
GraphBLAS Mathematics
- Provisional Release 1.0 -

Jeremy Kepner

Generated on April 26, 2017

Contents

1 Introduction: Graphs as Matrices . 1
1.1 Adjacency Matrix: Undirected Graphs, Directed Graphs, Weighted Graphs 1
1.2 Incidence Matrix: Multi-Graphs, Hyper-Graphs, Multipartite Graphs . . . 2

2 Matrix Definition: Starting Vertices, Ending Vertices, Edge Weight Types 2
3 Scalar Operations: Combining and Scaling Graph Edge Weights 5
4 Scalar Properties: Composable Graph Edge Weight Operations 5
5 Matrix Properties: Composable Operations on Entire Graphs 6
6 0-Element: No Graph Edge . 9
7 Matrix Graph Operations Overview . 13
8 Matrix_build: Edge List to Graph . 14
9 Vector_build . 15
10 Matrix_extractTuples: Graph to Vertex List . 15
11 Vector_extractTuples . 15
12 transpose: Swap Start and End Vertices . 15
13 mxm: Weighted, Multi-Source, Breadth-First-Search 16

13.1 accumulation: Summing up Edge Weights 17
13.2 transposing Inputs or Outputs: Swapping Start and End Vertices 18
13.3 addition and multiplication: Combining and Scaling Edges 20

14 mxv . 21
15 vxm . 21
16 extract: Selecting Sub-Graphs . 21
17 assign: Modifying Sub-Graphs . 22
18 eWiseAdd, eWiseMult: Combining Graphs, Intersecting Graphs, Scaling Graphs . 23
19 apply: Modify Edge Weights . 24
20 reduce: Compute Vertex Degrees . 24
21 Kronecker: Graph Generation (Proposal) . 25
22 Graph Algorithms and Diverse Semirings . 26

1 Introduction: Graphs as Matrices

This chapter describes the mathematics in the GraphBLAS standard. The GraphBLAS define a
narrow set of mathematical operations that have been found to be useful for implementing a wide
range of graph operations. At the heart of the GraphBLAS are 2D mathematical objects called
matrices. The matrices are usually sparse, which implies that the majority of the elements in the
matrix are zero and are often not stored to make their implementation more efficient. Sparsity is
independent of the GraphBLAS mathematics. All the mathematics defined in the GraphBLAS will
work regardless of whether the underlying matrix is sparse or dense.

Graphs represent connections between vertices with edges. Matrices can represent a wide range of
graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to
analyze while incidence matrices are often better for representing data. Fortunately, the two are
easily connected by the fundamental mathematical operation of the GraphBLAS: matrix-matrix
multiply. One of the great features of the GraphBLAS mathematics is that no matter what kind of
graph or matrix is being used, the core operations remain the same. In other words, a very small
number of matrix operations can be used to manipulate a very wide range of graphs.

The mathematics of the GraphBLAS will be described using a “center outward” approach. Initially,
the most important specific cases will be described that are at the center of GraphBLAS. The
conditions on these cases will then be relaxed to arrive at more general definition. This approach
has the advantage of being more easily understandable and describing the most important cases first.

1.1 Adjacency Matrix: Undirected Graphs, Directed
Graphs, Weighted Graphs

Given an adjacency matrixA, if A(v1, v2) = 1, then there exists an edge going from vertex v1 to
vertex v2 (see Figure 1.1). Likewise, if A(v1, v2) = 0, then there is no edge from v1 to v2.
Adjacency matrices have direction, which means that A(v1, v2) is not the same as A(v2, v1).
Adjacency matrices can also have edge weights. If A(v1, v2) = w12, and w12 6= 0, then the edge
going from v1 to v2 is said to have weight w12. Adjacency matrices provide a simple way to
represent the connections between vertices in a graph between one set of vertices and another.
Adjacency matrices are often square and both out-vertices (rows) and the in-vertices (columns) are
the same set of vertices. Adjacency matrices can be rectangular in which case the out-vertices
(rows) and the in-vertices (columns) are different sets of vertices. Such graphs are often called
bipartite graphs. In summary, adjacency matrices can represent a wide range of graphs, which
include any graph with any set of the following properties: directed, weighted, and/or bipartite.

Contents 1

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

st
ar

t v
er

te
x!

end vertex!

Figure 1.1: (left) Seven vertex graph with 12 edges. Each vertex is labeled with an integer. (right)
7 × 7 adjacency matrix A representation of the graph. A has 12 non-zero entries
corresponding to the edges in the graph.

1.2 Incidence Matrix: Multi-Graphs, Hyper-Graphs,
Multipartite Graphs

An incidence, or edge matrix E, uses the rows to represent every edge in the graph and the columns
represent every vertex. There are a number of conventions for denoting an edge in an incidence
matrix. One such convention is to set Estart(i, v1) = 1 and Eend(i, v2) = 1 to indicate that edge i
is a connection from v1 to v2 (see Figure 1.2). Incidence matrices are useful because they can easily
represent multi-graphs, hyper-graphs, and multi-partite graphs. These complex graphs are difficult
to capture with an adjacency matrix. A multi-graph has multiple edges between the same vertices.
If there was another edge, j, from v1 to v2, this can be captured in an incidence matrix by setting
Estart(j, v1) = 1 and Eend(j, v2) = 1 (see Figure 1.3). In a hyper-graph, one edge can go between
more than two vertices. For example, to denote edge i has a connection from v1 to v2 and v3 can be
accomplished by also setting Eend(i, v3) = 1 (see Figure 1.3). Furthermore, v1, v2, and v3 can be
drawn from different classes of vertices and so E can be used to represent multi-partite graphs.
Thus, an incidence matrix can be used to represent a graph with any set of the following graph
properties: directed, weighted, multi-partite, multi-edge, and/or hyper-edge.

2 Matrix Definition: Starting Vertices, Ending
Vertices, Edge Weight Types

The canonical matrix of the GraphBLAS has m rows and n columns of real numbers. Such a
matrix can be denoted as

A : Rm×n

2 GraphBLAS - Provisional 1.0 – April 26, 2017

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!
end vertex!start vertex!

ed
ge

 n
um

be
r!

Estart! Eend!
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

Figure 1.2: (left) Seven vertex graph with 12 edges. Each edge is labeled with an integer; the
vertex labels are the same as in Figure 1.1. (middle) 12 × 7 incidence matrix Estart

representing the starting vertices of the graph edges. (right) 12 × 7 incidence matrix
Eend representing of the ending vertices of the graph edges. Both Estart and Eend have
12 non-zero entries corresponding to the edges in the graph.

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!
end vertex!start vertex!

ed
ge

 n
um

be
r!

Estart! Eend!
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

ed
ge

 n
um

be
r!

13!

Figure 1.3: Graph and incidence matrices from Figure 1.2 with a hyper-edge (edge 12) and a multi-
edge (edge 13). The graph is a hyper-graph because edge 12 has more than one end
vertex. The graph is a multi-graph because edge 8 and edge 13 have the same start and
end vertex.

The canonical row and and column indexes of the matrix A are i ∈ I = {1, . . . ,m} and
j ∈ J = {1, . . . , n}, so that any particular value A can be denoted as A(i, j). [Note: a specific
GraphBLAS implementation might use IEEE 64 bit double precision floating point numbers to
represent real numbers, 64 bit unsigned integers to represent row and column indices, and the
compressed sparse rows (CSR) format or the compressed sparse columns (CSC) format to store the

Contents 3

non-zero values inside the matrix.]

A matrix of complex numbers is denoted

A : Cm×n

A matrix of integers {. . . ,−1, 0, 1, . . .} is denoted

A : Zm×n

A matrix of natural numbers {1, 2, 3, . . .} is denoted

A : Nm×n

Canonical row and column indices are natural numbers I, J : N. In some GraphBLAS
implementations these indices could be non-negative integers I = {0, . . . ,m− 1} and
J = {0, . . . , n− 1}.

For the GraphBLAS a matrix is defined as the following 2D mapping

A : I × J → S

where the indices I, J : Z are finite sets of integers with m and n elements respectively, and
S ∈ {R,Z,N, . . .} is a set of scalars. Without loss of generality matrices can be denoted

A : Sm×n

If the internal storage format of the matrix needs to be indicated, this can be done by

A : Sm×n
CSC or A : Sm×n

CSR

A matrix wherem = 1 is a column vector and is denoted

v = Sm×1

A matrix where n = 1 is a row vector and is denoted

v = S1×n

A pure vector is simply denoted
v = Sm

whether pure vector it is treated as a column vector or a row vector is determined by its context.

A scalar is a single element of a set s ∈ S and has no matrix dimensions.

4 GraphBLAS - Provisional 1.0 – April 26, 2017

3 Scalar Operations: Combining and Scaling
Graph Edge Weights

The GraphBLAS matrix operations are built on top of scalar operations. The primary scalar
operations are standard arithmetic addition (e.g., 1 + 1 = 2) and multiplication (e.g., 2× 2 = 4).
The GraphBLAS also allow these scalar operations of addition and multiplication to be defined by
the implementation or the user. To prevent confusion with standard addition and multiplication, ⊕
will be used to denote scalar addition and ⊗ will be used to denote scalar multiplication. In this
notation, standard arithmetic addition and arithmetic multiplication of real numbers a, b, c ∈ R,
where ⊕ ≡ + and ⊗ ≡ × results in

c = a⊕ b ⇒ c = a+ b

and
c = a⊗ b ⇒ c = a× b

Allowing ⊕ and ⊗ to be implementation (or user) defined functions enables the GraphBLAS to
succinctly implement a wide range of algorithms on scalars of all different types (not just real
numbers).

4 Scalar Properties: Composable Graph Edge
Weight Operations

Certain ⊕ and ⊗ combinations over certain sets of scalars are particular useful because they
preserve desirable mathematical properties such as associativity

(a⊕ b)⊕ c = a⊕ (b⊕ c) (a⊗ b)⊗ c = a⊗ (b⊗ c)

and distributivity
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Associativity, and distributivity are extremely useful properties for building graph applications
because they allow the builder to swap operations without changing the result. They also increase
opportunities for exploiting parallelism by the runtime.

Example combinations of ⊕ and ⊗ that preserve scalar associativity and distributivity include (but
are not limited to) standard arithmetic

⊕ ≡ + ⊗ ≡ × a, b, c ∈ R

Contents 5

max-plus algebras
⊕ ≡ max ⊗ ≡ + a, b, c ∈ {−∞∪ R}

max-min algebras
⊕ ≡ max ⊗ ≡ min a, b, c ∈ [0,∞]

finite (Galois) fields such as GF(2)

⊕ ≡ xor ⊗ ≡ and a, b, c ∈ [0, 1]

and power set algebras
⊕ ≡ ∪ ⊗ ≡ ∩ a, b, c ⊂ Z

These operations also preserve scalar commutativity. Other functions can also be defined for ⊕ and
⊗ that do not preserve the above properties. For example, it is often useful for ⊕ or ⊗ to pull in
other data such as vertex labels of a graph, such as the select2nd operation used in breadth-first
search.

5 Matrix Properties: Composable Operations
on Entire Graphs

Associativity, distributivity, and commutativity are very powerful properties of the GraphBLAS
and separate it from standard graph libraries because these properties allow the GraphBLAS to be
composable (i.e., you can re-order operations and know that you will get the same answer).
Composability is what allows the GraphBLAS to implement a wide range of graph algorithms with
just a few functions.

Let A,B,C ∈ Sm×n, be matrices with elements a = A(i, j), b = B(i, j), and c = C(i, j).
Associativity, distributivity, and commutativity of scalar operations translates into similar
properties on matrix operations in the following manner.

Additive Commutativity Allows graphs to be swapped and combined via matrix element-wise
addition (see Figure 1.4) without changing the result

a⊕ b = b⊕ a ⇒ A⊕B = B⊕A

where matrix element-wise addition is given by C(i, j) = A(i, j)⊕B(i, j)

Multiplicative Commutativity Allows graphs to be swapped, intersected, and scaled via matrix
element-wise multiplication (see Figure ??) without changing the result

a⊗ b = b⊗ a ⇒ A⊗B = B⊗A

6 GraphBLAS - Provisional 1.0 – April 26, 2017

where matrix element-wise (Hadamard) multiplication is given by C(i, j) = A(i, j)⊗B(i, j)

Additive Associativity Allows graphs to be combined via matrix element-wise addition in any
grouping without changing the result

(a⊕ b)⊕ c = a⊕ (b⊕ c) ⇒ (A⊕B)⊕C = A⊕ (B⊕C)

Multiplicative Associativity Allows graphs to be intersected and scaled via matrix
element-wise multiplication in any grouping without changing the result

(a⊗ b)⊗ c = a⊗ (b⊗ c) ⇒ (A⊗B)⊗C = A⊗ (B⊗C)

Element-Wise Distributivity Allows graphs to be intersected and/or scaled and then combined
or vice-verse without changing the result

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) ⇒ A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)

Matrix Multiply Distributivity Allows graphs to be transformed via matrix multiply and then
combined or vice-verse without changing the result

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) ⇒ A(B⊕C) = (AB)⊕ (AC)

where matrix multiply C = AB is given by

C(i, j) =

l⊕
k=1

A(i, k)⊗B(k, j)

for matrices A : Sm×l, B : Sl×n, and C : Sm×n

Matrix Multiply Associativity is another implication of scalar distributivity and allows graphs
to be transformed via matrix multiply in any grouping without changing the result

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) ⇒ (AB)C = A(BC)

Matrix Multiply Commutativity In general, AB 6= BA. Some cases where AB = BA
include when one matrix is all zeros, one matrix is the identity matrix, both matrices are diagonal
matrices, or both matrices are rotation matrices.

Contents 7

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

Figure 1.4: Illustration of the commutative property of the element-wise addition of two graphs and
their corresponding adjacency matrix representations.

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

5!7!
= !

= !

Figure 1.5: Illustration of the commutative property of the element-wise multiplication of two
graphs and their corresponding adjacency matrix representations.

8 GraphBLAS - Provisional 1.0 – April 26, 2017

6 0-Element: No Graph Edge

Sparse matrices play an important role in GraphBLAS. Many implementations of sparse matrices
reduce storage by not storing the 0 valued elements in the matrix. In adjacency matrices, the 0
element is equivalent to no edge from the vertex represented by row to the vertex represented by the
column. In incidence matrices, the 0 element is equivalent to the edge represented by row not
including the vertex represented by the column. In most cases, the 0 element is standard arithmetic
0. The GraphBLAS also allows the 0 element to be defined by the implementation or user. This can
be particularly helpful when combined with user defined ⊕ and ⊗ operations. Specifically, if the 0
element has certain properties with respect scalar ⊕ and ⊗, then sparsity of matrix operations can
be managed efficiently. These properties are the additive identity

a⊕ 0 = a

and the multiplicative annihilator
a⊗ 0 = 0

Note: the above behavior of ⊕ and ⊗ with respect to 0 is a requirement for the GraphBLAS.

Example combinations of ⊕ and ⊗ that exhibit the additive identity and multiplicative annihilator
are:

Arithmetic on Real Numbers (+.×) Given standard arithmetic over the real numbers

a ∈ R

where addition is
⊕ ≡ +

multiplication is
⊗ ≡ ×

and zero is
0 ≡ 0

which results in additive identity
a⊕ 0 = a+ 0 = a

and multiplicative annihilator
a⊗ 0 = a× 0 = 0

Max-Plus Algebra (max.+) Given real numbers with a minimal element

a ∈ {-∞∪ R}

where addition is
⊕ ≡ max

Contents 9

multiplication is
⊗ ≡ +

and zero is
0 ≡ -∞

which results in additive identity

a⊕ 0 = max(a, -∞) = a

and multiplicative annihilator
a⊗ 0 = a+ -∞ = -∞

Min-Plus Algebra (min.+) Given real numbers with a maximal element

a ∈ {R ∪∞}

where addition is
⊕ ≡ min

multiplication is
⊗ ≡ +

and zero is
0 ≡ ∞

which results in additive identity

a⊕ 0 = min(a,∞) = a

and multiplicative annihilator
a⊗ 0 = a+∞ =∞

Max-Min Algebra (max.min) Given non-negative real numbers

R≥0 = {a : 0 ≤ a <∞}

where addition is
⊕ ≡ max

multiplication is
⊗ ≡ min

and zero is
0 ≡ 0

which results in additive identity

a⊕ 0 = max(a, 0) = a

10 GraphBLAS - Provisional 1.0 – April 26, 2017

and multiplicative annihilator
a⊗ 0 = min(a, 0) = 0

Min-Max Algebra (min.max) Given non-positive real numbers

R≤0 = {a : -∞ < a ≤ 0}

where addition is
⊕ ≡ min

multiplication is
⊗ ≡ max

and zero is
0 ≡ 0

which results in additive identity

a⊕ 0 = min(a, 0) = a

and multiplicative annihilator
a⊗ 0 = max(a, 0) = 0

Galois Field (xor.and) Given a set of two numbers

a ∈ {0, 1}

where addition is
⊕ ≡ xor

multiplication is
⊗ ≡ and

and zero is
0 ≡ 0

which results in additive identity
a⊕ 0 = xor(a, 0) = a

and multiplicative annihilator
a⊗ 0 = and(a, 0) = 0

Power Set (∪.∩) Given any subset of integers

a ⊂ Z

where addition is
⊕ ≡ ∪

Contents 11

multiplication is
⊗ ≡ ∩

and zero is
0 ≡ ∅

which results in additive identity
a⊕ 0 = a ∪ ∅ = a

and multiplicative annihilator
a⊗ 0 = a ∩ ∅ = ∅

The above examples are a small selection of the operators and sets that are useful for building graph
algorithms. Many more are possible. The ability to change the scalar values and operators while
preserving the overall behavior of the graph operations is one of the principal benefits of using
matrices for graph algorithms. For example, relaxing the requirement that the multiplicative
annihilator be the additive identity, as in the above examples, yields additional operations, such as

Max-Max Algebra (max.max) Given non-positive real numbers with a minimal element

a ∈ {-∞∪ R≤0}

where addition is
⊕ ≡ max

multiplication is (also)
⊗ ≡ max

and zero is
0 ≡ -∞

which results in additive identity

a⊕ 0 = max(a, -∞) = a

Min-Min Algebra (min.max) Given non-negative real numbers with a maximal element

a ∈ {R≥0 ∪∞}

where addition is
⊕ ≡ min

multiplication is (also)
⊗ ≡ min

and zero is
0 ≡ ∞

12 GraphBLAS - Provisional 1.0 – April 26, 2017

which results in additive identity

a⊕ 0 = min(a,∞) = a

7 Matrix Graph Operations Overview

The core of the GraphBLAS is the ability to perform a wide range of graph operations on diverse
types of graphs with a small number of matrix operations:

Matrix_build build a sparse Matrix from row, column, and value tuples. Example graph
operations include: graph construction from a set of starting vertices, ending vertices, and edge
weights.

Vector_build build a sparse Vector from index value tuples.

Matrix_extractTuples extract the row, column, and value Tuples corresponding to the non-zero
elements in a sparse Matrix. Example graph operations include: extracting a graph from is matrix
represent.

Vector_extractTuples extract the index and value Tuples corresponding to the non-zero
elements in a sparse vector.

transpose Flips or transposes the rows and the columns of a sparse matrix. Implements
reversing the direction of the graph. Can be implemented with ExtracTuples and BuildMatrix.

mxm, mxv, vxm matrix x (times) matrix, matrix x (times) vector, vector x (times) matrix.
Example graph operations include: single-source breadth first search, multi-source breadth first
search, weighted breadth first search.

extract extract sub-matrix from a larger matrix. Example graph operations include: sub-graph
selection. Can be implemented with Matrix_build and mxm or Vector_build and mxv or vxm.

assign assign matrix or vector to a set of indices in a larger matrix or vector. Example graph
operations include: sub-graph assignment. Can be implemented with Matrix_build and mxm or
Vector_build and mxv or vxm.

eWiseAdd, eWiseMult elementWise Addition of matrices or vectors, elementWise
Multiplication (Hadamard product) of matrices or vectors. Example graph operations include:
graph union and intersection along with edge weight scale and combine.

apply apply unary function to a matrix or a vector. Example graph operations include: graph edge
weight modification. Can be implemented via eWiseAdd or eWiseMult.

reduce reduce sparse matrix. Implements vertex degree calculations. Can be implemented via
mxm, mxv, or vxm.

Contents 13

The above set of functions has been shown to be useful for implementing a wide range of graph
algorithms. These functions strike a balance between providing enough functions to be useful to an
application builders and while being few enough that they can be implemented effectively.
Furthermore, from an implementation perspective, there are only six functions that are truly
fundamental: Matrix_build, Matrix_extractTuples, transpose, mxm, eWiseAdd and
eWiseMult. The other GraphBLAS functions can be implemented from these six functions.

8 Matrix_build: Edge List to Graph

The GraphBLAS may use a variety of internal formats for representing sparse matrices. This data
can often be imported as triples of vectors i, j, and v corresponding to the non-zero elements in the
sparse matrix. Constructing an m× n sparse matrix from triples can be denoted

C ⊕= Sm×n(i, j,v,⊕)

where i : IL, j : JL, i,v : SL, are all L element vectors, and the symbols in blue represent optional
operations that can be specified by the user. The optional ⊕= denotes the option of adding the
product to the existing values in C. The optional ⊕ function defines how multiple entries with the
same row and column are handled. If ⊕ is undefined then the default is to combine the values using
standard arithmetic addition +. Other variants include replacing any or all of the vector inputs with
single element vectors. For example

C = Sm×n(i, j, 1)

would use the value of 1 for input values. Likewise, a row vector can be constructed using

C = Sm×n(1, j,v)

and a column vector can be constructed using

C = Sm×n(i, 1,v)

The value type of the sparse matrix can be further specified via

C : Rm×n(i, j,v)

14 GraphBLAS - Provisional 1.0 – April 26, 2017

9 Vector_build

Using notation similar to Matrix_build, constructing an m element abstract sparse vector can be
denoted

c ⊕= Sm(i,v,⊕)

10 Matrix_extractTuples: Graph to Vertex List

It is expected the GraphBLAS will need to send results to other software components. Triples are a
common interchange format. The GraphBLAS ExtractTuples command performs this operation
by extracting the non-zero triples from a sparse matrix and can be denoted mathematically as

(i, j,v) = A

11 Vector_extractTuples

Using notation similar to Matrix_extractTuples, extracting the non-zero elements from a sparse
vector and can be denoted mathematically as

(i,v) = c

12 transpose: Swap Start and End Vertices

Swapping the rows and columns of a sparse matrix is a common tool for changing the direction of
vertices in a graph (see Figure 1.6). The transpose is denoted as

C ⊕= AT

or more explicitly
C(j, i) = C(j, i) ⊕ A(i, j)

whereA : Sm×n and C : Sn×m

Contents 15

Transpose can be implemented using a combination of Matrix_build and Matrix_extractTuples
as follows

(i, j,v) = A

C = Sn×m(j, i,v)

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

st
ar

t v
er

te
x!

end vertex!

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

st
ar

t v
er

te
x!

end vertex!T

Figure 1.6: Transposing the adjacency matrix of a graph switches the directions of its edges.

13 mxm: Weighted, Multi-Source, Breadth-
First-Search

Matrix multiply is the most important operation in the GraphBLAS and can be used to implement a
wide range of graph algorithms. Examples include finding the nearest neighbors of a vertex (see
Figure 1.7) and constructing an adjacency matrix from an incidence matrix (see Figure 1.8). In its
most common form, mxm performs a matrix multiply using standard arithmetic addition and
multiplication

C = AB

16 GraphBLAS - Provisional 1.0 – April 26, 2017

or more explicitly

C(i, j) =

l∑
k=1

A(i, k)B(k, j)

whereA : Rm×l, B : Rl×n, and C : Rm×n. mxm has many important variants that include
accumulating results, transposing inputs or outputs, and user defined addition and multiplication.
These variants can be used alone or in combination. When these variants are combined with the
wide range of graphs that can be represented with sparse matrices, this results in many thousands of
distinct graph operations that can be succinctly captured by multiplying two sparse matrices. As
will be described subsequently, all of these variants can be represented by the following
mathematical statement

CT ⊕= AT ⊕.⊗ BT

whereA : Sm×l, B : Sl×m, and C : Sm×n, ⊕= denotes the option of adding the product to the
existing values in C, and ⊕.⊗ makes explicit that ⊕ and ⊗ can be user defined functions.

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

en
d

ve
rte

x!

start vertex!T

= !

v! A v!T

Figure 1.7: (left) Breadth-first-search of a graph starting at vertex 4 and traversing out to vertices 1
and 3. (right) Matrix-vector multiplication of the adjacency matrix of a graph performs
the equivalent operation.

13.1 accumulation: Summing up Edge Weights

mxm can be used to multiply and accumulate values into a matrix. One example is when the result
of multiplyA and B is added to the existing values in C (instead of replacing C. This can be
written

C += AB

or more explicitly

C(i, j) = C(i, j) +

M∑
k=1

A(i, k)B(k, j)

Contents 17

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

st
ar

t v
er

te
x!

end vertex!

1!

3!
2!

4!
5!
6!
7!

edge number!

st
ar

t v
er

te
x!

Estart!

4! 5! 6! 7!3!2!1!
end vertex!Eend!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

T

= !⊕.⊗#

4! 5! 6! 7!3!2!1! 8! 9! 10!11!12!

Figure 1.8: Construction of an adjacency matrix of a graph from its incidence matrices via
matrix-matrix multiply. The entry A(4, 3) is obtained by combining the row vector
ET

start(4, k) with the column vector Eend(k, 3) via matrix-matrix product A(4, 3) =
13⊕
k=1

ET
start(4, k)⊗Eend(k, 3)

13.2 transposing Inputs or Outputs: Swapping Start
and End Vertices

Another variant is to specify that the matrix multiply should be performed over the transpose of A,
B, or C.

Transposing the input matrixA implies

C = ATB

or more explicitly

C(i, j) =

n∑
k=1

A(k, i)B(k, j)

whereA : Rn×m.

Transposing the input matrix B implies

C = ABT

or more explicitly

C(i, j) =

l∑
k=1

A(i, k)B(j, k)

where B : Rl×n.

18 GraphBLAS - Provisional 1.0 – April 26, 2017

Transposing the output matrix C implies

CT = AB

or more explicitly

C(j, i) =

l∑
k=1

A(i, k)B(k, j)

where C : Rm×n.

Other combinations include transposing both inputs A and B

C = ATBT ⇒ C(i, j) =

M∑
k=1

A(k, i)B(j, k)

whereA : Rl×m and B : Rn×l; transposing both input A and output C

CT = ATB ⇒ C(j, i) =

l∑
k=1

A(k, i)B(k, j)

whereA : Rl×m, B : Rl×n, and C : Rm×n; and transposing both input B and output C

CT = ABT ⇒ C(j, i) =

l∑
k=1

A(i, k)B(j, k)

whereA : Rm×l, B : Rn×l and C : Rn×m.

Normally, the transpose operation distributes over matrix multiplication

(AB)T = BTAT

and so transposing both inputsA and B and the output C is rarely used. Nevertheless, for
completeness, this operation is defined as

CT = ATBT ⇒ C(j, i) =

l∑
k=1

A(k, i)B(j, k)

whereA : Rl×m, B : Rn×l, and C : Rn×m.

Contents 19

13.3 addition and multiplication: Combining and Scaling
Edges

Standard matrix multiplication on real numbers first performs scalar arithmetic multiplication on
the elements and then performs scalar arithmetic addition on the results. The GraphBLAS allows
the scalar operations of addition ⊕ and multiplication ⊗ to be replaced with user defined functions.
This can be formally denoted as

C = A ⊕.⊗ B

or more explicitly

C(i, j) =

l⊕
k=1

A(i, k)⊗B(k, j)

whereA : Sm×l, B : Sm×l, and C : Sm×n. In this notation, standard matrix multiply can be
written

C = A +.× B

where S→ R. Other matrix multiplications of interest include max-plus algebras

C = A max.+ B

or more explicitly
C(i, j) = max

k
{A(i, k) +B(k, j)}

where S→ {−∞∪ R}; min-max algebras

C = A min.max B

or more explicitly
C(i, j) = min

k
{max(A(i, k),B(k, j))}

where S→ [0,∞); the Galois field of order 2

C = A xor.and B

or more explicitly
C(i, j) = xork{and(A(i, k),B(k, j))}

where S→ [0, 1]; and power set algebras

C = A ∪.∩ B

or more explicitly

C(i, j) =

M⋃
k=1

A(i, k) ∩B(k, j)

20 GraphBLAS - Provisional 1.0 – April 26, 2017

where S→ {Z}.

Accumulation also works with user defined addition and can be denoted

C ⊕= A ⊕.⊗ B

or more explicitly

C(i, j) = C(i, j)⊕
M⊕
k=1

A(i, k)⊗B(k, j)

14 mxv

Using notation similar to mxm, matrix vector multiply can be represented by the following
mathematical statement

c ⊕= AT ⊕.⊗ b

whereA : Sm×n, b : Sn, and c : Sm

15 vxm

Using notation similar to mxm, vector matrix multiply can be represented by the following
mathematical statement

c ⊕= a ⊕.⊗ BT

where a : Sm, B : Sm×n, and c : Sn

16 extract: Selecting Sub-Graphs

Selecting sub-graphs is a very common graph operation (see Figure 1.9). The GraphBLAS
performs this operation with the Extract function by selecting starting vertices (row) and ending
vertices (columns) from a matrix A : Sm×n

CT ⊕= AT(i, j)

Contents 21

or more explicitly
C(i, j) = A(i(i), j(j))

where i ∈ {1, ...,mC}, j ∈ {1, ..., nC}, i : ImC , and j : JnC select specific sets of rows and
columns in a specific order. The resulting matrix C : SmC×nC can be larger or smaller than the
input matrixA. Extract can also be used to replicate and/or permute rows and columns in a matrix.

extract can be implemented using sparse matrix multiply as

C = S(i)A ST(j)

where S(i) and S(j) are selection matrices given by

S(i) = SmC×m({1, ...,mC}, i, 1)

S(j) = SnC×n({1, ..., nC}, j, 1)

A(i,j)!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!
st

ar
t v

er
te

x!

end vertex!

Figure 1.9: Selection of a 4 vertex sub-graph from the adjacency matrix via selecting sub-sets of
rows and columns i = j = {1, 2, 4, 7}.

17 assign: Modifying Sub-Graphs

Modifying sub-graphs is a very common graph operation. The GraphBLAS performs this operation
with the Assign function by selecting starting vertices (row) and ending vertices (columns) from a
matrix C : Sm×n and assigning new values to them from another sparse matrix, A : SmA×nA

CT(i, j) ⊕= AT

or more explicitly
C(i(i), j(j)) ⊕= A(i, j)

22 GraphBLAS - Provisional 1.0 – April 26, 2017

where i ∈ {1, ...,mA}, j ∈ {1, ..., nA}, i : ImA and j : JnA select specific sets of rows and
columns in a specific order and ⊕ optionally allowsA to added to the existing values of C.

The additive form of Extract can be implemented using sparse matrix multiply as

C ⊕= ST(i)A S(j)

where S(i) and S(j) are selection matrices given by

S(i) = SmA×m({1, ...,mA}, i, 1)

S(j) = SnA×n({1, ..., nA}, j, 1)

18 eWiseAdd, eWiseMult: Combining Graphs,
Intersecting Graphs, Scaling Graphs

Combining graphs along with adding their edge weights can be accomplished by adding together
their sparse matrix representations. EwiseAdd provides this operation

CT ⊕= AT ⊕ BT

whereA,B,C : Sm×n or more explicitly

C(i, j) = C(i, j) ⊕ A(i, j) ⊕ B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ..., n} and ⊕ is an optional argument.

Intersecting graphs along with scaling their edge weights can be accomplished by element-wise
multiplication of their sparse matrix representations. EwiseMult provides this operation

CT ⊕= AT ⊗ BT

whereA,B,C : Sm×n or more explicitly

C(i, j) = C(i, j) ⊕ A(i, j) ⊗ B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ..., n} and ⊕ is an optional argument.

Contents 23

19 apply: Modify Edge Weights

Modifying edge weights can be done by via the element-wise by unary function f() to the values of
a sparse matrix

C ⊕= f(A)

or more explicitly
C(i, j) = C(i, j) ⊕ f(A(i, j))

whereA,C : Sm×n, and f(0) = 0.

Apply can be implemented via EwiseMult via

C ⊕= A⊗A

where ⊗ ≡ f() and f(a, a) = f(a).

20 reduce: Compute Vertex Degrees

It is often desired to combine the weights of all the vertices that come out of the same starting
vertices. This aggregation can be represented as a matrix product as

c ⊕=A ⊕.⊗ 1

or more explicitly

c(i, 1) = c(i, 1) ⊕
M⊕
j=1

A(i, j)

where c : Sm×1 andA : Sm×n, and 1 : Sn×1 is a column vector of all ones.

Likewise, combining all the weights of all the vertices that go into the same ending vertices can be
represented as matrix product as

c ⊕=1 ⊕.⊗ A

or more explicitly

c(1, j) = c(1, j) ⊕
m⊕
i=1

A(i, j)

where c : S1×n andA : Sm×n, and 1 : S1×m is a row vector of all ones.

24 GraphBLAS - Provisional 1.0 – April 26, 2017

21 Kronecker: Graph Generation (Proposal)

Generating graphs is a common operation in a wide range of graph algorithms. Graph generation is
used in testing graphs algorithms, creating graph templates to match against, and to compare real
graph data with models. The Kronecker product of two matrices is a convenient and well-defined
matrix operation that can be used for generating a wide range of graphs from a few a parameters.

The Kronecker product is defined as follows

C = A ⊗© B =

A(1, 1)⊗B A(1, 2)⊗B ... A(1, nA)⊗B
A(2, 1)⊗B A(2, 2)⊗B ... A(2, nA)⊗B

...
...

...
A(mA, 1)⊗B A(mA, 2)⊗B ... A(mA, nA)⊗B

whereA : SmA×nA , B : SmB×nB , and C : SmAmB×nAnB . More explicitly, the Kronecker product
can be written as

C((iA − 1)mA + iB , (jA − 1)nA + jB) = A(iA, jA)⊗B(iB , jB)

With the usual accumulation and transpose options, the Kronecker product can be written

CT ⊕=AT ⊗© BT

The elements-wise multiply operation ⊗ can be user defined so long as the resulting operation
obeys the aforementioned rules on elements-wise multiplication such as the multiplicative
annihilator. If elements-wise multiplication and addition obey the conditions specified in section
2.5, then the Kronecker product has many of the same desirable properties, such as associativity

(A ⊗© B) ⊗© C = A ⊗© (B ⊗© C)

and element-wise distributivity over addition

A ⊗© (B⊕C) = (A ⊗© B)⊕ (A ⊗© C)

Finally, one unique feature of the Kronecker product is its relation to the matrix product

(A ⊗© B)(C ⊗© D) = (AC) ⊗© (BD)

Contents 25

22 Graph Algorithms and Diverse Semirings

The ability to change ⊕ and ⊗ operations allows different graph algorithms to be implemented
using the same element-wise addition, element-wise multiplication, and matrix multiplication
operations. Different semirings are best suited for certain classes of graph algorithms. The pattern
of non-zero entries resulting from breadth-first-search illustrated in Figure 1.7 is generally
preserved for various semirings. However, the non-zero values assigned to the edges and vertices
can be very different and enable different graph algorithms.

= A vT

+.×
.1

.2

max.+

.7

.9

min.+
max.×

.1

.2

min.×max.min
.2

.4

min.max
.5

.5

.5.5

.4

.2

A
1

3
2

4
5
6

4 5 6 7321

in
-v

er
te

x

out-vertexT v
.2

.4

7

Figure 1.10: (top left) One-hop breadth-first-search of a weighted graph starting at vertex 4 and
traversing to vertices 1 and 3. (top right) Matrix representation of the weighted graph
and vector representation of the starting vertex. (bottom) Matrix-vector multiplication
of the adjacency matrix of a graph performs the equivalent operation. Different pairs
of operations ⊕ and ⊗ produce different results. For display convenience, operator
pairs that produce the same values in this specific example are stacked.

Figure 1.10 illustrates performing a single-hop breadth-first-search using seven semirings (+.×,
max.+,min.+,max.min, min.max, max.×, and min.×). For display convenience, operator pairs
that produce the same result in this specific example are stacked. In Figure 1.10 the starting vertex 4
is assigned a value of .5 and the edges to its vertex neighbors 1 and 3 are assigned values of .2 and
.4. Empty values are assumed to be the corresponding 0 of the operator pair. In all cases, the
pattern of non-zero entries of the results are the same. In each case, because there is only one path

26 GraphBLAS - Provisional 1.0 – April 26, 2017

= AA vT T

.03

.03

.06

1.0

1.0

1.2

.2

.2

.3

.5

.5

.5

.03

.03

.06

.3

+.×
max.+
min.+

max.×
min.×max.min min.max

.5.5

.4

.2

A
1

3
2

4
5
6

4 5 6 7321

in
-v

er
te

x

out-vertexT v
.2

.4

7

.3

.3

.3

.3

.3

Figure 1.11: (top left) Two-hop breadth-first-search of a weighted graph starting at vertex 4 and
traversing to vertices 1 and 3 and continues on to vertices 2, 4, and 6. (top right)
Matrix representation of the weighted graph and vector representation of the starting
vertex. (bottom) Matrix-vector multiplication of the adjacency matrix of a graph
performs the equivalent operation. Different pairs of operations ⊕ and ⊗ produce
different results. For display convenience, operator pairs that produce the same result
in this specific example are stacked.

from vertex 4 to vertex 1 and from vertex 4 to vertex 3, the only effect of the ⊗ of operator is to
compare the non-zero output the ⊗ operator with the 0. Thus, the differences between the ⊕
operators have no impact in this specific example because for any values of a

a⊕ 0 = 0⊕ a = a

The graph algorithm implications of different ⊕.⊗ operator pairs is more clearly seen in the
two-hop breadth-first-search. Figure 1.11 illustrates graph traversal that starts at vertex 4, goes to
vertices 1 and 3, and then continues on to vertices 2, 4, and 6. For simplicity, the additional edge
weights are assigned values of .3. The first operator pair +.× provides the product of all the
weights of all paths from the starting vertex to each ending vertex. The +.× semiring is valuable
for determining the strengths of all the paths between the starting and ending vertices. In this
example, there is only one path between the starting vertex and the ending vertices and so +.× and

Contents 27

max.× and min.× all produce the same results. If there were multiple paths between the start and
end vertices then ⊕ would operate on more than one non-zero value and the differences would be
apparent. Specifically, +.× combines all paths while max.× and min.× selects either the
minimum or the maximum path. Thus, these different operator pairs represent different graph
algorithms. One algorithm produces a value that combines all paths while the other algorithm
produces a value that is derived from a single path.

A similar pattern can be seen among the other operator pairs. max.+ and min.+ compute the sum
of the weights along each path from the starting vertex to each ending vertex and then selects the
largest (or smallest) weighted path. max.min and min.max compute the minimum (or maximum)
of the weights along each path from the starting vertex to each end vertex and then selects the
largest (or smallest) weighted path.

A wide range of breadth-first-search weight computations can be performed via matrix
multiplication with different operator pairs. A synopsis of the types of calculations illustrated in
Figures 1.10 and 1.11 is as follows

+.× sum of products of weights along each path; computes the strength of all connections between
the starting vertex and the ending vertices.

max.× maximum of products of weights along each path; computes the longest product of all of
the connections between the starting vertex and the ending vertices.

min.× minimum of products of weights along each path; computes the shortest product of all of
the connections between the starting vertex and the ending vertices.

max.+ maximum of sum of weights along each path; computes the longest sum of all of the
connections between the starting vertex and the ending vertices.

min.+ minimum of sum of weights along each path; computes the shortest sum of all of the
connections between the starting vertex and the ending vertices.

max.min maximum of minimum of weight along each path; computes the longest of all the
shortest connections between the starting vertex and the ending vertices.

min.max minimum of maximum of weight along each path; computes the shortest of all the
longest connections between the starting vertex and the ending vertices.

28 GraphBLAS - Provisional 1.0 – April 26, 2017

	Introduction: Graphs as Matrices
	Adjacency Matrix: Undirected Graphs, Directed Graphs, Weighted Graphs
	Incidence Matrix: Multi-Graphs, Hyper-Graphs, Multipartite Graphs

	Matrix Definition: Starting Vertices, Ending Vertices, Edge Weight Types
	Scalar Operations: Combining and Scaling Graph Edge Weights
	Scalar Properties: Composable Graph Edge Weight Operations
	Matrix Properties: Composable Operations on Entire Graphs
	0-Element: No Graph Edge
	Matrix Graph Operations Overview
	Matrix_build: Edge List to Graph
	Vector_build
	Matrix_extractTuples: Graph to Vertex List
	Vector_extractTuples
	transpose: Swap Start and End Vertices
	mxm: Weighted, Multi-Source, Breadth-First-Search
	accumulation: Summing up Edge Weights
	transposing Inputs or Outputs: Swapping Start and End Vertices
	addition and multiplication: Combining and Scaling Edges

	mxv
	vxm
	extract: Selecting Sub-Graphs
	assign: Modifying Sub-Graphs
	eWiseAdd, eWiseMult: Combining Graphs, Intersecting Graphs, Scaling Graphs
	apply: Modify Edge Weights
	reduce: Compute Vertex Degrees
	Kronecker: Graph Generation (Proposal)
	Graph Algorithms and Diverse Semirings

