessing the
current state of the art of the field. There were numerous
submissions that implemented the triangle counting challenge
and resulted in over 350 distinct measurements. Analysis of
these submissions show that their execution time is a strong
function of the number of edges in the graph, Ne, and is typically
proportional to N

4/3
e for large values of Ne. Combining the model

fits of the submissions presents a picture of the current state of
the art of graph analysis, which is typically 108 edges processed
per second for graphs with 108 edges. These results are 30
times faster than serial implementations commonly used by many
graph analysts and underscore the importance of making these
performance benefits available to the broader community. Graph
Challenge provides a clear picture of current graph analysis
systems and underscores the need for new innovations to achieve
high performance on very large graphs.

I. INTRODUCTION

The importance of graph analysis has dramatically increased
and is critical to a wide variety of domains that include the
analysis of genomics [1]–[6], brain mapping [7], computer
networks [8]–[11], social media [12], [13], cybersecurity [14],
[15], and sparse machine learning [16]–[20].

Many graph processing systems are currently under devel-
opment. These systems are exploring innovations in algorithms
[21]–[31], software architecture [32]–[41], software standards
[42]–[46], and parallel computing hardware [47]–[53]. The
rise of graph analysis systems has created a need for new
ways to measure and compare the capabilities of these systems.
The MIT/Amazon/IEEE Graph Challenge has been developed
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to provide a well-defined community venue for stimulating
research and highlighting innovations in graph analysis soft-
ware, hardware, algorithms, and systems. GraphChallenge.org
provides a wide range of pre-parsed graph data sets, graph
generators, mathematically defined graph algorithms, example
serial implementations in a variety of languages, and specific
metrics for measuring performance.

Scale is an important driver of the Graph Challenge and
graphs with billions to trillions of edges are of keen interest.
The Graph Challenge is designed to work on arbitrary graphs
drawn from both real-world data sets and simulated data sets.
Examples of real-world data sets include the Stanford Large
Network Dataset Collection (see http://snap.stanford.edu/data),
the AWS Public Data Sets (see aws.amazon.com/public-
data-sets), and the Yahoo! Webscope Datasets (see web-
scope.sandbox.yahoo.com). These real-world data sets cover
a wide range of applications and data sizes. While real-world
data sets have many contextual benefits, synthetic data sets
allow the largest possible graphs to be readily generated.
Examples of synthetic data sets include Graph500, Block Two-
level Erdos-Renyi graph model (BTER) [54], Pure Kronecker
Graphs [55], and Perfect Power Law graphs [56], [57]. The
focus of the Graph Challenge is on graph analytics. While
parsing and formatting complex graph data are necessary in
any graph analysis system, these data sets are made avail-
able to the community in a variety of pre-parsed formats to
minimize the amount of parsing and formatting required by
Graph Challenge participants. The public data are available in
a variety of formats, such as linked list, tab separated, and
labeled/unlabeled.

Graph Challenge 2017 received a large number of sub-
missions that highlighted innovations in hardware, software,
algorithms, systems, and visualization. These submissions
produced many comparable performance measurements that
can be used for assessing the current state of the art of the
field. The goal of this paper is to analyze and synthesize these
measurements to provide a picture of the current state of the
art of graph analysis systems. The organization of this paper
is as follow. First, a recap of triangle counting is provided,
along with a few standard algorithms. Next, an overview is
presented of the Graph Challenge 2017 submissions. The core
of the paper is the section on the analysis of the 12 submission
that all performed the triangle counting challenge. Based on
this analysis, these results are synthesized to provide a picture
of the current state of the art. Finally, the conclusions are



provided along with a discussion of further work.

II. TRIANGLE COUNTING

The Graph Challenge consists of three challenges
• Pre-challenge: PageRank pipeline [58]
• Static graph challenge: subgraph isomorphism [59]
• Streaming graph challenge: stochastic block partition [60]

The static graph challenge is further broken down into triangle
counting and k-truss. Triangle counting received the most
submissions and is the focus of this paper.

Triangles are the most basic, trivial sub-graph. A triangle
can be defined as a set of three mutually adjacent vertices
in a graph. As shown in Figure 1, the graph G contains
two triangles comprising nodes {a,b,c} and {b,c,d}. The
number of triangles in a graph is an important metric used in
applications such as social network mining, link classification
and recommendation, cyber security, functional biology, and
spam detection [61].
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Fig. 1. The graph shown in this example contains two triangles consisting of
nodes {a,b,c} and {b,c,d}.

The number of triangles in a given graph G can be calcu-
lated in several ways. We highlight two algorithms based on
linear algebra primitives. The first algorithm proposed by Wolf
et al [62] uses an overloaded matrix multiplication approach on
the adjacency and incidence matrices of the graph and is shown
in Algorithm 1. The second approach proposed by Burkhardt
et al [63] uses only the adjacency matrix of the given graph
and is shown in Algorithm 2.

Algorithm 1: Array based implementation of triangle
counting algorithm using the adjacency and incidence
matrix of a graph [62].
Data: Adjacency matrix A and incidence matrix E
Result: Number of triangles in graph G
initialization;
C = AE
nT = nnz(C)/3

Multiplication is overloaded such that
C(i, j) = {i, x, y} iff
A(i, x) = A(i, y) = 1 & E(x, j) = E(y, j) = 1

Another algorithm for triangle counting based on a masked
matrix multiplication approach has been proposed by Azad
et al [64]. The serial version of this algorithm based on the
MapReduce implementation by Cohen et al [65] is shown
in Algorithm 3. Finally, a comparison of triangle counting
algorithms can be found in [66].

Algorithm 2: Array based implementation of triangle
counting algorithm using only the adjacency matrix of a
graph [63].
Data: Adjacency matrix A
Result: Number of triangles in graph G
initialization;
C = A2 ◦ A
nT =

∑
ij(C)/6

Here, ◦ denotes element-wise multiplication

Algorithm 3: Serial version of triangle counting algorithm
based on MapReduce version by Cohen et al [65] and [64].
Data: Adjacency matrix A
Result: Number of triangles in graph G
initialization;
(L,U)← A
B = LU
C = A ◦ B
nT =

∑
ij(C)/2

Here, ◦ denotes element-wise multiplication

III. COMMUNITY SUBMISSIONS

Graph Challenge 2017 received 22 submissions by 111
authors from 36 organizations [24]–[31], [34]–[41], [48]–
[53]. The submissions were judged by a panel of experts
on their effectiveness at using Graph Challenge to highlight
innovations in graph algorithms, hardware, software, and sys-
tems. Because of the technical expertise required to submit,
submitting successfully is a significant accomplishment, and
potential participants who were unable to effectively complete
the challenge simply did not submit. The breakdown of the
submissions amongst organizations, challenges, innovations,
and awards is shown in Table I.

TABLE I
Breakdown of the Graph Challenge 2017 submissions amongst

organizations, challenges, innovations, and awards.

Organizations
Academic Federal Industry

20 9 7

Challenge
Static Streaming PageRank

17 3 1

Static Kernel
Triangle K-Truss Both

10 3 4

Innovation
Hardware Software Algorithms Viz Systems

5 13 13 1 14

Award
Champion Finalist Innovation Student Honorable

Innovation Mention
5 13 13 1 14



Numerous submissions implemented the triangle counting
challenge in a comparable manner, resulting in over 350
distinct measurements of triangle counting execution time,
Ttri. The number of edges, Ne, in the graph describes the
overall size of the graph. The rate of edges processed in
triangle counting is given by

Rate = Ne/Ttri

For any of these submissions, it is possible to extract two
points: (1) the highest rate and its corresponding number
of edges, and (2) the largest graph and its corresponding
rate. These points are shown in Figure 2 and give a rough
picture of the overall landscape of these submissions and
highlight that the judges preferred submissions that showed
high performance on large graphs. By analyzing all the data
points, it is possible to obtain a detailed picture of the state
of the art of this field.
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Fig. 2. The largest graph and corresponding rate and the fastest graph
and corresponding size for selected Graph Challenge 2017 triangle counting
submissions. The one disk-based submission shows the importance of large,
high-speed memories for this application.

IV. PERFORMANCE ANALYSIS

Analyzing and combining all the performance data from
the submissions can be done by fitting a piecewise model to
each submission and then comparing the models. For each
submission, Ttri vs Ne is plotted on a log-log scale from which
a model can be fit to the data by estimating the parameters α
and β in the formula

Ttri = αNβ
e

The triangle counting execution time vs number of edges and
corresponding model fits are shown for the Champions in
Figure 3, the Finalists in Figure 4, and the Honorable Mentions
in Figure 5. The model fits illustrate the strong dependence of
Ttri on Ne.
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Fig. 3. Graph Challenge 2017 Champions. Triangle counting execution time
vs number of edges and corresponding model fits for Bisson-Nvidia-2017 [48],
Pearce-LLNL-2017 [34], Voegele-UTAustin-2017 [24], and Wolf-Sandia-2017
[41].

V. PERFORMANCE SYNTHESIS

The model fits in Figures 3, 4, and 5 can be put in a more
understandable form by transforming them to the normalized
equation

Ttri = (Ne/N1)
β
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Fig. 4. Graph Challenge 2017 Finalists. Triangle counting execution time vs
number of edges and corresponding model fits for Hu-GWU-2017-2017 [26],
Smith-UMN-2017 [25], and Tom-UMN-2017-2017 [36].

where N1 = α−1/β is the number edges that take 1 second
to process. The normalized parameters N1 and β, along
with the largest values of Ne, are shown in Table II for
each submission. Submissions with larger Ne, larger N1, and
smaller β perform best. Combined, these suggest a current
state of the art performance model of

Ttri = (Ne/10
8)4/3

and

Rate =
108

(Ne/108)1/3

The current state-of-the-art can also be seen by plotting all
the model fits Ttri together (see Figures 6 and 7). Given the
enormous diversity in processors, algorithms, and software,
this relatively consistent picture of the state-of-the-art suggests
that the current limitations are set by common elements across
these benchmarks, such as memory bandwidth.
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Fig. 5. Graph Challenge 2017 Honorable Mentions. Triangle counting
execution time vs number of edges and corresponding model fits for Date-
UIUC-2017 [49], Hutchison-UWash-2017 [40], Low-CMU-2017 [29], and
Mowlaei-UPitt-2017 [31].

VI. CONCLUSION

The rapid increase in the use of graphs and has inspired
new ways to measure and compare the attributes of graph
analytic systems. The MIT/Amazon/IEEE Graph Challenge
was created to stimulate research in graph analysis software,
hardware, algorithms, and systems. The GraphChallenge.org
website makes available to the world many pre-processed



TABLE II
Triangle counting time model fit coefficients for Ttri = (Ne/N1)β for

large values of Ne.

Ref Submission max Ne N1 β
[48] Bisson-Nvidia-2017 1.5× 109 3× 107 4/3
[34] Pearce-LLNL-2017 2.7× 1011 2× 108 4/3
[24] Voegele-UTAustin-2017 1.8× 109 3× 107 4/3
[41] Wolf-Sandia-2017 1.8× 109 3× 107 4/3
[26] Hu-GWU-2017 3.4× 1010 5× 107 4/3
[25] Smith-UMN-2017 1.2× 109 1× 106 1
[36] Tom-UMN-2017 1.8× 109 5× 107 1
[49] Date-UIUC-2017 2.6× 108 3× 106 4/3
[40] Hutchison-UWash-2017 1.6× 107 3× 104 5/3
[29] Low-CMU-2017 1.8× 109 1× 108 1
[31] Mowlaei-UPitt-2017 1.8× 109 5× 107 1
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Fig. 6. Model fits of triangle execution time vs number edges for selected
Graph Challenge 2017 triangle counting submissions. State-of-the-art is
denoted by the black dashed line. The one disk-based submissions shows
the importance of large, high-speed memories for this application.

graph data sets, graph generators, graph algorithms, prototype
serial implementations in a several languages, and defined
metrics for assessing performance. In 2017, Graph Chal-
lenge received 22 submissions by 111 co-authors from 36
organizations. The submissions covered new developments in
hardware, software, algorithms, systems, and visualization.
The comparable measurements provided by these submissions
are an invaluable resource for determining the state-of-the-art
in graph processing. Triangle counting was the most popular
submission and produced over 350 distinct measurements of
triangle execution time on a wide variety of graphs. Analysis
of each of these submissions shows that execution time is
a strong function of the number of edges in the graph, Ne,
and is typically proportional to N4/3

e for large values of Ne.
Combining the model fits of each of the submissions presents
a picture of the current state-of-the-art of graph analysis,
which is typically 108 edges processed per second for graphs
with 108 edges. These results are 30 times faster than serial
implementations commonly used by many graph analysts
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Fig. 7. Model fits of triangle execution rate vs. number edges for selected
Graph Challenge 2017 triangle counting submissions. State-of-the-art is
denoted by the black dashed line. The one disk-based submissions shows
the importance of large, high-speed memories for this application.

and reinforces the importance of making these performance
benefits available to the broader community.

Graph Challenge provides a clear picture of current graph
analysis systems and underscores the need for new innovations
to achieve high performance on very large graphs. In the
future, Graph Challenge will examine additional data sets,
algorithms, and implementations. One area of interest is sparse
neural networks. Neural networks are becoming widely used
in many disciplines. In some contexts, sparse neural networks
are limited by their size. One approach to alleviating these size
limitations is to make the representation of a neural network
sparse, which may require new systems to effectively perform
neural network computations.
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[32] A. Buluç and J. R. Gilbert, “The combinatorial BLAS: Design, im-
plementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[33] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic Distributed
Dimensional Data Model (D4M) database and computation system,” in
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2012, pp. 5349–5352.

[34] R. Pearce, “Triangle counting for scale-free graphs at scale in dis-
tributed memory,” in High Performance Extreme Computing Conference
(HPEC). IEEE, 2017.

[35] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable
static and dynamic community detection using grappolo,” in High
Performance Extreme Computing Conference (HPEC). IEEE, 2017.

[36] A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman,
M. Kodiyath, I. Hur, F. Petrini, and G. Karypis, “Exploring optimizations
on shared-memory platforms for parallel triangle counting algorithms,”
in High Performance Extreme Computing Conference (HPEC). IEEE,
2017.

[37] O. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia, S. Zhou,
S. Singapura, H. Zeng, R. Kannan et al., “Quickly finding a truss
in a haystack,” in High Performance Extreme Computing Conference
(HPEC). IEEE, 2017.

[38] H. Kabir and K. Madduri, “Parallel k-truss decomposition on multicore
systems,” in High Performance Extreme Computing Conference (HPEC).
IEEE, 2017.

[39] S. Zhou, K. Lakhotia, S. G. Singapura, H. Zeng, R. Kannan, V. K.
Prasanna, J. Fox, E. Kim, O. Green, and D. A. Bader, “Design and
implementation of parallel pagerank on multicore platforms,” in High
Performance Extreme Computing Conference (HPEC). IEEE, 2017.

[40] D. Hutchison, “Distributed triangle counting in the graphulo matrix math
library,” in High Performance Extreme Computing Conference (HPEC).
IEEE, 2017.

[41] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajaman-
ickam, “Fast linear algebra-based triangle counting with kokkoskernels,”
in High Performance Extreme Computing Conference (HPEC). IEEE,
2017.

[42] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiseron,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for graph algorithm primitives,”
in High Performance Extreme Computing Conference (HPEC). IEEE,
2013.
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