

 1

Summary of Bugs Database

Jeremy Kepner

September, 1993

1. Introduction

1.1 Document Purpose

This document is meant to provide a summary of the development as well as an

outline of the use of the routines written to create the current version of the bugs

database.

1.2 Brief Project History

Development of the Bugs database began in May of 1992. Initially, a very simple

database model was used. By July the decision to use Sybperl as the main

development environment had been made. In October the routines for parsing bug

reports were complete, which allowed further experimentation in the model design.

The main points in the current design were in place by January, 1993. At this time

it became apparent that a simple interface would be necessary. The current Gopher

interface was implemented in March. The database has been functioning

automatically since then with only minor changes.

1.3 Section Description

Section 2 Project Goals briefly summarize the past and current goals of the bugs

database. Section 3 Code Structure gives an outline of the structure and

organization of the code. Section 4 Life Cycle gives a more detailed description of

the specific routines of the database by presenting the complete life-cycle of a bug

report. Section 5 is a set appendices giving attributes of the database.

 2

2. Project Goals

2.1 Original Goals

Originally the Sybperl implementation of the bugs database was to completely

replace the old bug tracking system made up of Bourne shell scripts. In addition to

storage, the new system would handle creating and editing bugs, as well as provide

more diverse access to the data.

2.2 Current Goals

With the impending arrival of Scopus, the role of the Sybperl database has

changed. Currently, it assists the Bourne shell database with storage and retrieval.

The combination of the Gopher interface with Sybperl has made retrieval of bugs

both faster and easier. Thus, for now, the Sybperl database acts as a bridge

between the old Bourne shell system and new Scopus system and should ease the

transition between the two. Furthermore, the Sybperl database serves as an

example for other database problems. The combination of Perl, Sybase, and

Gopher provides one of the fastest, most easily maintainable solutions to database

management.

3. Code Structure

3.1 Overview

The general approach to the development of the Sybperl bugs database has been to

use Perl wherever possible. Perl provides greater flexibility and power than SQL.

It is much easier to create and edit Perl scripts than to create and edit

corresponding SQL procedures. The advantages of using Perl are even more

apparent when, as in this case, a significant amount of information is being read in

from text files. Thus, only in situations where speed is crucial have SQL routines

been used.

 3

3.2 Perl Environment

All the code relating to the database can be found in the directory:

/home/sunspark/jeremy/bugdb/. The main sub-directories are:

 cron/ insert/ old/ output/ priority/ reset/ sybperl/

One line descriptions of most of the files in bugdb/ can be found in Appendix A.

The source code for Sybperl can be found in the sybperl/ sub-directory. From

the users perspective, Sybperl adds two functions to Perl. First, the function

"dblogin", which handles logging into Sybase. Second, the function "sql" which

sends a string to Sybase (assumed to be SQL commands) and returns the results in

the form of a Perl array.

 The Sybase structure of the database is stored in the reset/ directory. Calling

the Perl routine reset_db.pl will execute a complete reset of the database. Each

table, view, index, trigger and procedure is deleted and then recreated and initial

values are inserted. Descriptions of these initial values can be found in Appendix

C.

 The insert/ directory contains the Perl scripts that read in bug reports, decides

which pieces go where, and creates the appropriate SQL statements to do so. The

primary routine is insert_bug.pl, which in turn calls insert_bug.plsub or

update_bug.plsub. insert_bug.pl is designed to insert bugs in large numbers.

Normally, a file containing a list of bugs to be inserted is provided as an argument.

insert_bug.pl examines each bug and decides which subroutine to call

depending upon whether or not the bug already exists in the database.

 The priority/ directory handles the prioritizing and categorizing of bugs and

contains a complete facility for doing this task interactively. Currently, much of

this code is unused. The two most important routines are allbugs.pl and

update_priorities.pl. allbugs.pl examines the entire bug directory and

 4

prints out lists of bugs and their status in a form suitable for insert_bug.pl. In

addition, it can check the modification date of a bug. update_priorities.pl

takes a list of bugs and their priorities and categories (e.g. ~don/bugs/PRIORITY)

and updates the appropriate tables in the database.

 An important aspect of the Sybperl bugs database is that it updates itself

automatically. The cron/ directory contains a program called end-of-day which

calls end-of-day.pl. end-of-day is run every weekday at 8:00 p.m. This

program hops around the various directories of bugdb doing what needs to be done

to make the database current. Primarily, it calls allbugs.pl with a time-stamp

file to generate a list of bugs that have been created/modified since the time-stamp

file was last touched. The list of bugs is then passed to insert_bug.pl.

3.3 Sybase Environment

Sybase organizes data using a relational model. The fields used in the bug reports

have been broken down so that each field becomes a distinct table (see Appendix

B). In this distributed fashion a bug becomes simply a list of pointers the various

rows in the tables. Currently, there are five "core" tables: products, releases, bugs,

details, and people. These represent the five most important concepts in the

database. At the root is the products table, e.g., DataViews, DynaGraphX,

XDesigner, etc... There can be many products. Adding a new product is as simple

as adding a new row to the products table. Each product can have many releases,

but each release must be connected to a particular product. Similarly, a release can

have many bugs, but a bug must point to a particular release. Details contain the

actual text of the bug, e.g. problem, detailed description, work around, solution,

etc. ... The relationship of details to bugs is the same as bugs to releases and

releases to products—many-to-one. The situation with respect to people is

 5

reversed. Each person could have many details to their credit, but a particular

detail can be authored by only one person.

 Additional descriptive information is assigned to a bug through the use of

various "side" tables (see Appendix B). The side tables consist of lists of possible

bug attributes: priorities (high, medium, low, ...); statuses (open, closed, not a bug,

...); types (problem, detailed description, work around, solution, ...); keywords (x-

windows, VUobject, memory, ...). In most cases, a particular attribute will have

many associated bugs and a bug can have many attributes. For example, each

category, by definition should have more than one bug, but each bug should not be

limited to being a member of only one category. These many-to-many

relationships are resolved with "link" tables. Link tables are very simple,

consisting only of pointers to the tables they are linking together.

3.4 Gopher Environment

The Perl routines for handling gopher are found in the output/ directory. There

are two sets of gopher routines. Those found in output/gopher/ and those in

output/gopher.etc/ that correspond to different menus in Gopher. Currently,

all the Gopher interaction with the database is handled by the scripts in

gopher.etc/, with the exception of those items found under the "Test New

Features" menu, which are handled by the scripts in gopher/. The gopher.etc/

scripts are executed from the ~don/gopher-data/bug-info/bin/ directory

where copies of these programs reside. The gopher/ scripts are executed via

"wrapper" scripts found in ~don/gopher-data/bug-info/test/bin/. The

purpose of gopher/ was originally to replace gopher.etc/ with an entirely new

set of scripts that took advantage of the library (lib/) that was written to make

database programming much easier. The gopher/ scripts are much simpler, but

now only serve as example to the usage of lib/.

 6

3.5 Library Environment

After writing the gopher.etc/ scripts it became apparent that further development

in this fashion would only result in larger files with a great deal of duplication.

The routines in lib/ were written to eliminate further duplication of effort and to

provide a standard structure for future development. The lib/ directory consists

of:

 bugdb.pllib assoc/ commands/ io/ list/ sybperl/

The library is invoked with the Perl statement:

 require "${BUGDBLIB}/bugdb.pllib";

which compiles and makes available all the routines in the library. The sub-

directories contain the library functions, broken down by category. For a more

complete description of the library, please Appendix D.

4. Life Cycle

4.1 Database Creation

Instructions for restarting the database from scratch can be found in:

bugdb/reset/reset_instructions. This section only describes what takes

place in reset_db.pl, which begins by logging into the database (it assumes the

database "bugs" exists) and proceeds to call &reset_table, &reset_view,

&reset_procedure, &reset_trigger, and &reset_index for each object in the

database. These procedures work in pretty much the same way. Each object is

first deleted from the database and then the appropriate sub-directory is searched

for a corresponding file which contains the SQL code to recreate the object. For

example, &reset_table("bugs") reads in a file called reset/table/bugs,

which contains the SQL statements for creating the bugs table. After reading in the

SQL file, the commands are sent to the database.

 7

4.2 Bug insertion

As mentioned earlier, the principle programs for inserting bugs are

insert_bug.pl and the subroutines insert_bug.plsub and

update_bug.plsub. The most common method for inserting a bug is:

 insert_bug.pl -q -f bugs_file

The -q option stands for "query" and tells insert_bug.pl that it should first query

the database to see if this bug already exists. bugs_file is typically output from

the priorities/allbugs.pl script. The bug report is then read in by either

insert_bug.plsub or update_bug.plsub and each field is put into a Perl

variable. If the contents of the Perl variables are not empty, then the appropriate

SQL statement for adding the information to the database is constructed and

executed.

4.3 Categories and Priorities

The task of prioritizing and categorizing begins with the updating of the

~don/bugs/PRIORITY file. When the priority file is changed, it is read in by

update_priorities.pl, which changes to the single character abbreviations to

the priority and category names found in the database. In the case of priorities, the

prior_id field in the bugs table is updated with the corresponding value from the

priorities table. The updating of categories begins by deleting all the catlinks for

the bug and then recreating them for each category to which the bug has been

assigned.

4.4 Status Updates

The Bourne shell bugs system represents a change of status by copying a bug to a

new directory. Changing directories causes the file itself to be modified and is

noted by the allbugs.pl routine. Because the bug report itself might have

changed, updating a bug consists of first deleting and reinserting all the details of

 8

the bug report. An additional output of the allbugs.pl script is the directories of

the bug (i.e. the status). If the status of the bug has changed, then the appropriate

statlink is created.

4.5 The Cron Job

The processes outlined in sections 4.2, 4.3 and 4.4 are carried out each weekday by

the cron job found in cron/end-of-day. The reader is encouraged to examine

end-of-day and end-of-day.pl as this is the best way to understand the daily

cycle of the database.

Appendices

Appendix A: Descriptions of bugdb/

Appendix B: Database Structure

Appendix C: Tables, Initial Values, Views, Indexes, Triggers, and Procedures

Appendix D: bugdb.pllib

Appendix A: Description of contents of bugdb/

Lines Filename Description
 cron/ Daily scripts and time stamp files.

 insert/ Perl scripts for inserting bugs.

 old/ Old versions of perl scripts.

 output/ Various tools for accesing the database.

 priority/ Utilities for prioritizing bugs.

 reset/ Scripts and SQL files for rebuilding/resetting database.

 sybperl/ Source and executable of sybperl.

 cron/

0 do_these Bugs to insert today.

6 end-of-day* Wrapper for end-of-day.pl.

116 end-of-day.pl* Inserts todays bugs and update priorities.

0 last_time Time stamp file indicating last time bugs were inserted.

 insert/

156 insert_bug.pl* Reads in a list of bugs and inserts/updates.

324 insert_bug.plsub Reads one bug report, parses and inserts.

51 insert_detail.plsub Inserts a detail of a bug.

72 insert_keywords.plsub Creates keywords for a detail.

35 nultst.plsub Checks to see if a string has any data.

 spell/ Unused routines for checking spelling of keywords.

50 sql_in_list.plsub Formats a list of items in a manner suitable for SQL.

 test_data/ Lists of bugs for test inserting.

316 update_bug.plsub Reads one bug report, parses and updates.

 insert/spell/

36 ispell.pl* Runs ispell spelling program.

54 open2.pl Program from the Perl library for handling processes.

14 rootify* Creates a pipe to ispell for getting root of keywords.

 insert/test_data/

49 testbugs A sample of 49 DataViews bugs (7.0 - c9.1).

21 testbugs.small A sample of 21 DataViews bugs (7.0 - c9.1).

3 testbugs.tiny A sample of DataViews bugs (9.0 - b9.0).

 output/

 gopher/ Gopher scripts based on library.

 gopher.etc/ Gopher scripts (mirrored in ~don/gopher-data/bug-

info/bin).

 lib/ Library of perl routines for accessing database.

 output/gopher/

 commands/ Scripts that display information in gopher.

 wrappers/ Menu names (mirrored on ~don/gopher-data/bug-info/test).

 output/gopher/comm...

4 bug_report* Bourne Shell wrapper script for bug_report.pl.

51 bug_report.pl* Retrieves, formats for gopher, and prints a bug.

4 bug_search* Sets options and stderr for bug_search.pl.

94 bug_search.pl* Executes a search, and creates a gopher menu.

4 build_search* Sets options and stderr for build_search.pl.

320 build_search.pl* Displays and executes menus for creating a database

search.

127 cached_searches.pl* Menus for predefined gopher searches.

4 keyword_info* Sets options and stderr for keyword_info.pl.

111 keyword_info.pl* Retrieves and displays info on selected keywords.

4 save_bugs* Sets options and stderr for save_bugs.pl.

131 save_bugs.pl* Saves output from bug_search in file.

4 standard_search* Sets options and stderr for standard_search.pl.

127 standard_search.pl* Displays and executes predefined searches.

 output/gopher/wrappers/

3 bug-lists-by-priority... Calls standard_search.

3 bug-menu* Calls build_search.

7 lookup-by-bug-numb* Calls bug_report.

3 search-by-keyword* Calls keyword_search.

3 search-by-priority* Calls priority_search.

 output/gopher.etc/

98 README Description of this directory.

546 bug_menu.pl* Display and executes menus for creating searches.

263 bug_report.pl* Displays a bug report for a given bug.

378 bug_search.pl* Executes a bug search.

90 keyword_OR_search.pl* Executes seperate searches on each of several keywords.

44 keyword_report.pl Gets info on a keyword.

192 keyword_search.pl* Executes a single search on a list of keywords.

122 priority_search.pl* Display and execute priority searches.

50 sql_in_list.plsub Procedure for formatting a list of words.

 output/lib/

520 bugdb.pllib Loads sybperllibrary from sub-directories.

 io/ High level library functions.

 assoc/ Utilities for processing asssociative arrays.

 list/ Utilities for processing lists.

 sybperl/ Sybperl scritps for logging into and accessing Sybase.

 output/lib/assoc/

31 abbr2full.plsub Converts abbreviated keys to full names.

42 argv2assoc.plsub Converts @ARGV to associative array.

27 assoc2argv.plsub Converts an associative array to an @ARGV.

28 assoc_hmt2hmt.plsub Puts a new head-middle-tail around each item.

32 assoc_hmt2sep.plsub Removes head-middle-tail and puts in control-a

32 assoc_sep2hmt.plsub Removes control-a and puts in head-middle-tail.

29 full2abbr.plsub Converts full names to abbreviations.

71 full_abbr.plsub Lookup tables for abbr2full and full2abbr.

 output/lib/io/

128 bug_report.plsub For a given bug, returns bug report in an associative array.

277 bug_search.plsub Takes a search and returns a list of bugs.

81 bug_table.plsub Queries a table for a list of allowable values.

75 bugs_summary.plsub Returns a summary on a given bug.

54 exec_sql.plsub Executes an SQL statement as owner (allows edit).

31 gopher_menu.plsub Take a list of commands and print it as a gopher menu.

74 keyword_info.plsub Get information on keywords.

133 print_report.plsub Take a report assoic array and print it out.

49 run_sql.plsub Executes an SQL statement as browser.

110 status_search.plsub Search for bugs based on their status.

 output/lib/list/

41 hmt2hmt.plsub head-middle-tail string -> head-middle-tail string.

29 hmt2list.plsub head-middle-tail string -> perl list.

38 hmt2sep.plsub head-middle-tail string -> control-a seperated string.

30 list2hmt.plsub perl list -> head-middle-tail string.

32 list2sep.plsub perl list -> control-a seperated string.

29 list2sepb.plsub perl list -> control-b seperated string.

42 quotify.plsub take a perl list around each item that has spaces in it.

31 sep2hmt.plsub control-a string -> head-middle-tail string.

24 sep2list.plsub control-a string -> perl list.

21 sepb2list.plsub control-b string -> perl list.

 output/lib/sybperl/

87 sql.pl Executes an sql statement and formats the results.

135 sybdb.ph Sybperl function mapping?

17 sybperl.pl Sets Sybperl environment variables.

 priority/

30 CATEGORY List of bug category and priority abbreviations.

23 CATEGORY.old Original bug category and priority abbreviations.

23 DGX_KEY DynaGraphX categories and priorities abbreviations.

105 DGX_PRIORITY List of DynabGraphX bugs with a priority or category.

2 DGX_PRIORITY.old Last list of DynabGraphX bugs with a priority or category.

30 DV_KEY DataViews categories and priorities abbreviations.

23 DV_KEY.old Original DataViews categories and priorities abbreviations.

23 EO_KEY EO categories and priorities abbreviations.

0 EO_PRIORITY List of EO bugs with a priority or category.

0 EO_PRIORITY.old Previous list of EO bugs with a priority or category.

23 XD_KEY XDesiginer categories and priorities abbreviations.

0 XD_PRIORITY List of XDesigner bugs with a priority or category.

0 XD_PRIORITY.old Previous list of XDesigner bugs with a priority or category.

196 allbugs.pl* Generates list of bugs with status, category, priority, etc.

6 prioritize* Wrapper for prioritize.pl

180 prioritize.pl* Takes a list of bugs and intereactively cretes priority file.

3 prioritize_dgx* Calls prioritize for DynaGraphX.

3 prioritize_dv* Calls prioritize for DataViews.

3 prioritize_eo* Calls prioritize for EO.

3 prioritize_xd* Calls prioritize for XDesigner.

131 update_priorities.pl* Updates priorites in the database.

 reset/

 indexes/ Directory of SQL statements to create indexes.

 procedures/ Directory of SQL statements for creating procedures.

125 reset_db.pl* Resets the entire database.

44 reset_index.plsub Perl function for resetting indexes.

418 reset_initial.plsub Resets initial values of each table.

115 reset_instructions Procedure for resetting database from scratch.

125 reset_one.pl* Copy of reset_db.pl that resets only one item.

44 reset_procedure.plsub Perl function for resetting procedures.

57 reset_table.plsub Perl function for resetting tables.

334 reset_trigger.plsub Perl function for resetting triggers.

44 reset_view.plsub Perl function for resetting view.

 tables/ Directory of SQL statements for creating tables.

 triggers/ Directory of SQL statements for creating triggers.

 views/ Directory of SQL statements for creating views.

 reset/indexes/

3 bugs_bug_ind Index on bug field in bugs table.

3 bugs_ind Index on bug_id field in bugs table.

3 bugs_ord_ind Index on bug_no and rel_id in bugs table (for sorting).

3 details_ind Index on det_id in details table.

3 keywords_ind Index on key_id in keywords table.

3 statlinks_ind Index on bug_id in statlinks table.

3 statlinks_p_ind Index on pers_id in statlinks table.

3 wordlinks_ind Index on bug_id, type_id, word_id in wordlinks table.

 reset/procedures/

43 bugs_ins Inserts a bug into bugs.

43 bugs_upd Updates a bug in bugs table.

51 statlinks_ins Creates a statlink.

60 wordlinks_ins Creates a wordlink.

 reset/tables/

7 bugs Core bug table.

6 categories List ofdifferent bug categories.

3 catlinks Links bugs to categories.

8 details Stores bug details.

4 ids Stores current id for each table.

3 ignorewords List of words to ignore.

4 keywords List of keywords.

3 maillinks Links categories to people.

6 people List of people.

6 priorities List of bug priorities.

4 products List of products.

8 releases List of product releases.

6 statlinks Links statuses with bugs, releases, and people.

6 statuses List of statuses.

6 types List of detail types.

4 wordlinks Links words with bugs.

 reset/triggers/

24 bugs_itrg Bugs insert trigger.

15 catlinks_dtrg Catlinks delete trigger.

19 catlinks_itrg Catlinks insert trigger.

15 details_dtrg Details delete trigger.

21 details_itrg Details insert trigger.

44 statlinks_itrg Statlinks insert trigger.

14 wordlinks_dtrg Wordlinks delete trigger.

18 wordlinks_itrg Wordlinks insert trigger.

 reset/views/

8 bugs_view View bugs with lookup on all dependant tables.

5 catlinks_view View catlinks with lookup on bugs and categories.

7 details_view View details with lookup on bugs, types and people.

5 maillinks_view View maillinks with lookup on categories and people.

9 statlinks_view View statlinks with lookup on all dependent tables.

6 wordlinks_view View wordlinks with lookup on bugs, keywords and types.

Appendix B - Database Structure

releases

bugs

product
s

details

people

statuses priorities

categories types

keywords

statlinks

catlinks

maillinks

wordlinks

Legend

= core tables

= side tables

= link tables

Final E-R diagram
(June 93)

products
prod_id
product

story

releases
rel_id

prod_id
release
story
date
rank
cnt

bugs
bug_id
rel_id
stat_id

prior_id
bug

bug_no

details
det_id
bug_id
type_id
pers_id

date
detail_c
detail_t

prod_id

rel_id

wordlinks
bug_id

word_id
type_id

bug_id

keywords
word_id
keyword
cnt

word_id

 ids
table_name

id_name
cur_id

catlinks
bug_id
cat_id

categories
cat_id

category
story
rank
cnt

cat_id

bug_id

ignorewords
ign_id

ignoreword

types
type_id

type
story
rank
cnt

bug_id

type_id

type_id

statuses
stat_id
status
story
rank
cnt

statlinks
bug_id
rel_id
stat_id
pers_id

date

stat_id stat_id

bug_id

people
pers_id
person
name
story
cnt

maillinks
cat_id

pers_id

priorities
prior_id
priority
story
rank
cnt

cat_id

pers_id

prior_id

pers_id

Appendix C:

Tables

Initial Values

Views

Indexes

Triggers

Procedures

Tables
Column Data null/

Name Type not null

 bugs
bug_id id not null

rel_id id not null

stat_id int null

prior_id int null

bug varchar(64) not null

bug_no int null

 categories

cat_id id not null

category varchar(64) not null

story varchar(255) null

rank float not null

cnt int not null

 catlinks

bug_id id not null

cat_id id not null

 details

det_id id not null

bug_id id not null

type_id id not null

pers_id id not null

date datetime null

detail_c varchar(255) null

detail_t text null

 ids
table_name varchar(64) not null

id_name varchar(64) not null

cur_id id not null

 ignorewords

ign_id id not null

ignoreword varchar(64)) not null

Tables
Column Data null/

Name Type not null

 keywords

word_id id not null

keyword varchar(64) not null

cnt int not null

 maillinks

cat_id id not null

pers_id id not null

 people

pers_id id not null

person varchar(64) not null

name varchar(64) null

story varchar(255) null

cnt int not null

 priorities

prior_id id not null

priority varchar(16) not null

story varchar(255) null

rank float not null

cnt int not null

 products

prod_id id not null

product varchar(64) not null

story varchar(255) null

 releases

rel_id id not null

prod_id id not null

release varchar(64) null

story varchar(255) null

date datetime null

rank float null

cnt int null

Tables
Column Data null/

Name Type not null

 statlinks

bug_id id not null

rel_id id not null

stat_id id not null

pers_id id not null

date datetime not null

 statuses

stat_id id not null

status varchar(64) not null

story varchar(255) null

rank float not null

cnt int not null

 types

type_id id not null

type varchar(32)* not null

story varchar(255)* null

rank float not null

cnt int not null

 wordlinks

bug_id id not null

word_id id not null

type_id id not null

1

Initial Values

ids

table_name id_name cur_id

bugs bug_id 1

categories cat_id 1

catlinks catlink_cnt 1

details det_id 1

ignorewords ign_id 1

keywords word_id 1

maillinks maillink_cnt 1

people pers_id 1

priorities prior_id 1

products prod_id 1

releases rel_id 1

statlinks statlink_cnt 1

statuses stat_id 1

types type_id 1

wordlinks wordlink_cnt 1

categories

cat_id category

1 ada

2 documentaion

3 example

4 demo

5 graph

6 image

7 known

8 orphan

9 subdrawing...

10 x-window

11 fix-it

12 driver

13 system

14 vms

2

15 verify

3

priorities

prod_id priority rank story
1 high 1.0 highest priority, fix asap

2 medium 2.0 would like to fix

3 low 3.0 fix when most convenient

4 dygx 4.0 DynaGraphX bug, no priority

5 port 5.0 proting bug, no priority

6 pending 6.0 waiting to be prioritized

7 none 100.0 no priority at this time

products

prod_id product

1 DataViews

2 DynaGraphX

3 XDesigner

4 EO

5 GraphWidgets

statuses

stat_id status rank story
1 bug 1.0 a bug in this release...

2 not bug 2.0 not a bug in this release...

3 fixed 3.0 fixed in this release...

4 not fixed 4.0 not fixed in this release...

5 verified 5.0 verified as a bug...

6 none 100.0 no status at this time

types

type_id type rank story
1 synopsis 1.0 One Line Summary

2 machine 2.0 Machine and/or OS

3 prod 2.5 Product

4 problem 3.0 Problem

5 description 4.0 Detailed Description

6 test case 5.0 Test Case Instructions

7 workaround 6.0 Workaround

4

8 solution 7.0 Solution

9 modules... 8.0 Modules Affected

10 not fixed 9.0 Why bug is NOT fixed...

11 not a bug 10.0 Why bug is NOT ... a bug

5

releases

rel_id prod_id release

1 1 6.0

2 1 6.01

3 1 7.0a

4 1 7.0b

5 1 7.0c

6 1 7.0d

7 1 8.0

8 1 a9.0

9 1 b9.0

10 1 9.0

11 1 a9.1

12 1 b9.1

13 1 c9.1

14 1 9.1

15 1 9.1a

16 1 a9.2

17 1 b9.2

18 1 d9.2

19 1 9.2

20 2 dgx0.9

21 2 dgx1.0

22 2 dgx1.1

23 3 xd1.1

24 3 xd1.2

25 3 xd1.3

26 3 xd2.0

27 3 xd2.0f

28 3 xd2.0g

29 3 xd3.0a

30 4 bEO2.0

31 4 EO2.0

32 4 EO3.0

33 1 9.5

34 5 bgw2.0

6

Views

Columns Criteria

bugs_view
bugs.[bug,bug_id,

rel_id,bug_no]

—

products.product products.prod_id = releases.prod_id

releases.release bugs.rel_id = releases.rel_id

statuses.status bugs.stat_id = statuses.stat_id

priority.priority bugs.prior_id = priorities.prior_id

catlinks_view

catlinks.bug_id —

bugs.bug catlinks.bug_id = bugs.bug_id

categories.category catlinks.cat_id = categories.cat_id

details_view
details.[det_id,date,

detail_c,detail_t]

—

bugs.[bug_id,bug] details.bug_id = bugs.bug_id

types.type details.type_id = types.type_id

people.person details.pers_id = people.pers_id

maillinks_view
categories.category maillinks.cat_id = categories.cat_id

people.person maillinks.pers_id = people.pers_id

statlinks_view
statlinks.date —

products.product products.prod_id = releases.prod_id

bugs.bug stalinks.bug_id = bugs.bug_id

releases.release stalinks.rel_id = releases.rel_id

statuses.status stalinks.stat_id = statuses.stat_id

people.person statlinks.pers_id = people.pers_id

wordlinks_view
wordlinks.bug_id —

bugs.bug wordlinks.bug_id = bugs.bug_id

keywords.keyword wordlinks.word_id = keywords.word_id

types.type wordlinks.type_id = types.type_id

 Indexes

Name Table Column(s)

bugs_bug_ind bugs bug

bugs_ind bugs bug_id

bugs_ord_ind bugs rel_id,bug_no

details_ind details bug_id

keywords_ind keywords keyword

statlinks_ind statlinks bug_id

statlinks_p_ind statlinks pers_id

wordlinks_ind* wordlinks word_id,bug_id,type_id

*unique index

 Triggers
Table Name Execute on

 Description
bugs bugs_itrg insert

decrement ids.cur_id, increment releases.cnt

catlinks catlinks_dtrg delete

decrement categories.cnt

catlinks catlinks_itrg insert

increment ids.cur_id, increment categories.cnt

details details_dtrg delete

decrement types.cnt

details details_itrg insert

increment types.cnt, increment ids.cur_id

statlinks statlinks_itrg insert

increment ids.cur_id, increment statuses.cnt, decrement

statuses.cnt, change status of bug, increment people.cnt

wordlinks wordlinks_itrg insert

increment ids.cur_id, increment keywords.cnt

default defualt_itrg insert

increment ids.cur_id

bugs_ins(@bug,@status,@priority)
Takes a list of bug fields and makes a bug out of it.

bugs_upd(@bug)
Takes a list of bug fields and makes a bug out of it.

statlinks_upd(@bug,@release,@status,@person,@date)
This procedure takes information pertaining
to the status of a bug and makes a statlink
out it. Then it updates the status and bugs tables.

wordlinks_ins(@bug,@type,@word)
Inserts a wordlink

 1

Appendix D: Description of bugdb.pllib

(I) Introduction

 This set of libraries implements many of the basic functions of accessing the

Bug Database by Perl commands. This makes possible the construction of scripts

that select bugs from the database using a variety of searches and format the ouput

all without using SQL. The structure of the library is based on a strategy with two

goals: (1) to provide a consistent, intuitive means of passing data between the

various routines and (2) to use a layered approach that builds up complex functions

on top of a basic set of simple tools.

 The library consists of three sets of routines. At the lowest level are the

functions that reside in the ${BUGDBLIB}/list directory. These routines are used

for handling the most basic units of the library: strings and lists. Most do some

variation of the following task: convert a list to a string with the items seperated by

some delimiter, and vice-versa. Typically, the delimter used is control-a. On

occasions, when we wish to represent a multi-dimensional object as a string,

control-b is used as a seperator for the second dimension.

 The next layer of the library operates primarily on associative arrays. The

routines used in this layer draw extensively on the list functions. Associative

arrays are the primary structure of the libary. They are used to store command line

arguments, parameter sets for searches, bugs that have been retrieved from the

database, and menus. These routines are found in ${BUDBLIB}/assoc and are

primarily used for two tasks: (1) converting command line arguments (@ARGV)

to a standardized associative array and back again; (2) processing associative

arrays using the list functions.

 The top layer routines--${BUGDBLIB}/io--contain the tasks that intereact with

the database and the outside world. Each is designed for handling particular

 2

aspects of selection, retrieval, formatting, and output. Using these functions it is

possible to create complex database commands fairly quickly.

(II) The Functions

 The previous section gave a brief overview of each part of the library. In this

section each function is described in detail; the structure of the arguments and

results are given as well as an example of the proper usage.

 The first set of functions described here are those for formatting strings and

lists. This is a common task since the database often require input to be formatted

in a comma seperated string. Also, the database returns the results of queries as a

list of records where each field in the record is seperated by a control-a. The

names of the functions are constructed using a cryptic set of mnemonics. In

general, a function name consists of:

 <type0> '2' <type1>

which is used to signify that a particular function takes an argument of <type0>

and returns it as <type1>. Such a function name should be read as "convert type 0

to type 1". The types are:

 list = standard perl list of items

 sep = a string of items where each item is seperated by control-a

 sepb = a string of items where each item is seperated by control-b

 hmt = abbreviation of head-middle-tail which refers to a string

representation of a list formatted in the following manner:

 $head . $item0 . $tail . $middle . $head . $item1 . $tail . $middle ...

where $head, $middle, $tail are string variables. A typical set of assignments is:

 $head = '"'; $middle = ', '; $tail = '"';

which would lead to a string:

 "item0", "item1", , "itemN"

 3

i.e. each item in the list is sandwiched between $head and $tail and seperated by

$middle.

$string = &hmt2hmt($h0,$m0,$t0,$h1,$m1,$t1,$string);

Converts a head-middle-tail string to another head-middle-tail string.

Inverse: hmt2hmt.

Argument: head-middle-tail string fomatted with $h0, $m0, $t0.

Output: head-middle-tail string formatted with $h1, $m1, $t1.

Example: to take a string formatted with '|' as seperators and convert it to a comma

seperated list with quotes around each item:

 $string = &hmt2hmt('','|','','"',', ','"',$string);

@list = &hmt2list($h,$m,$t,$string);

Converts a head-middle-tail string to a list.

Inverse: list2hmt.

Argument: head-middle-tail string formatted with $h, $m, $t.

Output: list of items stripped of formatting.

Example: to convert a comma seperated string with quotes around each item to a

list:

 @list = &hmt2list('"',', ','"",$string);

$string = &list2hmt($h,$m,$t,@list);

Converts a list to a head-middle-tail string.

Inverse: hmt2list.

Argument: list of items.

Output: head-middle-tail string formatted with $h, $m, and $t.

Example: to convert a list into '|' seperated string:

 4

 $string = &list2hmt('','|','',@list);

$string = &hmt2sep($h,$m,$t,$string);

Converts a head-middle-tail string to a control-a seperated string.

Inverse: sep2hmt.

Argument: head-middle-tail string formatted with $h, $m, $t.

Output: control-a seperated string.

Example: convert a comma seperated string:

 $string = &hmt2sep('',', ','',$string);

$string = &sep2hmt($h,$m,$t,$string);

Converts a control-a seperated string to a head-middle-tail string.

Inverse: hmt2sep.

Argument: control-a seperated string.

Output: head-middle-tail string formatted with $h, $m, $t.

Example: convert a control-a string to a comma seperated string:

 $string = &hmt2sep('',', ','',$string);

$string = &list2sep(@list);

Converts a list to a control-a seperated string.

Inverse: sep2list.

Argument: a list of items.

Output: control-a seperated string.

@list = &sep2list($string);

Converts a control-a seperated string to a list.

Inverse: list2sep.

 5

Argument: control-a seperated string.

Output: a list of items.

$string = &list2sepb(@list);

Converts a list to a control-b seperated string.

Inverse: sep2list.

Argument: a list of items.

Output: control-b seperated string.

@list = &sepb2list($string);

Converts a control-b seperated string to a list.

Inverse: list2sep.

Argument: control-b seperated string.

Output: a list of items.

@list = "ify(@list);

Takes a list and puts quotes around any items with spaces. Used primarily for

formatting command line arguments.

Inverse: none.

Argument: list of items.

Output: lits of items with quotes around those that have spaces.

 Information is passed between procedures in the library via associative arrays.

A variety of procedures have been written to facilitate the manipulation of

associative arrays. These functions are written primarily to handle two specific

situations. First, to convert command line arguments from @ARGV to a standard

 6

form associative array. Second, to change the formatting of the elements of an

associative array.

%arguments = &argv2assoc(@argv)

Convert @argv format to an associative array by making '-' items keys and all

other items arguments of the keys.

Inverse: assoc2argv.

Argument: list in @argv format.

Output: associative array.

Example:

 @ARGV = (-opt1,arg1,arg2,-opt2,arg3,arg4);

 %args = &argv2assoc(@argv);

 $args{'opt1'} = arg1 . control-a . arg2

 $args{'opt2'} = arg3 . control-a . arg4

assoc2argv

abbr2full.plsub

full2abbr.plsub

full_abbr.plsub

assoc_hmt2hmt.plsub

assoc_hmt2sep.plsub

assoc_sep2hmt.plsub

commands:

bug_report.pl

bug_search.pl

build_search.pl

 7

keyword_info.pl

save_bugs.pl

standard_search.pl

io:

bug_report.plsub

bug_search.plsub

bug_table.plsub

build_search.plsub

exec_sql.plsub

gopher_bug.plsub

gopher_menu.plsub

keyword_info.plsub

run_sql.plsub

start_browser.plsub

start_owner.plsub

