

Canonical vs Micro-Canonical Sampling Methods

in a 2D Ising model1

Jeremy Kepner

December, 1990

1This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of

Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

KEYWORDS

2D Ising Model, Micro-Canonical, Specific Heat

ABSTRACT

 Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D

Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific

heat, C, are given. These quantities were calculated over a range of temperatures, lattice

sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain

greater than three decimal accuracy from the micro-canonical method requires that the

more complicated expression for Z be used. The overall difference between the

algorithms is small. The physics of the problem under study should be the deciding

factor in determining which algorithm to use.

 1

1. INTRODUCTION

 In the study of phase transitions and other critical phenomena the Monte Carlo

method has emerged as one of the most powerful simulation techniques—canonical and

micro-canonical being just two of the more common approaches. Determining which is

best for a particular problem can be difficult. It is the goal of this paper to help the

researcher by comparing the ability of these two algorithms to simulate a 2D Ising model,

with an emphasis on illustrating the differences in behavior and accuracy as a function of

temperature and lattice size.

 In the canonical approach, one computes the state of each point from the previous

state using a random number generator. Usually, each state is weighted according to a

probability proportional to the Boltzman factor exp(–E/kT), with E being the energy of

the state [1].

 The micro-canonical Monte Carlo method consists of constraining the total energy of

the system, while letting the energy distribution evolve. The transfer of energy is carried

out by a new set of variables, called demons, which correspond to the kinetic energy in

molecular dynamics calculations [2].

2. THE UPDATING ALGORITHMS

 In both algorithms, the central operations are performed on a lattice of spins, S, that

are either up (+1) or down (-1). For our model, we will define the energy of a particular

site i as

 Ei = !(1 - SiSj) , (1)

where the sum is over the four nearest neighbors j of i [3]. This has the operational effect

of making a lattice with aligned spins have lower energy than an unaligned lattice. Note

that flipping the spin of i produces a change in energy

 !Ei = 2!SiSj . (2)

 2

 A quantity of particular interest in our experiments is the internal energy, U. In terms

of the previous notation

 –U =
1

2 –
1

2N!
i=1

N

Ei , (3)

where N is the number of points in the lattice. In the limiting case of N " ", U is known

exactly

 U =
1 + [2 tanh2(H) - 1] 2K(k1)/#

tanh(H)
 , (4)

where H = 2Z, k1 = 2 sinh(H)/cosh2(H), and K(k1) = F(#/2|k1) = Error!is the complete

elliptic integral of the first kind [4,5]. This provides a way to compare the two algorithms.

 Having defined the spin structure and the energy, the canonical scheme for changing

spins can best be explained by the following piece of pseudo-code:

r = random number between 0 and 1

B = exp(–!EiZ)

if (r < B) then

 Si = –Si

endif

where the temperature, T = 1/Z, is an input parameter of the program [6]. Executing the

above procedure on every site in the lattice constitutes one iteration, or time step, of the

algorithm.

 The micro-canonical procedure is a bit more complicated. In addition to the spin

lattice, we have a corresponding lattice of demons, D. Each element in D, Di, is restricted

by the condition that Di # {0, 1 , 2, ..., Dmax}. Di can be thought of as the kinetic energy

conjugate to the ith point in the lattice. The most important property of the micro-

canonical updating algorithm is that the energy at each point be conserved

 Ei + 4Di = constant $ ET = 4!
i=1

N

Di + !
i=1

N

Ei , (5)

 3

where ET is the total energy of the lattices. Eq. (5) illustrates the central difference

between the two algorithms. Canonical sampling selects configurations based on their

Boltzman weight, while micro-canonical sampling selects configurations that satisfy the

total energy constraint of Eq. (5). As a consequence of Eq. (5)

 !Ei + 4!Di = 0 , (6)

which gives some insight as to how to construct the updating algorithm. The spin

flipping procedure used in our experiments was equivalent to the following code fragment:

Di' = (4Di – !Ei)/4

if (0 $ Di' $ Dmax) then

 Di = Di'

 Si = –Si

endif [7]

The factor of four comes about from the property—obtained from Eq. (1)—that !Ei # {-

8, 4, 0, 4, 8}. A convenient way of running the program is to have each demon unit

correspond to the smallest change in !Ei. For a detailed explanation of implementing this

algorithm see ref. [8].

 Eq. (6) obeys the principle of detailed balance [9], implying that S and D are governed

by traditional thermodynamic principles. This provides an intuitive rational for believing

that the micro-canonical algorithm works. As the system evolves, the demons become

distributed according to their Boltzman factors. The demon average will then be related to

the temperature by

1

N!
i=1

N

Di = %Di& =
!' exp(–4'Z)

!exp(–4'Z)
 , (7)

where the sums are carried out from ' = 0 to Dmax. Given a particular state D, %Di& can

be calculated, and Eq. (5) can be numerically inverted to find the temperature. Thus, the

temperature is an output rather than an input of the algorithm.

 4

3. RUNNING THE ALGORITHMS

 Both algorithms were implemented with doubly periodic boundary conditions. A

checkerboard updating procedure was used to avoid the result of [10]—that any algorithm

which updates all spins simultaneously cannot simulate the Ising model. All the spins

were initially set to +1. To compensate for the relaxation of the system from its starting

state, some number of initial steps, ti, need to be discarded. Berretti and Sokal [11] point

out that ti should not be larger than ~
tt

4 , tt being the total number of iterations of the

algorithm.

 In the micro-canonical program the demons were initialized to either 2 or 0. An input

parameter was used to set the ratio of the number of 2's to the number of 0's, depending

upon the desired value of the total energy. In order to speed up the algorithm it was

necessary to increase the thermal contact by "scrambling" the demons. This was done by

offsetting the entire demon lattice by 3 positions in both the x and y directions after each

iteration. The value of Dmax needed to be set so that there were neither too few nor too

many energy levels for the particular range of Z. The best results seem to occur when

Dmax was allowed to vary dynamically so that the highest energy level contained ~0.1%

of the demons.

 A listing of the Fortran program used to implement these sampling techniques is given

in Appendix B.

4. RESULTS

 A survey of both algorithms using a 100x100 lattice (tt = 1200 and ti = 200), over the

range 0 < Z < 1, was conducted on a Stardent GK3000 mini-super-computer. The main

output was the internal energy, U, which was calculated after each time step and then

averaged for the whole run. These results (see Figs. 1a, b and Table I) illustrate the short

term behavior of the algorithms. Both algorithms seem to follow the exact curve fairly

well over the range 0.2 < Z < 0.7. However, near the critical temperature, Zc =
1

2

 5

 log(1 + 2) = 0.44068..., both produce results above the exact value (see Fig. 2). The

kink in the internal energy that should occur at Zc, seems to take place at Z % 0.435.

 Comparing the relative accuracies of each method required much longer runs. These

were carried out on a Cray 2 super-computer. The ratio of U to Uexact is shown in Fig. 3

(N = 100x100, tt = 100,000 and ti = 25,000). The numerical values are given in Table II.

In general, one sees that the canonical is consistently much closer to the exact value. The

micro-canonical appears to be correlated with Z. This correlation could be due to the fact

that for finite N

 %Di& =
!' exp[–4'Z – (4'Z)2/2CN] + O(1/N)

!exp[–4'Z – (4'Z)2/2CN] + O(1/N)
 , (8)

where C is the specific heat (see ref. [3]). Runs of N = 40x40 and N = 200x200 (tt =

100,000 and ti = 25,000) were conducted for both algorithms. Figs. 4a and 4b show

U/Uexact for two different lattice sizes for the canonical and micro-canonical methods

respectively. The canonical method changes little with lattice size, while the micro-

canonical method exhibits increased variation with decreasing N. This variation could also

be related to Eq. (8).

 Another quantity of interest is the specific heat. In the canonical case, C can be

calculated from the standard deviation of U, (U:

 –Ccan = Z2
&U

&Z
 = Z2(N(U

2) . (9)

The derivation of Eq. (9) is given in Appendix A. Since both Z and U vary in the micro-

canonical method, Eq. (9) cannot be used. That the micro-canonical method exhibits the

same behavior as the canonical method can be shown using the following empirical

equation

 –Cmicro =
(N(Z

2)(N(U
2)

KmZ
 , (10)

where (Z is the standard deviation of Z, and Km is a constant equal to one with units of

energy. Ccan and Cmicro are plotted in Fig.5 (N = 100x100, tt = 100,000, ti = 25,000).

 6

Both agree with Cexact qualitatively, but fall short quantitatively. In the case of Ccan, the

shortfall is an indication that the successive configurations of S are correlated. This may

also be true for Cmicro, indicating that the correlation in the micro-canonical method is

greater—a believable hypothesis since the algorithm is deterministic. Ccan/Cexact and

Cmicro/Cexact are plotted in Fig. 6 for (N = 100x100, tt = 1,000, ti =250) and (N =

100x100, tt = 100,000, ti =25,000). Fig. 6 shows that there is a consistency in the

difference between Ccan and Cmicro, and that both fall short of Cexact in the same way.

This suggests that Cmicro really does describe the specific heat. Fig. 6 also demonstrates

that the variations due to different initial conditions are smoothed out as tt is increased.

 Finally, runs of N = 200x200, tt = 1,000,000, ti = 250,000 were conducted for both

algorithms at Z % 0.4. No significant difference was found with the tt = 100,000 data.

5. CONCLUSIONS

 In this paper extensive surveys of the canonical and micro-canonical sampling

methods were conducted over 0.2 < Z < 0.7, 40x40 $ N $ 200x200, and 1,000 $ tt $

1,000,000. In each case U, Z, (U, and (Z, were examined. The main results are:

I) For short runs, tt = 1,000, both algorithms give nearly identical results.

II) In longer runs, tt = 100,000, it appears as though the more complex

formulation of Z is required for the micro-canonical method to match the

canonical method's accuracy.

III) The specific heat indicates that both algorithms suffer from successive

configurations being correlated, with the micro-canonical algorithm suffering

more.

 For the researcher debating about which algorithm to use for his or her particular

model, the main result of this work is that the two algorithms are equivalent enough in

accuracy over 0.2 < Z < 0.7, that the particular physics involved should be the

determining factor. The canonical approach is simpler. One can get good results using a

 7

smaller lattice. Although, this performance advantage can be offset by the need for

random numbers and the exponential function, depending upon the implementation. The

main advantage of the micro-canonical approach is its temperature independence. This

makes it ideal for studying systems where the temperature is either not uniform or

evolving. Finally, a different set of situations can be explored since the demons

correspond to their own physical system—the kinetic energy of the lattice sites.

ACKNOWLEDGEMENTS

 I would like to thank Prof. Alexandre Chorin for his guidance and support, Dr. M.

Creutz, Dr. B. Alpert, and A. Qi for many helpful discussions, and the Department of

Energy's Science and Engineering Research Semester for sponsoring me.

Figure Texts

Fig. 1. Internal energy vs. inverse temperature for (a) canonical and (b) micro-canonical
approaches (N = 100x100, tt = 1200, ti = 200).

Fig. 2. Behavior of the the internal energy near the critical temperature (N = 100x100, tt =

1200, ti = 200).

Fig. 3. Ratio of the exact to the computed values of the internal energy (N = 100x100, tt

= 100,000, ti = 25,000).

Fig. 4. Effect of changing the lattice size, N, on (a) canonical and (b) micro-canonical

approaches (tt = 100,000, ti = 25,000).

Fig. 5. Specific heat (Ccan and Cmicro) vs. inverse temperature (N = 100x100, tt =

100,000, ti = 25,000).

Fig. 6. Effect of increasing the total number of time steps, tt, on Ccan/Cexact and

Cmicro/Cexact (N = 100x100).

1.00.80.60.40.20.0
0.0

0.5

1.0

1.5

2.0

Exact

Can

Fig. 1a.

Z

–U

1.00.80.60.40.20.0
0.0

0.5

1.0

1.5

2.0

Exact

Micro

Fig. 1b.

Z

–U

0.460.450.440.430.42
1.2

1.3

1.4

1.5

1.6

Exact

Can

Micro

Fig. 2.

Z

–U

1.00.80.60.40.20.0
0.998

0.999

1.000

1.001

1.002

Can

Micro

Fig. 3.

Z

U
/U
e
x
a
c
t

1.00.80.60.40.20.0
0.998

0.999

1.000

1.001

1.002

40x40

200x200

Fig. 4a.

Z

U
/U
e
x
a
c
t

1.00.80.60.40.20.0
0.98

0.99

1.00

1.01

1.02

40x40

200x200

Fig. 4b.

Z

U
/U
e
x
a
c
t

1.00.80.60.40.20.0
0.0

0.5

1.0

1.5

2.0

Cexact

Can

Micro

Fig. 5.

Z

–C

10.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Can 1,000

Can 100,000

Micro 1,000

Micro 100,000

Fig. 6.

Z

C
/C
e
x
a
c
t

T
A

B
L

E
 I

S
o

m
e n

u
m

erical v
alu

es of th
e in

tern
al en

erg
y

 calcu
lated

 fro
m

 th
e

can
o

n
ical

an
d

m

icro
-can

o
n

ical
alg

o
rith

m
s

o
f

th
e

2
D

Isin

g

m
o

d
el.

P

ro
g

ram
s

w
ere ru

n
 fo

r
1
2

0
0

iteratio

n
s

o
n

a

1
0

0
x
1

0
0

la

ttice.
T

h
e first 2

0
0

 iteratio
n

s w
ere d

iscard
ed

. "–
"

in
d

icates

th
at th

e alg
o

rith
m

 d
id

 n
o

t y
ie

ld
 co

n
sisten

t resu
lts. D

m
ax is th

e

larg
est a

 d
em

o
n

 co
u

ld
 b

eco
m

e
 fo

r th
e
 g

iv
en

 m
icro

-can
o

n
ical ru

n
.

U

Z

E
x
act

C
an

M

icro

D
m

ax

0

0

–

–

–

0
.1

0
6

4

0
.2

1
6

9

0
.2

4
9

7

0
.2

1
7

4

1
4

0
.2

0
4

0

0
.4

3
8

1

0
.4

4
2

2

0
.4

3
8

1

8

0
.3

0
9

1

0
.7

3
3

9

0
.7

3
3

0

0
.7

3
2

4

5

0
.4

0
3

3

1
.1

2
4

0

1
.1

2
2

3

1
.1

2
1

5

4

0
.4

3
7

0

1
.3

6
5

3

1
.3

9
1

6

1
.3

9
8

7

4

0
.4

4
0

7

1
.4

1
5

1

1
.4

1
1

3

1
.4

1
1

4

4

0
.5

1
4

2

1
.7

8
2

9

1
.7

8
0

1

1
.7

8
0

8

3

0
.6

7
3

3

1
.9

5
4

0

1
.9

5
2

2

1
.9

4
5

5

2

1

1
.9

9
7

2

1
.9

9
5

5

–

–

T
A

B
L

E
 II

N
u

m
erical v

alu
es u

sed
 to

 g
en

erate F
ig

. 3
 an

d
 F

ig
. 5

.

D
ata o

b
ta

in
ed

 fro
m

 ru
n

s u
sin

g
 N

 =
 1

0
0

x
1

0
0

, tt =
 1

0
0

,0
0

0
, a

n
d

 ti =
 2

5
,0

0
0

.

C
an

o
n
ical

M

icro
-C

an
o
n
ical

Z

U

N
!

U
2

U
/U

ex

Z

N
!

Z 2
U

N
!

U
2

U
/U

ex

 0
.2

0

0
.4

2
8

2
7

1

.3
4

7
5

6

1
.0

0
0

1
0

0
.2

1
0

9
9

0

.0
0

7
0

0

0
.4

5
4

7
9

1

.1
6

1
9

9

0
.9

9
8

7
5

0
.2

5

0
.5

5
7

2
8

1

.8
2

4
6

8

1
.0

0
0

0
1

0
.2

6
8

4
9

0

.0
1

6
2

6

0
.6

0
8

6
7

1

.4
5

8
3

7

0
.9

9
9

1
4

0
.3

0

0
.7

0
4

5
0

2

.3
9

0
8

0

1
.0

0
0

0
0

0
.3

2
5

5
8

0

.0
3

8
6

2

0
.7

8
8

9
1

1

.7
0

4
2

9

0
.9

9
8

9
4

0
.3

5

0
.8

7
9

9
0

3

.2
3

8
8

8

1
.0

0
0

1
1

0
.3

7
8

6
5

0

.0
8

1
7

3

0
.9

9
9

6
8

1

.9
5

7
6

9

0
.9

9
9

2
5

0
.4

0

1
.1

0
5

8
7

4

.8
7

6
2

1

0
.9

9
9

8
1

0
.4

2
2

2
0

0

.1
4

2
9

7

1
.2

3
9

2
4

2

.2
3

5
3

3

0
.9

9
8

3
5

0
.4

5

1
.5

1
3

1
2

7

.4
7

4
3

4

1
.0

0
0

0
5

0
.4

4
1

1
8

0

.1
9

9
1

5

1
.4

2
2

6
4

2

.6
1

7
8

4

0
.9

9
9

6
1

0
.5

0

1
.7

4
5

5
8

2

.5
8

4
6

9

1
.0

0
0

0
1

0
.4

6
1

7
1

0

.1
8

6
9

0

1
.5

9
0

0
6

1

.8
2

1
3

9

0
.9

9
9

3
4

0
.5

5

1
.8

5
1

0
4

1

.2
9

4
1

8

0
.9

9
9

9
5

0
.4

9
6

0
3

0

.1
8

4
6

9

1
.7

3
2

3
6

1

.2
0

6
0

8

0
.9

9
9

2
2

0
.6

0

1
.9

0
9

0
6

0

.7
3

5
7

5

0
.9

9
9

9
9

0
.5

2
7

0
3

0

.1
8

7
7

5

1
.8

1
1

2
5

0

.8
6

2
5

8

1
.0

0
0

1
7

0
.6

5

1
.9

4
3

0
6

0

.4
3

0
1

5

0
.9

9
9

9
9

0
.5

5
6

1
4

0

.1
8

9
1

2

1
.8

6
0

2
6

0

.6
5

4
3

5

1
.0

0
0

0
7

0
.7

0

1
.9

6
3

8
0

0

.2
6

0
4

3

1
.0

0
0

0
1

0
.6

0
2

8
9

0

.2
1

1
5

7

1
.9

1
2

3
9

0

.4
7

0
0

6

1
.0

0
0

4
3

 8

APPENDIX A

 In this appendix the equation for the canonical specific heat is derived. From Eq.(9) it

is apparent that

&U

&Z
 = N(U

2

is all that needs to be shown. First note:

 (U
2 = % (%U& – U)2 & = %U2& – %U&2 .

Let,

 Z = !
'

exp[–ZE']

and

 %U& =
1

Z
 !
'

E' exp[–ZE']

be the partition function and the average internal energy of a thermodynamic system

respectively [12]. %U& and %U2& can be re-written in terms of partial derivatives

 %U& = –
1

Z

&Z

&Z
 $ %U&2 =

1

Z
2)
*
+

,
-
.&Z

&Z

2

 %U2& =
1

Z
 !
'

E'
2 exp[–ZE'] =

1

Z

&2
Z

&Z2 .

Thus,

 (U
2 =

1

Z

&2
Z

&Z2 –
1

Z
2)
*
+

,
-
.&Z

&Z

2

 =
&

&Z
)
*
+

,
-
.1

Z

&Z

&Z
 .

Substituting in for the definition of %U& gives

 (U
2 =

&•U/
&Z

 =)*
+

,-
.&U

&Z

U = •U/

 .

In the finite 2D Ising model [13]

 U " –
&

&Z
)
+

,
.1

N
 log(ZN) ,

which has the necessary factor of N, resulting in

1

N

&U

&Z
 = (U

2

 9

R
EFERENCES

1. K. BINDER, Applications of the Monte Carlo Method in Statistical Physics (Springer-

Verlag, Berlin, 1987), p. 5.

2. M. CREUTZ, Annals of Physics 167, 62 (1986).

3. G. BHANOT, M. CREUTZ, AND H. NEUBERGER, Nuclear Physics B 235 [FS11], 417

(1984).

4. L. ONSAGER, Physical Review 65, 118 (1944).

5. C. J. THOMPSON, Mathematical Statistical Mechanics (MacMillan, New York,

1972), pp. 131-135.

6. K. BINDER, Applications of the Monte Carlo Method in Statistical Physics (Springer-

Verlag, Berlin, 1987), p. 10.

7. M. CREUTZ, Physical Review Letters 50, 1411 (1983).

8. H. GOULD AND J. TOBOCHNIK, An Introduction to Computer Simulation Methods:

Applications to Physical Systems (Addison-Wesley, 1988), Part II, pp. 501-525.

9. C. KITTEL AND H. KROEMER, Thermal Physics (W. H. Freeman and Co., New

York, 1980), 2nd edition, pp. 407.

10. G. VICHNIAC, Physica D 10, 96 (1984).

11. A. BERRETTI, A. D. SOKAL, J. of Statistical Physics 40, 483 (1985).

12. C. KITTEL AND H. KROEMER, Thermal Physics (W. H. Freeman and Co., New

York, 1980), 2nd edition, pp. 83-84.

13. A. CHORIN, Communications in Mathematical Physics 99, 501 (1985).

 1

APPENDIX B

 Listing of the Fortran program used in these experiments. Note that the first section

is the common block, which is inserted by the "include" command at the beginning of each

subroutine.

c ******************* BEGIN COMMON BLOCK **************

c calculation variables
c 302*302 = 91204
 integer gspin1(302,302), gdemarr1(302,302)
 integer gspin2(302,302), gdemarr2(302,302)
 integer gmap(91204,6)

c gspin1 = SPIN array 1; gdemarr1 = DEMon ARRay 1
c gspin1 = SPIN array 2; gdemarr1 = DEMon ARRay 2
c gmap = MAP array

 common gspin1, gdemarr1
 common gspin2, gdemarr2
 common gmap

c calculation parameters
 logical gdovarb
 integer gmethod, gdemoff
 integer gmaxbins, gminbins, gmaxdem
 integer gbinht, gdemonht
 real gvarbwt, gspinwt, gdemonwt

c gdovarb = DO VARiable Bins
c gmethod = sampling METHOD; gdemoff = DEMon array OFFset
c gmaxbins = MAXimum demon BIN; gminbins = MINimum demon BIN;
c gmaxdem = MAXimum DEMon value
c gbinht = demon BIN HeighT; gdemonht = DEMON value HeighT
c gvarbwt = VARiable Bin WeighT; gspinwt = SPIN WeighT;
c gdemonwt = DEMON WeighT

 common gdovarb
 common gmethod, gdemoff
 common gmaxbins, gminbins, gmaxdem
 common gbinht, gdemonht
 common gvarbwt, gspinwt, gdemonwt

c canonical globals
 real gzinput, gboltzar(5)

c gzinput = Z Input; gboltzar = BOLTZman ARray

 common gzinput, gboltzar

c calculation outputs
 integer glastbin

 2

 real gavgbin, gavgham, gz, gu

c glastbin = LAST demon BIN
c gavgbin = AVeraGe demon BIN; gavgham = AVeraGe spin
HAMiltonian;
c gz = Z (inverse temperature); gu = U (internal energy)

 common glastbin
 common gavgbin, gavgham, gz, gu

c running outputs
 integer gstep
 real gztot, gutot
 real gzsqrd, gusqrd

c gstep = current time STEP
c gztot = Z TOTal; gutot = U TOTal
c gzsqrd = total Z SQuaReD; gusqrd = total U SQuaReD

 common gstep
 common gztot, gutot
 common gzsqrd, gusqrd

c running paramters
 integer gxsize, gysize, gtotal, gsteps
 integer gavgit, gfullu

c gxsize = X SIZE; gysize = Y SIZE;
c gtotal = TOTAL array elements; gsteps = total time STEPS
c gavgit = time steps before calling AVeraGe IT;
c gfullu = FULL output file Unit

 common gxsize, gysize, gtotal, gsteps
 common gavgit, gfullu

 character*8 gfullf
c gfullf = FULL output Filename
c Cray insists that all string variables be placed
c in a separate common block.
 common /string/gfullf

c ******************** END COMMON BLOCK ***************

 program ising
c load common block
 include 'vectb.f'

c global/common block variables are denoted by a "g"
c Declare local variables.
c nstep is the size of the lattice, zstep is
c the temperature, and zscale converts
c zstep into a usable real number.

 integer nstep,zstep
 real zscale
 character*16 title1,title2

 3

c call dropfile(0)

c Set defualt values.

 call setdefs
 zscale = 0.001

c Set up output file.
c Since we are using status='old', a file
c called gfile (see defaults) must already exist.

 title1 = 'n avgz sigz uex '
 title2 = 'avgu sigu cex'
 open(unit=gfullu,file=gfullf,status='old')
 write(gfullu,*) title1,title2

c This is where the user can change values
c e.g. time step, sampling method, ...
c Vary the constants in the zstep and nstesp
c do loops to change the temperature and
c lattice size. These loops are there to make
c it convenient to do surveys over a range of
c temperatures and lattice sizes.

 gsteps = 40
 gmethod = 1
 gdovarb = .true.
 gavgit = gsteps/4
 do 90 zstep = 200,200,100
 gzinput = zscale * zstep
 if (gmethod .eq. 1) then

c Approximate imperical formula that
c sets the initial demon lattice so that the
c equilibrium temperature will be approximately
c equal to gzinput. This is only relavent
c in the micro-canonical (gmethod = 1).

 gdemonwt = ((1.0/gzinput) - 1.0)/7.0

 gdemoff = 3
 endif

 do 80 nstep = 40,40,20

c Although have seperate variables for the
c X and Y array limits, this is only there
c if one day someone wants to do rectagular
c arrays.

 gxsize = nstep
 gysize = gxsize
 gtotal = gxsize * gysize
 print*,'z = ',gzinput,' n = ',gxsize
 call initit

c Begin main loop.

 4

 do 70 gstep = 1, gsteps

c Choose between micro-canonical
c and canonical approaches

 if (gmethod .eq. 1) then
 call calcmic
 call evaluate
 if (gdemoff .gt. 0) call randemon
 elseif (gmethod .eq. 2) then
 call calccan
 call evaluate
 endif
 if (gstep .ge. gavgit) call avgit
 70 continue
 call stats
 80 continue
 90 continue
 close(gfullu)
 end

c Converts bins to demons.
 function bindem(bins)
 integer bins
 bindem = 4 * (bins - 1)
 return
 end

c Converts demons to bins.
 function dembin(demon)
 integer demon
 dembin = (demon/4) + 1
 return
 end

c Sets the default values of many of
c the variables in the common block.
 subroutine setdefs
c load common block
 include 'vectb.f'

 gmethod = 2
 gzinput = 0.4
 gdemoff = 0
 gdovarb = .true.
 gvarbwt = 0.001
 gmaxbins = 5
 gminbins = 3
 gmaxdem = bindem(gmaxbins)
 gspinwt = 0.0
 gdemonwt = 0.0
 gbinht = 3
 gdemonht = bindem(gbinht)

 gxsize = 100

 5

 gysize = gxsize
 gtotal = gxsize * gysize
 gsteps = 100000
 gavgit = 200
 gfullf = 'fulld'
 gfullu = 21

 return
 end

c INITIALIZE ARRAYS
c Initialize the lattice in accordance with
c the values set at the beginning of the main
c loop. The function rand(0) returns a random
c real number between 0.0 and 1.0 with uniform
c distribution.

 subroutine initit
c load common block
 include 'vectb.f'
 integer i,j,k,l,s,d,ip,im,jp,jm

c INIT BOLTZMAN TABLE
c No need to call exp() all the time
c since there are only five different
c values in the canonical method, so we put
c them in a lookup table.

 do 10 i = 1, 5
 gboltzar(i) = exp(4*(3-i)*gzinput)
 10 continue

c INITMAP
c In order to use checkerboard updating need
c to create a list of x and y lattice locations
c so that one can simply step through the list
c and hit the right points. NOTE, this requires
c that gxsize and gysize be even.
c Stepping through the first half of the map
c gives the first color, the second half
c gives the second color.

 k = 0
 l = gtotal/2
 do 30 i = 1, gxsize - 1, 2
 do 20 j = 1, gysize - 1, 2
 k = k + 1
 gmap(k,1) = i
 gmap(k,2) = j
 k = k + 1
 gmap(k,1) = i + 1
 gmap(k,2) = j + 1
 l = l + 1
 gmap(l,1) = i

 6

 gmap(l,2) = j + 1
 l = l + 1
 gmap(l,1) = i + 1
 gmap(l,2) = j
 20 continue
 30 continue

c INIT SPINS
c Sets initial configuration of the spin lattice.
c Lowest energy is when spins are
c either all up, 1, or all down, -1,
c which corresponds to gspinwt of 1 and 0
c respectively. The highest energy state
c corresponds to gspinwt = 0.5.

 do 40 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)

c weights spins according to gspinwt
 s = -1
 if (rand(0) .lt. gspinwt) s = 1
 gspin1(i,j) = s
 40 continue

c INIT DEMONS
c Sets initial configuration of demon lattice.
c All demons are set to either 0 or gdemonht in
c praportion to gdemonwt. Thus the highest
c energy is gdemonwt = 1.0

 do 50 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)

c weights demons according to gdemonwt
 d = 0
 if (rand(0) .lt. gdemonwt) d = gdemonht
 gdemarr1(i,j) = d
 50 continue

c INIT COPIES
c In order to vectorize, need to have copies
c of the arrays. So, we need to copy the
c initial values of the arrays to their
c corresponding copies.
 do 60 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)
 gspin2(i,j) = gspin1(i,j)
 gdemarr2(i,j) = gdemarr1(i,j)
 60 continue

c PERIODIC BOUNDARY CONDITIONS
c Called "torroidal" or "doubly periodic".
c For a given lattice size these conditions

 7

c are constant and can be calculated in
c advance and put into the map, so that
c they only need be looked up. In theory
c it is the fastest approach.
 do 70 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)

 ip=i+1
 im=i-1
 jp=j+1
 jm=j-1
 if (im .lt. 1) im = gxsize
 if (ip .gt. gxsize) ip = 1
 if (jm .lt. 1) jm = gysize
 if (jp .gt. gysize) jp = 1
 gmap(k,3) = ip
 gmap(k,4) = im
 gmap(k,5) = jp
 gmap(k,6) = jm
 70 continue

 return
 end

c CYCLE DEMONS
c To speed up the relaxation time of
c the micro-canonical approach, the demons
c are cycled so as to increase the rate at
c which energy is transferred around the lattice.
c Without it, oscillations between the spin
c lattice and the demon lattice can occur.

 subroutine randemon
c load common block
 include 'vectb.f'
 integer i,j,xoffset,yoffset,xmoveto,ymoveto

c Get x and y positions from map, no implicit
c need to, but helps vectorization.
c Offset demon and move into the copy, then copy
c back into demon array. In this instance the
c copy, gdemarr2, just acts as a convenient
c storage space.

 xoffset = gdemoff
 yoffset = gdemoff
 if (gdemoff .gt. 0) then
 do 10 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)
 xmoveto = i + xoffset
 ymoveto = j + yoffset
 if (xmoveto .gt. gxsize) xmoveto = xmoveto - gxsize
 if (ymoveto .gt. gysize) ymoveto = ymoveto - gysize
 gdemarr2(xmoveto,ymoveto) = gdemarr1(i,j)
 10 continue

 8

 do 20 k = 1, gtotal
 i = gmap(k,1)
 j = gmap(k,2)
 gdemarr1(i,j) = gdemarr2(i,j)
 20 continue
 endif
 return
 end

c MICRO-CANONICAL
c Main subroutine for micro-canonical.
c Jump through quite a few hoops to get
c vectorization. 1) Update gspin1
c and gdemarr1 from gspin2 and gdemarr2 for
c first color of the checkerboard. 2) Copy
c spin1 and gdemarr1 back into gspin2
c and gdemarr2. 3) Repeat calculations for
c the second color of the checkerboard.
c WARNING: Updating all spins at once causes the
c algorithm to fail, which is why we use the
c checkerboard updating scheme.

 subroutine calcmic
c load common block
 include 'vectb.f'
 integer i,j,k,l,lo,hi,isum
 integer newdemon,delh,demsum,hamsum
 logical test

c glastbin is used to vary bins.
 glastbin = 0
 demsum = 0
 hamsum = 0

 do 30 l = 1,2

 if (l .eq. 1) then
 lo = 1
 hi = gtotal/2
 elseif (l .eq. 2) then
 lo = 1 + gtotal/2
 hi = gtotal
 endif

 do 10 k = lo,hi
 i = gmap(k,1)
 j = gmap(k,2)
 isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j)
 a + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6))
 delh = 2 * gspin2(i,j) * isum
 newdemon = gdemarr2(i,j) - delh
 test = ((newdemon.ge.0).and.(newdemon.le.gmaxdem))
 if (test) gdemarr1(i,j) = newdemon
 if (test) gspin1(i,j) = -gspin2(i,j)
 hamsum = hamsum + (gspin2(i,j) * isum)
 10 continue

 9

 do 20 k = lo,hi
 i = gmap(k,1)
 j = gmap(k,2)
 gspin2(i,j) = gspin1(i,j)
 gdemarr2(i,j) = gdemarr1(i,j)
 if (gdemarr1(i,j) .eq. gmaxdem) glastbin = glastbin + 1
 demsum = demsum + gdemarr1(i,j)
 20 continue

 30 continue
 gavgbin = demsum/(4.0*gtotal)
 gavgham = hamsum/(1.0*gtotal)
 return
 end

c CANONICAL
c Main subroutine for canonical.
c Jump through quite a few hoops to get
c vectorization. 1) Update gspin1
c from gspin2 for
c first color of the checkerboard. 2) Copy
c spin1 back into gspin2.
c 3) Repeat calculations for
c the second color of the checkerboard.
c WARNING: Updating all spins at once causes the
c algorithm to fail, which is why we use the
c checkerboard updating scheme.

 subroutine calccan
c load common block
 include 'vectb.f'
 integer k,l,i,j,isum,lo,hi
 integer delh, aboltz, hamsum
 logical test

 hamsum = 0
 do 30 l = 1, 2
 if (l .eq. 1) then
 lo = 1
 hi = gtotal/2
 elseif (l .eq. 2) then
 lo = 1 + gtotal/2
 hi = gtotal
 endif
 do 10 k = lo,hi
 i = gmap(k,1)
 j = gmap(k,2)
 isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j)
 a + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6))
 delh = 2 * gspin2(i,j) * isum
 aboltz = 3 + (delh/4)
 test = rand(0) .lt. gboltzar(aboltz)
 if (test) gspin1(i,j) = -gspin2(i,j)
 hamsum = hamsum + (gspin2(i,j) * isum)
 10 continue

 do 20 k = lo,hi

 10

 i = gmap(k,1)
 j = gmap(k,2)
 gspin2(i,j) = gspin1(i,j)
 20 continue
 30 continue
 gavgham = hamsum/(1.0*gtotal)
 return
 end

c Takes values calculated from the main
c loop and acts on them. Finds the energy
c and calculates the proper temperature
c depending upon which sampling method
c is being used. Also, the variable
c bin algorithm is implemented here.

 subroutine evaluate
c load common block
 include 'vectb.f'
 logical lolim, hilim, lobin, hibin
 real eps

 gu = (gavgham/2.0)

 if (gmethod .eq. 1) then
 gz = findz(gavgbin,gmaxbins)
 elseif (gmethod .eq. 2) then
 gz = gzinput
 endif

c Want to make sure gmaxdem is neither too
c large nor too small. glastbin tells us
c how many demons are in the highest energy
c level. The number we are aiming for is
c gvarbwt * gtotal. NOTE: that there are
c bounds below (gminbins), and above (32).
c NOTE2: that there is a region, 0.5 to 1.5,
c times the target, in which no change
c occurs. This helps prevent oscillations.

 if ((gdovarb).and.(gmethod.eq.1)) then
 eps = gvarbwt * gtotal
 lolim = gmaxbins .gt. gminbins
 hilim = gmaxbins .lt. 32
 lobin = glastbin .lt. (0.5 * eps)
 hibin = glastbin .gt. (1.5 * eps)
 if ((lolim) .and. (lobin)) then
 gmaxbins = gmaxbins - 1
 gmaxdem = bindem(gmaxbins)
 elseif ((hilim) .and. (hibin)) then
 gmaxbins = gmaxbins + 1
 gmaxdem = bindem(gmaxbins)
 endif
 endif
 return
 end

 11

c Keeps track of values needed to
c calculate the mean and standard
c deviation of Z and U.

 subroutine avgit
c load common block
 include 'vectb.f'
 character tab
 tab = ' '
c initialize avg counters first time through
 if (gstep .le. gavgit) then
 gutot = 0.0
 gusqrd = 0.0
 gztot = 0.0
 gzsqrd = 0.0
 elseif (gstep .gt. gavgit) then
 gutot = gutot + gu
 gusqrd = gusqrd + ((gu)**2)
 if (gmethod .eq. 1) then
 gztot = gztot + gz
 gzsqrd = gzsqrd + ((gz)**2)
 endif
 endif
 return
 end

c Calculates mean and standard deviation
c of Z and U from the values calculated
c in the subroutine avgit. Also computes
c the exact values of U and the specific
c heat, C, from Z; writes these values
c into the output file.

 subroutine stats
c load common block
 include 'vectb.f'
 integer effsteps
 real totz, totu
 real avgz,sigz,uex,avgu,sigu,cex
 character t
 t = ' '

 effsteps = gsteps - gavgit
 avgz = gztot/effsteps
 avgu = gutot/effsteps
 totz = gzsqrd - ((gztot)**2)/effsteps
 totu = gusqrd - ((gutot)**2)/effsteps
 sigz = sqrt(totz/(effsteps - 1))
 sigu = sqrt(totu/(effsteps - 1))
 if (gmethod .eq. 2) then
 avgz = gzinput
 sigz = 0.0
 endif

 uex = -uint(avgz)
 cex = cap(avgz)

 12

 write(gfullu,*) gxsize,t,avgz,t,sigz,t,uex,t,avgu,t,sigu,t,cex
 return
 end

c Uses Newton's method to calculate the
c inverse temperature from the avg demon
c value.

 function findz(avgen,noofbins)
 real avgen,x0,xn,temp1,temp2,temp3,temp4,fx0,fprimex0
 integer noofbins,i,j
 x0 = 0.5
 epsilon = 0.00005
 do 20 i = 1,100

 temp1 = 0.0
 temp2 = 0.0
 temp3 = 0.0
 temp4 = 0.0

 do 10 j = 0,noofbins-1
 temp1 = exp(-4 * j * x0)
 temp2 = temp2 + temp1
 temp3 = temp3 + (j * temp1)
 temp4 = temp4 + (j * j * temp1)
 10 continue

 fx0 = (temp3/temp2) - avgen
 fprimex0 = (1 - (16 * temp4 * temp2))/(temp2 * temp2)

 xn = x0 - (fx0/fprimex0)
 if (abs(xn - x0) .lt. epsilon) goto 100
 x0 = xn

 20 continue

 100 findz = xn
 return
 end

c Calculates the exact value of the
c internal energy, U, for a given Z.

 function uint(v)
 real v
 integer n,l
 if (v .le. 5.0) then
 n = 5
 temp1 = u(2.0*v,n)
 do 10 l = 1,12
 n = 2*n
 temp2 = u(2.0*v,n)
 if (abs(temp1-temp2) .lt. 0.00005) goto 100
 if (l .ne. 12) temp1 = temp2
 10 continue

 13

 100 uint = -temp2
 else
 uint = -2.0
 endif
 return
 end

c Function called by uint(v).

 function u(w,n)
 real k,k1,pi,sum,h,t1
 integer ctn,i
 if (w .gt. 0) then
 pi = 3.1415926
 sum = 0.0
 ctn=2*n
 h = pi/ctn
 k1 = 2*sinh(w)/(cosh(w)**2)
 do 10 i = 1,n-1
 sum = sum + 1.0/sqrt(1.0 - (k1**2*(sin(i*h)**2)))
 10 continue
 sum = sum + 0.5*(1 + 1./sqrt(1-k1**2))
 k= h*sum
 t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*k
 u = t1/tanh(w)
 else
 u = 0
 endif
 return
 end

c Calculates the exact value of the
c specific heat, C, for a given Z.

 function cap(v)
 integer n,l
 real v,temp1,temp2
 n = 20
 temp1 = C(2.*v,n)
 do 20 l = 1,12
 n = 2*n
 temp2 = C(2.*v,n)
 if (abs(temp1-temp2) .lt. .00005) then
 goto 10
 end if
 if (l .ne. 12) temp1 = temp2
 20 continue
 10 cap=temp2
 return
 end

c Function called by cap(v).

 function C(w,n)
 real w,K,E,k1,pi,sum1,sum2,h,t1,t2

 14

 integer n,i
 if (w .eq. 0) then
 C = 0
 return
 end if
 pi = 3.1415926
 k1 = 2*sinh(w)/(cosh(w)**2)
 sum1 = 0.0
 sum2 = 0.0
 h = pi/(2*n)
 do 10, i = 1,n-1
 sum1 = sum1 + 1.0/sqrt(1. - (k1**2*(sin(i*h)**2)))
 sum2 = sum2 + sqrt(1. - (k1**2*(sin(i*h)**2)))
 10 continue
 sum1 = sum1 + .5*(1 + 1./sqrt(1-k1**2))
 sum2 = sum2 + .5*(1 + sqrt(1-k1**2))
 K = h*sum1
 E = h*sum2
 t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*K
 t2 = 2*(K-E-0.5*pi*(1-tanh(w)**2)*t1)
 C = (.5/pi)*(w/tanh(w))**2*t2
 return
 end

