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ABSTRACT 

 Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D 

Ising model.  Expressions for the internal energy, U, inverse temperature, Z, and specific 

heat, C, are given.  These quantities were calculated over a range of temperatures, lattice 

sizes, and time steps.  Both algorithms accurately simulate the Ising model.  To obtain 

greater than three decimal accuracy from the micro-canonical method requires that the 

more complicated expression for Z be used.  The overall difference between the 

algorithms is small.  The physics of the problem under study should be the deciding 

factor in determining which algorithm to use. 
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1. INTRODUCTION 

 In the study of phase transitions and other critical phenomena the Monte Carlo 

method has emerged as one of the most powerful simulation techniques—canonical and 

micro-canonical being just two of the more common approaches.  Determining which is 

best for a particular problem can be difficult.  It is the goal of this paper to help the 

researcher by comparing the ability of these two algorithms to simulate a 2D Ising model, 

with an emphasis on illustrating the differences in behavior and accuracy as a function of 

temperature and lattice size. 

 In the canonical approach, one computes the state of each point from the previous 

state using a random number generator. Usually, each state is weighted according to a 

probability proportional to the Boltzman factor exp(–E/kT), with E being the energy of 

the state [1]. 

 The micro-canonical Monte Carlo method consists of constraining the total energy of 

the system, while letting the energy distribution evolve.  The transfer of energy is carried 

out by a new set of variables, called demons, which correspond to the kinetic energy in 

molecular dynamics calculations [2]. 

 

2. THE UPDATING ALGORITHMS 

 In both algorithms, the central operations are performed on a lattice of spins, S, that 

are either up (+1) or down (-1).  For our model, we will define the energy of a particular 

site i as 

 Ei = !(1 - SiSj) , (1) 

where the sum is over the four nearest neighbors j of i [3].  This has the operational effect 

of making a lattice with aligned spins have lower energy than an unaligned lattice.  Note 

that flipping the spin of i produces a change in energy 

 !Ei = 2!SiSj . (2) 
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 A quantity of particular interest in our experiments is the internal energy, U.  In terms 

of the previous notation 

 –U = 
1

2  – 
1

2N!
i=1

N

Ei  , (3) 

where N is the number of points in the lattice.  In the limiting case of N " ", U is known 

exactly 

 U = 
1 + [2 tanh2(H) - 1] 2K(k1)/#

tanh(H)
   , (4) 

where H = 2Z, k1 = 2 sinh(H)/cosh2(H), and K(k1) = F(#/2|k1) = Error!is the complete 

elliptic integral of the first kind [4,5].  This provides a way to compare the two algorithms. 

 Having defined the spin structure and the energy, the canonical scheme for changing 

spins can best be explained by the following piece of pseudo-code: 

r = random number between 0 and 1 

B = exp(–!EiZ) 

if (r < B) then 

 Si = –Si 

endif 

where the temperature, T = 1/Z, is an input parameter of the program [6].  Executing the 

above procedure on every site in the lattice constitutes one iteration, or time step, of the 

algorithm. 

 The micro-canonical procedure is a bit more complicated.  In addition to the spin 

lattice, we have a corresponding lattice of demons, D.  Each element in D, Di, is restricted 

by the condition that Di # {0, 1 , 2, ..., Dmax}. Di can be thought of as the kinetic energy 

conjugate to the ith point in the lattice.  The most important property of the micro-

canonical updating algorithm is that the energy at each point be conserved 

 Ei + 4Di = constant    $    ET = 4!
i=1

N

Di  + !
i=1

N

Ei  , (5) 



 3 

where ET is the total energy of the lattices.  Eq. (5) illustrates the central difference 

between the two algorithms.  Canonical sampling selects configurations based on their 

Boltzman weight, while micro-canonical sampling selects configurations that satisfy the 

total energy constraint of Eq. (5).  As a consequence of Eq. (5) 

 !Ei + 4!Di = 0 , (6) 

which gives some insight as to how to construct the updating algorithm.  The spin 

flipping procedure used in our experiments was equivalent to the following code fragment: 

Di' = (4Di – !Ei)/4 

if (0 $ Di' $ Dmax) then 

 Di = Di' 

 Si = –Si 

endif  [7] 

The factor of four comes about from the property—obtained from Eq. (1)—that !Ei # {-

8, 4, 0, 4, 8}.  A convenient way of running the program is to have each demon unit 

correspond to the smallest change in !Ei.  For a detailed explanation of implementing this 

algorithm see ref. [8]. 

 Eq. (6) obeys the principle of detailed balance [9], implying that S and D are governed 

by traditional thermodynamic principles.  This provides an intuitive rational for believing 

that the micro-canonical algorithm works.  As the system evolves, the demons become 

distributed according to their Boltzman factors.  The demon average will then be related to 

the temperature by 

 
1

N!
i=1

N

Di   =  %Di& = 
!' exp(–4'Z)

!exp(–4'Z)
  , (7) 

where the sums are carried out from ' = 0 to Dmax.  Given a particular state D, %Di& can 

be calculated, and Eq. (5) can be numerically inverted to find the temperature.  Thus, the 

temperature is an output rather than an input of the algorithm. 
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3. RUNNING THE ALGORITHMS 

 Both algorithms were implemented with doubly periodic boundary conditions.  A 

checkerboard updating procedure was used to avoid the result of [10]—that any algorithm 

which updates all spins simultaneously cannot simulate the Ising model.  All the spins 

were initially set to +1.  To compensate for the relaxation of the system from its starting 

state, some number of initial steps, ti, need to be discarded.  Berretti and Sokal [11] point 

out that ti should not be larger than ~
tt

4 , tt being the total number of iterations of the 

algorithm. 

 In the micro-canonical program the demons were initialized to either 2 or 0.  An input 

parameter was used to set the ratio of the number of 2's to the number of 0's, depending 

upon the desired value of the total energy.  In order to speed up the algorithm it was 

necessary to increase the thermal contact by "scrambling" the demons.  This was done by 

offsetting the entire demon lattice by 3 positions in both the x and y directions after each 

iteration.  The value of Dmax needed to be set so that there were neither too few nor too 

many energy levels for the particular range of Z.  The best results seem to occur when 

Dmax was allowed to vary dynamically so that the highest energy level contained ~0.1% 

of the demons. 

 A listing of the Fortran program used to implement these sampling techniques is given 

in Appendix B. 

 

4. RESULTS 

 A survey of both algorithms using a 100x100 lattice (tt = 1200 and ti = 200), over the 

range 0 < Z < 1, was conducted on a Stardent GK3000 mini-super-computer.  The main 

output was the internal energy, U, which was calculated after each time step and then 

averaged for the whole run.  These results (see Figs. 1a, b and Table I) illustrate the short 

term behavior of the algorithms.  Both algorithms seem to follow the exact curve fairly 

well over the range 0.2 < Z < 0.7.  However, near the critical temperature, Zc = 
1

2 
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 log(1 + 2 ) = 0.44068..., both produce results above the exact value (see Fig. 2).  The 

kink in the internal energy that should occur at Zc, seems to take place at Z % 0.435. 

 Comparing the relative accuracies of each method required much longer runs.  These 

were carried out on a Cray 2 super-computer.  The ratio of U to Uexact is shown in Fig. 3 

(N = 100x100, tt = 100,000 and ti = 25,000).   The numerical values are given in Table II.  

In general, one sees that the canonical is consistently much closer to the exact value.  The 

micro-canonical appears to be correlated with Z.  This correlation could be due to the fact 

that for finite N 

 %Di& = 
!' exp[–4'Z – (4'Z)2/2CN] + O(1/N)

!exp[–4'Z – (4'Z)2/2CN] + O(1/N)
  , (8) 

where C is the specific heat (see ref. [3]).  Runs of N = 40x40 and N = 200x200 (tt = 

100,000 and ti = 25,000) were conducted for both algorithms.  Figs. 4a and 4b show 

U/Uexact for two different lattice sizes for the canonical and micro-canonical methods 

respectively.  The canonical method changes little with lattice size, while the micro-

canonical method exhibits increased variation with decreasing N.  This variation could also 

be related to Eq. (8). 

 Another quantity of interest is the specific heat.  In the canonical case, C can be 

calculated from the standard deviation of U, (U: 

 –Ccan = Z2 
&U

&Z
  = Z2(N(U

2) . (9) 

The derivation of Eq. (9) is given in Appendix A.  Since both Z and U vary in the micro-

canonical method, Eq. (9) cannot be used.  That the micro-canonical method exhibits the 

same behavior as the canonical method can be shown using the following empirical 

equation 

 –Cmicro = 
(N(Z

2)(N(U
2)

KmZ
  , (10) 

where (Z is the standard deviation of Z, and Km is a constant equal to one with units of 

energy.  Ccan and Cmicro are plotted in Fig.5 (N = 100x100, tt = 100,000, ti = 25,000).  



 6 

Both agree with Cexact qualitatively, but fall short quantitatively.  In the case of Ccan, the 

shortfall is an indication that the successive configurations of S are correlated.  This may 

also be true for Cmicro, indicating that the correlation in the micro-canonical method is 

greater—a believable hypothesis since the algorithm is deterministic.  Ccan/Cexact and 

Cmicro/Cexact are plotted in Fig. 6 for (N = 100x100, tt = 1,000, ti =250) and (N = 

100x100, tt = 100,000, ti =25,000).  Fig. 6 shows that there is a consistency in the 

difference between Ccan and Cmicro, and that both fall short of Cexact in the same way.  

This suggests that Cmicro really does describe the specific heat.  Fig. 6 also demonstrates 

that the variations due to different initial conditions are smoothed out as tt is increased. 

 Finally, runs of N = 200x200, tt = 1,000,000, ti = 250,000 were conducted for both 

algorithms at Z % 0.4.  No significant difference was found with the tt = 100,000 data. 

 

5. CONCLUSIONS 

 In this paper extensive surveys of the canonical and micro-canonical sampling 

methods were conducted over 0.2 < Z < 0.7, 40x40 $ N $ 200x200, and 1,000 $ tt $ 

1,000,000.  In each case U, Z, (U, and (Z, were examined.   The main results are: 

I) For short runs, tt = 1,000, both algorithms give nearly identical results. 

II) In longer runs, tt = 100,000, it appears as though the more complex 

formulation of Z is required for the micro-canonical method to match the 

canonical method's accuracy. 

III) The specific heat indicates that both algorithms suffer from successive 

configurations being correlated, with the micro-canonical algorithm suffering 

more. 

 For the researcher debating about which algorithm to use for his or her particular 

model, the main result of this work is that the two algorithms are equivalent enough in 

accuracy over 0.2 < Z < 0.7, that the particular physics involved should be the 

determining factor.  The canonical approach is simpler.  One can get good results using a 
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smaller lattice.  Although, this performance advantage can be offset by the need for 

random numbers and the exponential function, depending upon the implementation.  The 

main advantage of the micro-canonical approach is its temperature independence.  This 

makes it ideal for studying systems where the temperature is either not uniform or 

evolving.  Finally, a different set of situations can be explored since the demons 

correspond to their own physical system—the kinetic energy of the lattice sites. 
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Figure Texts 

 

Fig. 1.  Internal energy vs. inverse temperature for (a) canonical and (b) micro-canonical 
approaches (N = 100x100, tt = 1200, ti = 200). 

 

Fig. 2.  Behavior of the the internal energy near the critical temperature (N = 100x100, tt = 

1200, ti = 200). 

 
Fig. 3.  Ratio of the exact to the computed values of the internal energy (N = 100x100, tt 

= 100,000, ti = 25,000). 

 

Fig. 4.  Effect of changing the lattice size, N, on (a) canonical and (b) micro-canonical 

approaches (tt = 100,000, ti = 25,000). 

 

Fig. 5.  Specific heat (Ccan and Cmicro) vs. inverse temperature (N = 100x100, tt = 

100,000, ti = 25,000). 

 
Fig. 6.  Effect of increasing the total number of time steps, tt, on Ccan/Cexact and 

Cmicro/Cexact (N = 100x100). 
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APPENDIX A 

 In this appendix the equation for the canonical specific heat is derived.  From Eq.(9) it 

is apparent that 

 
&U

&Z
  = N(U

2 

is all that needs to be shown.  First note: 

 (U
2 = % (%U& – U)2 & = %U2& – %U&2 . 

Let, 

 Z = !
'

exp[–ZE']  

and 

 %U& = 
1

Z
 !
'

E' exp[–ZE']  

be the partition function and the average internal energy of a thermodynamic system 

respectively [12].  %U& and %U2& can be re-written in terms of partial derivatives 

 %U& = –
1

Z
 
&Z

&Z
    $   %U&2 = 

1

Z
2 )
*
+

,
-
.&Z

&Z

2

  

 %U2& = 
1

Z
 !
'

E'
2 exp[–ZE']  = 

1

Z
 
&2
Z

&Z2  . 

Thus, 

 (U
2 = 

1

Z
 
&2
Z

&Z2  – 
1

Z
2 )
*
+

,
-
.&Z

&Z

2

  =  
&

&Z
 )
*
+

,
-
.1

Z
 
&Z

&Z
  . 

Substituting in for the definition of %U& gives 

 (U
2 =  

&•U/
&Z

  = )*
+

,-
.&U

&Z
 
U =  •U/

  . 

In the finite 2D Ising model [13] 

 U " –
&

&Z
 )
+

,
.1

N
 log(ZN)   , 

which has the necessary factor of N, resulting in 

 
1

N
 
&U

&Z
  = (U

2 
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APPENDIX B 

 Listing of the Fortran program used in these experiments.  Note that the first section 

is the common block, which is inserted by the "include" command at the beginning of each 

subroutine. 

 
c       ******************* BEGIN COMMON BLOCK ************** 
 
c       calculation variables 
c       302*302 = 91204 
        integer gspin1(302,302), gdemarr1(302,302) 
        integer gspin2(302,302), gdemarr2(302,302) 
        integer gmap(91204,6) 
 
c       gspin1 = SPIN array 1; gdemarr1 = DEMon ARRay 1 
c       gspin1 = SPIN array 2; gdemarr1 = DEMon ARRay 2 
c       gmap = MAP array 
 
        common gspin1, gdemarr1 
        common gspin2, gdemarr2 
        common gmap 
 
c       calculation parameters 
        logical gdovarb 
        integer gmethod, gdemoff 
        integer gmaxbins, gminbins, gmaxdem 
        integer gbinht, gdemonht 
        real gvarbwt, gspinwt, gdemonwt 
 
c       gdovarb = DO VARiable Bins 
c       gmethod = sampling METHOD; gdemoff = DEMon array OFFset 
c       gmaxbins = MAXimum demon BIN; gminbins = MINimum demon BIN; 
c         gmaxdem = MAXimum DEMon value 
c       gbinht = demon BIN HeighT; gdemonht = DEMON value HeighT 
c       gvarbwt = VARiable Bin WeighT; gspinwt = SPIN WeighT; 
c         gdemonwt = DEMON WeighT 
 
 
        common gdovarb 
        common gmethod, gdemoff 
        common gmaxbins, gminbins, gmaxdem 
        common gbinht, gdemonht 
        common gvarbwt, gspinwt, gdemonwt 
 
 
c       canonical globals 
        real gzinput, gboltzar(5) 
 
c       gzinput = Z Input; gboltzar = BOLTZman ARray 
 
        common gzinput, gboltzar 
 
 
c       calculation outputs 
        integer glastbin 
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        real gavgbin, gavgham, gz, gu 
 
c       glastbin = LAST demon BIN 
c       gavgbin = AVeraGe demon BIN; gavgham = AVeraGe spin 
HAMiltonian; 
c         gz = Z (inverse temperature); gu = U (internal energy) 
 
        common glastbin 
        common gavgbin, gavgham, gz, gu 
 
 
c       running outputs 
        integer gstep 
        real gztot, gutot 
        real gzsqrd, gusqrd 
 
c       gstep = current time STEP 
c       gztot = Z TOTal; gutot = U TOTal 
c       gzsqrd = total Z SQuaReD; gusqrd = total U SQuaReD 
 
        common gstep 
        common gztot, gutot 
        common gzsqrd, gusqrd 
 
c       running paramters 
        integer gxsize, gysize, gtotal, gsteps 
        integer gavgit, gfullu 
 
c       gxsize = X SIZE; gysize = Y SIZE; 
c         gtotal = TOTAL array elements; gsteps = total time STEPS 
c       gavgit = time steps before calling AVeraGe IT; 
c         gfullu = FULL output file Unit 
 
        common gxsize, gysize, gtotal, gsteps 
        common gavgit, gfullu 
 
        character*8 gfullf 
c       gfullf = FULL output Filename 
c       Cray insists that all string variables be placed 
c       in a separate common block. 
        common /string/gfullf 
 
c       ******************** END COMMON BLOCK *************** 

 
      program ising 
c       load common block 
        include 'vectb.f' 
 
c       global/common block variables are denoted by a "g" 
c       Declare local variables. 
c       nstep is the size of the lattice, zstep is 
c       the temperature, and zscale converts 
c       zstep into a usable real number. 
 
        integer nstep,zstep 
        real zscale 
        character*16 title1,title2 
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c        call dropfile(0) 
 
c       Set defualt values. 
 
        call setdefs 
        zscale = 0.001 
 
c       Set up output file. 
c       Since we are using status='old', a file 
c       called gfile (see defaults) must already exist. 
 
        title1 = 'n avgz sigz uex ' 
        title2 = 'avgu sigu cex' 
        open(unit=gfullu,file=gfullf,status='old') 
        write(gfullu,*) title1,title2 
 
c       This is where the user can change values 
c       e.g. time step, sampling method, ... 
c       Vary the constants in the zstep and nstesp 
c       do loops to change the temperature and 
c       lattice size.  These loops are there to make 
c       it convenient to do surveys over a range of 
c       temperatures and lattice sizes. 
 
        gsteps = 40 
        gmethod = 1 
        gdovarb = .true. 
        gavgit = gsteps/4 
        do 90 zstep = 200,200,100 
          gzinput = zscale * zstep 
          if (gmethod .eq. 1) then 
 
c           Approximate imperical formula that 
c           sets the initial demon lattice so that the 
c           equilibrium temperature will be approximately 
c           equal to gzinput.  This is only relavent 
c           in the micro-canonical (gmethod = 1). 
 
            gdemonwt =  ((1.0/gzinput) - 1.0)/7.0 
 
            gdemoff = 3 
          endif 
 
          do 80 nstep = 40,40,20 
 
c           Although have seperate variables for the 
c           X and Y array limits, this is only there 
c           if one day someone wants to do rectagular 
c           arrays. 
 
            gxsize = nstep 
            gysize = gxsize 
            gtotal = gxsize * gysize 
            print*,'z = ',gzinput,' n = ',gxsize 
            call initit 
 
c           Begin main loop. 
 



 4 

            do 70 gstep = 1, gsteps 
 
c             Choose between micro-canonical 
c             and canonical approaches 
 
              if (gmethod .eq. 1) then 
                call calcmic 
                call evaluate 
                if (gdemoff .gt. 0) call randemon 
              elseif (gmethod .eq. 2) then 
                call calccan 
                call evaluate 
              endif 
              if (gstep .ge. gavgit) call avgit 
   70       continue 
          call stats 
   80     continue 
   90   continue 
        close(gfullu) 
      end 
 
 
c     Converts bins to demons. 
      function bindem(bins) 
        integer bins 
        bindem = 4 * (bins - 1) 
      return 
      end 
 
 
c     Converts demons to bins. 
      function dembin(demon) 
        integer demon 
        dembin = (demon/4) + 1 
      return 
      end 
 
 
c     Sets the default values of many of 
c     the variables in the common block. 
      subroutine setdefs 
c       load common block 
        include 'vectb.f' 
 
        gmethod = 2 
        gzinput = 0.4 
        gdemoff = 0 
        gdovarb = .true. 
        gvarbwt = 0.001 
        gmaxbins = 5 
        gminbins = 3 
        gmaxdem = bindem(gmaxbins) 
        gspinwt = 0.0 
        gdemonwt = 0.0 
        gbinht = 3 
        gdemonht = bindem(gbinht) 
 
        gxsize = 100 
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        gysize = gxsize 
        gtotal = gxsize * gysize 
        gsteps = 100000 
        gavgit = 200 
        gfullf = 'fulld' 
        gfullu = 21 
 
      return 
      end 
 
 
 
c     INITIALIZE ARRAYS 
c     Initialize the lattice in accordance with 
c     the values set at the beginning of the main 
c     loop.  The function rand(0) returns a random 
c     real number between 0.0 and 1.0 with uniform 
c     distribution. 
 
      subroutine initit 
c       load common block 
        include 'vectb.f' 
        integer i,j,k,l,s,d,ip,im,jp,jm 
 
 
c       INIT BOLTZMAN TABLE 
c       No need to call exp() all the time 
c       since there are only five different 
c       values in the canonical method, so we put 
c       them in a lookup table. 
 
        do 10 i = 1, 5 
          gboltzar(i) = exp(4*(3-i)*gzinput) 
   10   continue 
 
 
c       INITMAP 
c       In order to use checkerboard updating need 
c       to create a list of x and y lattice locations 
c       so that one can simply step through the list 
c       and hit the right points.  NOTE, this requires 
c       that gxsize and gysize be even. 
c       Stepping through the first half of the map 
c       gives the first color, the second half 
c       gives the second color. 
 
        k = 0 
        l = gtotal/2 
        do 30 i = 1, gxsize - 1, 2 
          do 20 j = 1, gysize - 1, 2 
            k = k + 1 
            gmap(k,1) = i 
            gmap(k,2) = j 
            k = k + 1 
            gmap(k,1) = i + 1 
            gmap(k,2) = j + 1 
            l = l + 1 
            gmap(l,1) = i 
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            gmap(l,2) = j + 1 
            l = l + 1 
            gmap(l,1) = i + 1 
            gmap(l,2) = j 
   20     continue 
   30   continue 
 
 
c       INIT SPINS 
c       Sets initial configuration of the spin lattice. 
c       Lowest energy is when spins are 
c       either all up, 1, or all down, -1, 
c       which corresponds to gspinwt of 1 and 0 
c       respectively. The highest energy state 
c       corresponds to gspinwt = 0.5. 
 
        do 40 k = 1, gtotal 
          i = gmap(k,1) 
          j = gmap(k,2) 
 
c         weights spins according to gspinwt 
          s = -1 
          if (rand(0) .lt. gspinwt) s = 1 
          gspin1(i,j) = s 
   40   continue 
 
c       INIT DEMONS 
c       Sets initial configuration of demon lattice. 
c       All demons are set to either 0 or gdemonht in 
c       praportion to gdemonwt.  Thus the highest 
c       energy is gdemonwt = 1.0 
 
        do 50 k = 1, gtotal 
          i = gmap(k,1) 
          j = gmap(k,2) 
 
c         weights demons according to gdemonwt 
          d = 0 
          if (rand(0) .lt. gdemonwt) d = gdemonht 
          gdemarr1(i,j) = d 
   50   continue 
 
 
c       INIT COPIES 
c       In order to vectorize, need to have copies 
c       of the arrays.  So, we need to copy the 
c       initial values of the arrays to their 
c       corresponding copies. 
        do 60 k = 1, gtotal 
          i = gmap(k,1) 
          j = gmap(k,2) 
          gspin2(i,j) = gspin1(i,j) 
          gdemarr2(i,j) = gdemarr1(i,j) 
   60   continue 
 
c       PERIODIC BOUNDARY CONDITIONS 
c       Called "torroidal" or "doubly periodic". 
c       For a given lattice size these conditions 
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c       are constant and can be calculated in 
c       advance and put into the map, so that 
c       they only need be looked up.  In theory 
c       it is the fastest approach. 
        do 70 k = 1, gtotal 
          i = gmap(k,1) 
          j = gmap(k,2) 
 
          ip=i+1 
          im=i-1 
          jp=j+1 
          jm=j-1 
          if (im .lt. 1) im = gxsize 
          if (ip .gt. gxsize) ip = 1 
          if (jm .lt. 1) jm = gysize 
          if (jp .gt. gysize) jp = 1 
          gmap(k,3) = ip 
          gmap(k,4) = im 
          gmap(k,5) = jp 
          gmap(k,6) = jm 
   70   continue 
 
      return 
      end 
 
 
c     CYCLE DEMONS 
c     To speed up the relaxation time of 
c     the micro-canonical approach, the demons 
c     are cycled so as to increase the rate at 
c     which energy is transferred around the lattice. 
c     Without it, oscillations between the spin 
c     lattice and the demon lattice can occur. 
 
      subroutine randemon 
c       load common block 
        include 'vectb.f' 
        integer i,j,xoffset,yoffset,xmoveto,ymoveto 
 
c       Get x and y positions from map, no implicit 
c       need to, but helps vectorization. 
c       Offset demon and move into the copy, then copy  
c       back into demon array.  In this instance the 
c       copy, gdemarr2, just acts as a convenient 
c       storage space. 
 
        xoffset = gdemoff 
        yoffset = gdemoff 
        if (gdemoff .gt. 0) then 
          do 10 k = 1, gtotal 
            i = gmap(k,1) 
            j = gmap(k,2) 
            xmoveto = i + xoffset 
            ymoveto = j + yoffset 
            if (xmoveto .gt. gxsize) xmoveto = xmoveto - gxsize 
            if (ymoveto .gt. gysize) ymoveto = ymoveto - gysize 
            gdemarr2(xmoveto,ymoveto) = gdemarr1(i,j) 
   10     continue 
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          do 20 k = 1, gtotal 
            i = gmap(k,1) 
            j = gmap(k,2) 
            gdemarr1(i,j) = gdemarr2(i,j) 
   20     continue 
        endif 
      return 
      end 
 
 
c     MICRO-CANONICAL 
c     Main subroutine for micro-canonical. 
c     Jump through quite a few hoops to get 
c     vectorization. 1) Update gspin1 
c     and gdemarr1 from gspin2 and gdemarr2 for 
c     first color of the checkerboard. 2) Copy 
c     spin1 and gdemarr1 back into gspin2 
c     and gdemarr2. 3) Repeat calculations for 
c     the second color of the checkerboard. 
c     WARNING: Updating all spins at once causes the 
c     algorithm to fail, which is why we use the 
c     checkerboard updating scheme. 
 
      subroutine calcmic 
c       load common block 
        include 'vectb.f' 
        integer i,j,k,l,lo,hi,isum 
        integer newdemon,delh,demsum,hamsum 
        logical test 
 
c       glastbin is used to vary bins. 
        glastbin = 0 
        demsum = 0 
        hamsum = 0 
 
        do 30 l = 1,2 
 
          if (l .eq. 1) then 
            lo = 1 
            hi = gtotal/2 
          elseif (l .eq. 2) then 
            lo = 1 + gtotal/2 
            hi = gtotal 
          endif 
 
          do 10 k = lo,hi 
            i = gmap(k,1) 
            j = gmap(k,2) 
            isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j) 
     a       + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6)) 
            delh = 2 * gspin2(i,j) * isum 
            newdemon = gdemarr2(i,j) - delh 
            test = ((newdemon.ge.0).and.(newdemon.le.gmaxdem)) 
            if (test) gdemarr1(i,j) = newdemon 
            if (test) gspin1(i,j) = -gspin2(i,j) 
            hamsum = hamsum + (gspin2(i,j) * isum) 
   10     continue 
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          do 20 k = lo,hi 
            i = gmap(k,1) 
            j = gmap(k,2) 
            gspin2(i,j) = gspin1(i,j) 
            gdemarr2(i,j) = gdemarr1(i,j) 
            if (gdemarr1(i,j) .eq. gmaxdem) glastbin = glastbin + 1 
            demsum = demsum + gdemarr1(i,j) 
   20     continue 
 
   30   continue 
        gavgbin = demsum/(4.0*gtotal) 
        gavgham = hamsum/(1.0*gtotal) 
      return 
      end 
 
 
c     CANONICAL 
c     Main subroutine for canonical. 
c     Jump through quite a few hoops to get 
c     vectorization. 1) Update gspin1 
c     from gspin2 for 
c     first color of the checkerboard. 2) Copy 
c     spin1 back into gspin2. 
c     3) Repeat calculations for 
c     the second color of the checkerboard. 
c     WARNING: Updating all spins at once causes the 
c     algorithm to fail, which is why we use the 
c     checkerboard updating scheme. 
 
      subroutine calccan 
c       load common block 
        include 'vectb.f' 
        integer k,l,i,j,isum,lo,hi 
        integer delh, aboltz, hamsum 
        logical test 
 
        hamsum = 0 
        do 30 l = 1, 2 
          if (l .eq. 1) then 
            lo = 1 
            hi = gtotal/2 
          elseif (l .eq. 2) then 
            lo = 1 + gtotal/2 
            hi = gtotal 
          endif 
          do 10 k = lo,hi 
            i = gmap(k,1) 
            j = gmap(k,2) 
            isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j) 
     a       + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6)) 
            delh = 2 * gspin2(i,j) * isum 
            aboltz = 3 + (delh/4) 
            test = rand(0) .lt. gboltzar(aboltz) 
            if (test) gspin1(i,j) = -gspin2(i,j) 
            hamsum = hamsum + (gspin2(i,j) * isum) 
   10     continue 
 
          do 20 k = lo,hi 
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            i = gmap(k,1) 
            j = gmap(k,2) 
            gspin2(i,j) = gspin1(i,j) 
   20     continue 
   30   continue 
        gavgham = hamsum/(1.0*gtotal) 
      return 
      end 
 
 
c     Takes values calculated from the main 
c     loop and acts on them.  Finds the energy 
c     and calculates the proper temperature 
c     depending upon which sampling method 
c     is being used.  Also, the variable 
c     bin algorithm is implemented here. 
 
      subroutine evaluate 
c       load common block 
        include 'vectb.f' 
        logical lolim, hilim, lobin, hibin 
        real eps 
 
        gu = (gavgham/2.0) 
 
        if (gmethod .eq. 1) then 
          gz = findz(gavgbin,gmaxbins) 
        elseif (gmethod .eq. 2) then 
          gz = gzinput 
        endif 
 
c       Want to make sure gmaxdem is neither too 
c       large nor too small.  glastbin tells us 
c       how many demons are in the highest energy 
c       level.  The number we are aiming for is 
c       gvarbwt * gtotal.  NOTE: that there are 
c       bounds below (gminbins), and above (32). 
c       NOTE2: that there is a region, 0.5 to 1.5, 
c       times the target, in which no change 
c       occurs.  This helps prevent oscillations. 
 
        if ((gdovarb).and.(gmethod.eq.1)) then 
          eps = gvarbwt * gtotal 
          lolim = gmaxbins .gt. gminbins 
          hilim = gmaxbins .lt. 32 
          lobin = glastbin .lt. (0.5 * eps) 
          hibin = glastbin .gt. (1.5 * eps) 
          if ((lolim) .and. (lobin)) then 
            gmaxbins = gmaxbins - 1 
            gmaxdem = bindem(gmaxbins) 
          elseif ((hilim) .and. (hibin)) then 
            gmaxbins = gmaxbins + 1 
            gmaxdem = bindem(gmaxbins) 
          endif 
        endif 
      return 
      end 
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c     Keeps track of values needed to 
c     calculate the mean and standard 
c     deviation of Z and U. 
 
      subroutine avgit 
c       load common block 
        include 'vectb.f' 
        character tab 
        tab = ' ' 
c       initialize avg counters first time through 
        if (gstep .le. gavgit) then 
          gutot = 0.0 
          gusqrd = 0.0 
          gztot = 0.0 
          gzsqrd = 0.0 
        elseif (gstep .gt. gavgit) then 
          gutot = gutot + gu 
          gusqrd = gusqrd + ((gu)**2) 
          if (gmethod .eq. 1) then 
            gztot = gztot + gz 
            gzsqrd = gzsqrd + ((gz)**2) 
          endif 
        endif 
      return 
      end 
 
 
c     Calculates mean and standard deviation 
c     of Z and U from the values calculated 
c     in the subroutine avgit.  Also computes 
c     the exact values of U and the specific 
c     heat, C, from Z; writes these values 
c     into the output file. 
 
      subroutine stats 
c       load common block 
        include 'vectb.f' 
        integer effsteps 
        real totz, totu 
        real avgz,sigz,uex,avgu,sigu,cex 
        character t 
        t = ' ' 
 
        effsteps = gsteps - gavgit 
        avgz = gztot/effsteps 
        avgu = gutot/effsteps 
        totz = gzsqrd - ((gztot)**2)/effsteps 
        totu = gusqrd - ((gutot)**2)/effsteps 
        sigz = sqrt(totz/(effsteps - 1)) 
        sigu = sqrt(totu/(effsteps - 1)) 
        if (gmethod .eq. 2) then 
          avgz = gzinput 
          sigz = 0.0 
        endif 
 
        uex = -uint(avgz) 
        cex = cap(avgz) 
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        write(gfullu,*) gxsize,t,avgz,t,sigz,t,uex,t,avgu,t,sigu,t,cex 
      return 
      end 
 
 
c     Uses Newton's method to calculate the 
c     inverse temperature from the avg demon 
c     value. 
 
      function findz(avgen,noofbins) 
        real avgen,x0,xn,temp1,temp2,temp3,temp4,fx0,fprimex0 
        integer noofbins,i,j 
        x0 = 0.5 
        epsilon = 0.00005 
        do 20 i = 1,100 
 
          temp1 = 0.0 
          temp2 = 0.0 
          temp3 = 0.0 
          temp4 = 0.0 
 
          do 10 j = 0,noofbins-1 
            temp1 = exp(-4 * j * x0) 
            temp2 = temp2 + temp1 
            temp3 = temp3 + (j * temp1) 
            temp4 = temp4 + (j * j * temp1) 
   10     continue 
 
          fx0 = (temp3/temp2) - avgen 
          fprimex0 = (1 - (16 * temp4 * temp2))/(temp2 * temp2) 
 
          xn = x0 - (fx0/fprimex0) 
          if (abs(xn - x0) .lt. epsilon) goto 100 
          x0 = xn 
 
   20   continue 
 
  100   findz = xn 
      return 
      end 
 
 
c     Calculates the exact value of the 
c     internal energy, U, for a given Z. 
 
      function uint(v) 
        real v 
        integer n,l 
        if (v .le. 5.0) then 
          n = 5 
          temp1 = u(2.0*v,n) 
          do 10 l = 1,12 
            n = 2*n 
            temp2 = u(2.0*v,n) 
            if (abs(temp1-temp2) .lt. 0.00005) goto 100 
            if (l .ne. 12) temp1 = temp2 
   10     continue 
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  100     uint = -temp2 
        else 
          uint = -2.0 
        endif 
      return 
      end 
 
 
c     Function called by uint(v). 
 
      function u(w,n) 
        real k,k1,pi,sum,h,t1 
        integer ctn,i 
        if (w .gt. 0) then 
          pi = 3.1415926 
          sum = 0.0 
          ctn=2*n 
          h = pi/ctn   
          k1 = 2*sinh(w)/(cosh(w)**2) 
          do 10 i = 1,n-1 
            sum = sum + 1.0/sqrt(1.0 - (k1**2*(sin(i*h)**2))) 
   10     continue 
          sum = sum + 0.5*(1 + 1./sqrt(1-k1**2)) 
          k= h*sum 
          t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*k 
          u = t1/tanh(w) 
        else 
          u = 0 
        endif 
      return 
      end 
 
 
c     Calculates the exact value of the 
c     specific heat, C, for a given Z. 
 
      function cap(v) 
        integer n,l 
        real v,temp1,temp2 
        n = 20 
        temp1 = C(2.*v,n) 
        do 20 l = 1,12 
          n = 2*n 
          temp2 = C(2.*v,n) 
          if (abs(temp1-temp2) .lt. .00005) then 
            goto 10 
          end if 
          if (l .ne. 12) temp1 = temp2 
   20   continue 
   10   cap=temp2 
      return 
      end 
 
 
c     Function called by cap(v). 
 
      function C(w,n) 
      real w,K,E,k1,pi,sum1,sum2,h,t1,t2 
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      integer n,i 
        if (w .eq. 0) then 
          C = 0 
          return 
        end if 
        pi = 3.1415926 
        k1 = 2*sinh(w)/(cosh(w)**2) 
        sum1 = 0.0 
        sum2 = 0.0 
        h = pi/(2*n) 
        do 10, i = 1,n-1 
          sum1 = sum1 + 1.0/sqrt(1. - (k1**2*(sin(i*h)**2))) 
          sum2 = sum2 + sqrt(1. - (k1**2*(sin(i*h)**2))) 
   10   continue 
        sum1 = sum1 + .5*(1 + 1./sqrt(1-k1**2)) 
        sum2 = sum2 + .5*(1 + sqrt(1-k1**2)) 
        K = h*sum1 
        E = h*sum2 
        t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*K 
        t2 = 2*(K-E-0.5*pi*(1-tanh(w)**2)*t1) 
        C = (.5/pi)*(w/tanh(w))**2*t2 
      return 
      end 


