
20

Research Objectives: Matlab1 is the dominant
programming language for implementing
numerical computations and is widely used

for algorithm development, simulation, data reduction,
testing, and system evaluation. The popularity of
Matlab is driven by the high productivity that is
achieved by users because one line of Matlab code
can typically replace ten lines of C or Fortran code.
Many Matlab programs can benefit from faster
execution on a parallel computer and there have
been many previous attempts to provide an efficient
mechanism for running Matlab programs on parallel
computers (see Reference 4 for a complete list of
these efforts). 

The Message Passing Interface2 is the de facto
standard for implementing programs on multiple processors. MatlabMPI5 consists of a set of Matlab scripts that implements a
subset of MPI and allows any Matlab program to be run on a parallel computer. The key innovation of MatlabMPI is that it implements
the widely used MPI "look and feel" on top of standard Matlab file I/O, resulting in a "pure" Matlab implementation that is exceedingly
small (~250 lines of code). Thus, MatlabMPI will run on any combination of computers that Matlab supports.

Results: MatlabMPI has been run on Sun, HP, IBM, SGI, and Linux platforms. These results indicate that for large messages
(∼1 MByte), MatlabMPI is able to match the performance of MPI5 written in C. In addition, MatlabMPI performance scales well
to multiple processors (see Figure 1). To further test the scalability of MatlabMPI, a simple image filtering application was used
based on the key computations used in many DoD sensor processing applications (e.g., wide area Synthetic Aperture Radar).
The image processing application was implemented with a constant load per processor (1024 x 1024 image per processor) on
a large shared/distributed memory system (the IBM SP at the Maui High Performance Computing Center). In this test, the application
achieved a speedup of ~300 on 304 CPUs, as well as achieving ~15% of the theoretical peak (450 Gigaflops) of the system (see
Figure 2).

The true costs of high performance computing are currently dominated
by software. Addressing these costs requires shifting to high

productivity languages such as Matlab. MatlabMPI is a Matlab
implementation of the Message Passing Interface (MPI) standard and
allows any Matlab program to exploit multiple processors. The
performance has been tested on both shared and distributed memory
parallel computers (Sun, SGI, HP, IBM, and Linux). A test image filtering
application using MatlabMPI achieved a speedup of ~300 using 304 CPUs
and ~15% of the theoretical peak (450 Gigaflops) on an IBM SP at the
Maui High Performance Computing Center. In addition, this entire parallel
benchmark application was implemented in 70 software-lines-of-code
(SLOC) yielding 0.85 Gigaflops/SLOC or 4.4 CPUs/SLOC. The MatlabMPI
software will be available for downloading.

MatlabMPI Improves Matlab Performance By 300x
Jeremy Kepner

DoD

Figure 1. Bandwidth on a Linux Cluster. Send/receive
benchmark run on an eight node (16 cpu) Linux cluster
connected with Gigabit ethernet.

Figure 2. Shared/Distributed Parallel Speedup.
Measured performance on the IBM SP of a parallel
image filtering application.

Note: This work is sponsored by the High Performance Computing Modernization Office, under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.



21

The ultimate goal of running Matlab on parallel computers is to increase programmer productivity and decrease the large
software cost of using HPC systems. Figure 3 plots the software cost (measured in Software Lines of Code or SLOCs) as a function
of the maximum achieved performance (measured in units of single processor peak) for the same image filtering application
implemented using several different libraries and languages (VSIPL, MPI, OpenMP; using C++, C, and Matlab6). These data show
that higher level languages require fewer lines to implement the same level of functionality. Obtaining increased peak performance
(i.e., exploiting more parallelism) requires more lines of code. MatlabMPI is unique in that it achieves a high-peak performance
using a small number of lines of code. 

Two useful metrics we have developed for measuring software productivity on high performance parallel systems are
Gigaflops/SLOC and CPUs/SLOC. The test application does extremely well in both of these measures, achieving 0.85 Gigaflops/
SLOC and 4.4 CPUs/SLOC.

Conclusions: MatlabMPI provides the highest productivity parallel computing environment available. However, because it is a
point-to-point messaging library, a significant amount of code must be added to any application in order to do basic parallel operations.
In the test application presented here, the number of lines of Matlab code increased from 35 to 70. While a 70-line parallel program
is extremely small, it represents a significant increase over the single processor case. 

Future Work: Our future work will aim at creating higher-level objects (e.g., distributed matrices) that will eliminate this parallel
coding overhead. The resulting "Parallel Matlab Toolbox" will be built on top of the MatlabMPI communication layer, and will allow
a user to achieve good parallel performance without increasing the number of lines of code.

References:
1) Matlab, The MathWorks, Inc., http://www.mathworks.com/products/matlab/.
2) Message Passing Interface (MPI), http://www.mpi-forum.org/.
3) MATLAB*P, A. Edelman, MIT, http://www-math.mit.edu/~edelman/.
4) Parallel Matlab Survey, R. Choy, MIT, http://supertech.lcs.mit.edu/~cly/survey.html.
5) J. Kepner, Parallel Programming with MatlabMPI, 2002, High Performance Embedded Computing (HPEC) Workshop, MIT

Lincoln Laboratory, Lexington, MA http://arXiv.org/abs/astro-ph/0107406.
6) J. Kepner, A Multi-Threaded Fast Convolver for Dynamically Parallel Image Filtering, 2002, accepted Journal of Parallel and

Distributed Computing.

Author and Contact: Jeremy Kepner
Organization: MIT Lincoln Laboratory, Lexington, MA, 02420
Resources: IBM SP at MHPCC 
Sponsorship: DoD High Performance Computing Modernization Program (HPCMP)

DoD

Figure 3. Productivity vs Performance. Lines of code as a function of
maximum achieved performance (measured in units of single proces-
sor theoretical peak) for different implementations of the same image
filtering application.


	MHPCC
	Welcome
	About Application Briefs
	Table of Contents
	Page iv
	Page v

	Briefs
	Numerical Studies of Polarimetric Thermal Emission From Rough Sea Surfaces
	Simulations of Ring Current Ions Under AMIE Electric Field During Magnetic Storms
	Use of Covalently-Bonded Ceramics in Jet Engine Thermal Barrier Coatings
	Advanced Image Processing and Data Managements Environment Implementation for MSSS
	Joint Medical Asset Repository (JMAR)Implementation at MHPCC
	Detached-Eddy Simulation of Massively Separated Flows Over Aircraft
	High Performance Computing and Web Support for Project Albert:Analysis of Entity-
 Based Simulations of Land Combat
	Parallelization Development and Testing of the Operational
 Multiscale Environment Model With Grid Adaptivity (OMEGA)
	Visualization Support for Project Albert
	Simulations of Multi-Color,Inverse-Tapered Free-Electron Lasers
	The Modeling Of Bubbly Flows Around Ship Hulls
	MatlabMPI Improves Matlab Performance By 300x
	A Study of Airfoil Spin Characteristics Using Computational Fluid Dynamics
	Ultra-High Bandwidth Control of Active Optics Using Chemo-Optical Computation
	Non-Linear Imaging Algorithm Study
	Novel Laser Actuated Optically Addressable Adaptive Optics
	The Impact of Initial Conditions on the Time-Space Distribution of
 Long-Term Atmospheric Predictability
	Experimental High-Resolution Forecasts/Analyses for the Hawaiian Islands
	High-Resolution Weather Modeling for Improved Fire Management
	Ab Initio Calculations Characterizing an Effective Hamiltonian for
 Polymeric Photonic "Muscles"
	Investigation of Small Boron Nitride Clusters
	Measuring the Carrier-Envelope Phase of Few-Cycle Laser Pulses Using
 Attosecond Cross Correlation Technique in Atoms and Mol
	3D Visualization Concept for Complex Battlefield Simulations
	Minima of Krn -H for n =1 to 13
	2D MHD Simulations Using Lattice Boltzman Methods
	First-Principle Methodologies for Ferroelectromagnetic Materials
	Cluster Computing:Communication Performance and Scalability
	Electron-Impact Ionization of Hydrogen

	Index
	Authors
	Organizations




