The three primes "less than" and "greater than" a certain number are given. For example, the six primes that surround 8 are 8-5, 8-3, 8-1, 8+3, 8+5, and 8+9. (Namely, 3 5 7 11 13 17.) These primes are frequently useful for constructing hash tables and hash functions.
Inspired by the table on page 408 of Knuth's Art of Computer Programming, vol 2.
Primality testing was done with the probabilistic Miller-Rabin pseudoprime test with multipliers 2 through 100.
"Fibn" is the n-th Fibonacci number.
approx exact prime-delta ======================================= 8.0e+00 2^3 [-5,-3,-1,3,5,9] 1.0e+01 10 [-7,-5,-3,1,3,7] 1.2e+01 3*2^2 [-7,-5,-1,1,5,7] 1.3e+01 Fib7 [-8,-6,-2,0,4,6,10] 1.6e+01 2^4 [-9,-5,-3,1,3,7] 2.0e+01 5*2^2 [-7,-3,-1,3,9,11] 2.1e+01 Fib8 [-8,-4,-2,2,8,10] 2.4e+01 3*2^3 [-7,-5,-1,5,7,13] 2.4e+01 4! [-7,-5,-1,5,7,13] 3.2e+01 2^5 [-9,-3,-1,5,9,11] 3.4e+01 Fib9 [-11,-5,-3,3,7,9] 4.0e+01 5*2^3 [-11,-9,-3,1,3,7] 4.8e+01 3*2^4 [-7,-5,-1,5,11,13] 5.5e+01 Fib10 [-12,-8,-2,4,6,12] 6.4e+01 2^6 [-11,-5,-3,3,7,9] 8.0e+01 5*2^4 [-9,-7,-1,3,9,17] 8.9e+01 Fib11 [-16,-10,-6,0,8,12,14] 9.6e+01 3*2^5 [-17,-13,-7,1,5,7] 1.0e+02 10^2 [-17,-11,-3,1,3,7] 1.2e+02 5! [-13,-11,-7,7,11,17] 1.3e+02 2^7 [-19,-15,-1,3,9,11] 1.4e+02 Fib12 [-13,-7,-5,5,7,13] 1.6e+02 5*2^5 [-11,-9,-3,3,7,13] 1.9e+02 3*2^6 [-13,-11,-1,1,5,7] 2.3e+02 Fib13 [-10,-6,-4,0,6,8,18] 2.6e+02 2^8 [-17,-15,-5,1,7,13] 3.2e+02 5*2^6 [-9,-7,-3,11,17,27] 3.8e+02 Fib14 [-18,-10,-4,2,6,12] 3.8e+02 3*2^7 [-11,-5,-1,5,13,17] 5.1e+02 2^9 [-13,-9,-3,9,11,29] 6.1e+02 Fib15 [-11,-9,-3,3,7,9] 6.4e+02 5*2^7 [-23,-21,-9,1,3,7] 7.2e+02 6! [-19,-11,-1,7,13,19] 7.7e+02 3*2^8 [-17,-11,-7,1,5,19] 9.9e+02 Fib16 [-16,-10,-4,4,10,22] 1.0e+03 10^3 [-17,-9,-3,9,13,19] 1.0e+03 2^10 [-11,-5,-3,7,9,15] 1.3e+03 5*2^8 [-21,-3,-1,3,9,11] 1.5e+03 3*2^9 [-25,-13,-5,7,13,17] 1.6e+03 Fib17 [-26,-18,-14,0,4,10,12] 2.0e+03 2^11 [-21,-19,-9,5,15,21] 2.6e+03 5*2^9 [-11,-9,-3,19,31,33] 2.6e+03 Fib18 [-33,-27,-5,7,9,25] 3.1e+03 3*2^10 [-23,-11,-5,7,11,17] 4.1e+03 2^12 [-17,-5,-3,3,15,31] 4.2e+03 Fib19 [-24,-22,-4,20,30,36] 5.0e+03 7! [-19,-17,-1,11,19,37] 5.1e+03 5*2^10 [-13,-7,-1,27,33,47] 6.1e+03 3*2^11 [-13,-11,-1,7,19,29] 6.8e+03 Fib20 [-28,-4,-2,14,16,26] 8.2e+03 2^13 [-21,-13,-1,17,27,29] 1.0e+04 10^4 [-51,-33,-27,7,9,37] 1.0e+04 5*2^11 [-47,-29,-17,3,7,13] 1.1e+04 Fib21 [-37,-9,-7,3,11,27] 1.2e+04 3*2^12 [-19,-11,-7,1,13,35] 1.6e+04 2^14 [-21,-15,-3,27,33,37] 1.8e+04 Fib22 [-30,-28,-4,2,18,26] 2.0e+04 5*2^12 [-37,-3,-1,3,27,29] 2.5e+04 3*2^13 [-29,-25,-5,17,35,47] 2.9e+04 Fib23 [-26,-14,-8,0,4,6,12] 3.3e+04 2^15 [-51,-49,-19,3,11,15] 4.0e+04 8! [-43,-37,-31,23,31,37] 4.1e+04 5*2^13 [-27,-21,-11,1,13,33] 4.6e+04 Fib24 [-31,-19,-17,13,31,43] 4.9e+04 3*2^14 [-31,-29,-13,5,17,19] 6.6e+04 2^16 [-39,-17,-15,1,3,7] 7.5e+04 Fib25 [-14,-12,-8,4,12,16] 8.2e+04 5*2^14 [-21,-19,-1,9,11,17] 9.8e+04 3*2^15 [-35,-7,-5,13,17,19] 1.0e+05 10^5 [-29,-11,-9,3,19,43] 1.2e+05 Fib26 [-26,-24,-14,10,28,46] 1.3e+05 2^17 [-13,-9,-1,29,39,41] 1.6e+05 5*2^15 [-51,-29,-21,1,7,13] 2.0e+05 Fib27 [-81,-39,-31,11,21,35] 2.0e+05 3*2^16 [-29,-25,-11,5,35,49] 2.6e+05 2^18 [-17,-11,-5,3,7,9] 3.2e+05 Fib28 [-28,-22,-14,16,20,28] 3.3e+05 5*2^16 [-19,-13,-7,9,27,41] 3.6e+05 9! [-29,-17,-13,17,23,31] 3.9e+05 3*2^17 [-25,-13,-7,25,31,41] 5.1e+05 Fib29 [-42,-28,-10,0,14,18,20] 5.2e+05 2^19 [-27,-19,-1,21,53,59] 6.6e+05 5*2^17 [-23,-9,-3,13,19,27] 7.9e+05 3*2^18 [-25,-13,-1,1,17,37] 8.3e+05 Fib30 [-73,-57,-37,23,39,41] 1.0e+06 10^6 [-39,-21,-17,3,33,37] 1.0e+06 2^20 [-17,-5,-3,7,13,25] 1.3e+06 5*2^18 [-39,-27,-1,3,21,39] 1.3e+06 Fib31 [-86,-26,-20,4,40,42] 1.6e+06 3*2^19 [-43,-23,-11,5,7,23] 2.1e+06 2^21 [-21,-19,-9,17,59,71] 2.2e+06 Fib32 [-46,-38,-26,4,34,50] 2.6e+06 5*2^19 [-69,-53,-9,7,19,27] 3.1e+06 3*2^20 [-49,-17,-7,11,13,43] 3.5e+06 Fib33 [-17,-11,-9,25,33,39] 3.6e+06 10! [-23,-17,-11,11,19,41] 4.2e+06 2^22 [-27,-17,-3,15,25,49] 5.2e+06 5*2^20 [-31,-21,-3,3,11,23] 5.7e+06 Fib34 [-30,-26,-20,10,24,36] 6.3e+06 3*2^21 [-25,-19,-7,13,31,47] 8.4e+06 2^23 [-27,-21,-15,9,11,15] 9.2e+06 Fib35 [-84,-76,-22,14,32,62] 1.0e+07 10^7 [-29,-27,-9,19,79,103] 1.0e+07 5*2^21 [-39,-29,-9,7,13,19] 1.3e+07 3*2^22 [-71,-59,-19,5,7,17] 1.5e+07 Fib36 [-23,-13,-11,35,41,59] 1.7e+07 2^24 [-33,-17,-3,43,73,75] 2.1e+07 5*2^22 [-69,-27,-13,9,17,47] 2.4e+07 Fib37 [-16,-10,-6,6,12,14] 2.5e+07 3*2^23 [-25,-17,-11,19,29,73] 3.4e+07 2^25 [-61,-49,-39,35,41,69] 3.9e+07 Fib38 [-82,-46,-12,24,38,60] 4.0e+07 11! [-43,-17,-13,1,17,19] 4.2e+07 5*2^23 [-77,-53,-17,9,21,27] 5.0e+07 3*2^24 [-77,-61,-49,5,35,43] 6.3e+07 Fib39 [-29,-17,-15,3,25,45] 6.7e+07 2^26 [-45,-27,-5,15,49,55] 8.4e+07 5*2^24 [-63,-37,-27,11,17,33] 1.0e+08 10^8 [-41,-29,-11,7,37,39] 1.0e+08 3*2^25 [-53,-35,-5,23,31,67] 1.0e+08 Fib40 [-134,-76,-32,2,4,34] 1.3e+08 2^27 [-111,-79,-39,29,45,51] 1.7e+08 Fib41 [-50,-44,-18,6,16,18] 1.7e+08 5*2^25 [-69,-57,-53,1,33,73] 2.0e+08 3*2^26 [-43,-41,-35,19,29,71] 2.7e+08 Fib42 [-57,-47,-17,7,33,37] 2.7e+08 2^28 [-95,-89,-57,3,7,37] 3.4e+08 5*2^26 [-61,-43,-19,3,11,17] 4.0e+08 3*2^27 [-133,-67,-13,5,17,29] 4.3e+08 Fib43 [-48,-36,-18,0,12,24,60] 4.8e+08 12! [-17,-13,-1,29,43,59] 5.4e+08 2^29 [-43,-33,-3,11,39,89] 6.7e+08 5*2^27 [-77,-21,-3,27,39,49] 7.0e+08 Fib44 [-76,-62,-16,20,34,46] 8.1e+08 3*2^28 [-29,-19,-11,89,91,125] 1.0e+09 10^9 [-107,-71,-63,7,9,21] 1.1e+09 2^30 [-83,-41,-35,3,7,9] 1.1e+09 Fib45 [-69,-67,-43,9,59,63] 1.3e+09 5*2^28 [-79,-51,-43,3,9,17] 1.6e+09 3*2^29 [-55,-37,-25,5,11,35] 1.8e+09 Fib46 [-64,-54,-24,48,56,90] 2.1e+09 2^31 [-61,-19,-1,11,45,65] 2.7e+09 5*2^29 [-33,-21,-3,31,49,51] 3.0e+09 Fib47 [-102,-20,-6,0,10,54,60] 3.2e+09 3*2^30 [-89,-19,-11,1,7,61] 4.3e+09 2^32 [-65,-17,-5,15,61,75] 4.8e+09 Fib48 [-143,-85,-17,5,41,85] 5.4e+09 5*2^30 [-37,-7,-3,11,99,101] 6.2e+09 13! [-67,-61,-23,67,73,109] 6.4e+09 3*2^31 [-25,-11,-5,23,35,37] 7.8e+09 Fib49 [-86,-68,-20,28,30,42] 8.6e+09 2^33 [-49,-25,-9,17,29,35] 1.0e+10 10^10 [-71,-57,-33,19,33,61] 1.1e+10 5*2^31 [-93,-47,-27,7,19,27] 1.3e+10 Fib50 [-42,-32,-26,18,28,54] 1.3e+10 3*2^32 [-31,-17,-11,5,11,13] 1.7e+10 2^34 [-113,-77,-41,25,79,85] 2.0e+10 Fib51 [-55,-43,-27,23,29,57] 2.1e+10 5*2^32 [-43,-7,-1,3,23,41] 2.6e+10 3*2^33 [-103,-83,-25,23,55,101] 3.3e+10 Fib52 [-70,-50,-20,14,22,34] 3.4e+10 2^35 [-61,-49,-31,53,83,99] 4.3e+10 5*2^33 [-57,-17,-11,19,67,127] 5.2e+10 3*2^34 [-31,-5,-1,47,49,77] 5.3e+10 Fib53 [-36,-10,-6,14,26,38] 6.9e+10 2^36 [-23,-17,-5,31,115,117] 8.6e+10 5*2^34 [-97,-93,-51,3,21,23] 8.6e+10 Fib54 [-63,-61,-9,11,29,81] 8.7e+10 14! [-43,-17,-1,19,41,71] 1.0e+11 10^11 [-57,-53,-23,3,19,57] 1.0e+11 3*2^35 [-25,-23,-17,7,49,97] 1.4e+11 2^37 [-45,-31,-25,9,29,41] 1.4e+11 Fib55 [-44,-26,-12,16,42,84] 1.7e+11 5*2^35 [-63,-59,-51,31,33,39] 2.1e+11 3*2^36 [-97,-85,-25,1,19,43] 2.3e+11 Fib56 [-76,-40,-34,10,62,100] 2.7e+11 2^38 [-107,-87,-45,7,13,67] 3.4e+11 5*2^36 [-93,-69,-3,17,41,77] 3.7e+11 Fib57 [-99,-65,-29,21,39,69] 4.1e+11 3*2^37 [-73,-59,-29,25,53,73] 5.5e+11 2^39 [-67,-19,-7,23,39,45] 5.9e+11 Fib58 [-72,-68,-36,4,24,72] 6.9e+11 5*2^37 [-137,-111,-107,7,43,57] 8.2e+11 3*2^38 [-29,-23,-1,5,41,49] 9.6e+11 Fib59 [-84,-58,-30,62,80,96] 1.0e+12 10^12 [-41,-39,-11,39,61,63] 1.1e+12 2^40 [-195,-167,-87,15,27,55] 1.3e+12 15! [-71,-59,-47,43,149,179] 1.4e+12 5*2^38 [-49,-43,-21,27,147,153] 1.5e+12 Fib60 [-127,-89,-47,13,19,71] 1.6e+12 3*2^39 [-35,-23,-13,17,29,77] 2.2e+12 2^41 [-55,-31,-21,27,65,71] 2.5e+12 Fib61 [-138,-90,-48,38,50,72] 2.7e+12 5*2^39 [-69,-57,-29,1,21,27] 3.3e+12 3*2^40 [-109,-107,-19,89,119,149] 4.1e+12 Fib62 [-54,-24,-4,12,20,68] 4.4e+12 2^42 [-33,-17,-11,15,75,87] 5.5e+12 5*2^40 [-21,-13,-9,47,71,99] 6.6e+12 Fib63 [-111,-69,-45,7,21,37] 6.6e+12 3*2^41 [-79,-49,-25,1,7,17] 8.8e+12 2^43 [-117,-67,-57,29,39,53] 1.0e+13 10^13 [-201,-137,-29,37,51,99] 1.1e+13 Fib64 [-76,-40,-32,16,50,68] 1.1e+13 5*2^41 [-33,-29,-9,79,91,129] 1.3e+13 3*2^42 [-71,-19,-13,37,59,71] 1.7e+13 Fib65 [-152,-116,-54,12,58,78] 1.8e+13 2^44 [-119,-117,-17,7,21,27] 2.1e+13 16! [-89,-71,-53,23,41,73] 2.2e+13 5*2^42 [-123,-93,-69,29,33,53] 2.6e+13 3*2^43 [-17,-11,-1,47,59,65] 2.8e+13 Fib66 [-75,-51,-27,19,31,43] 3.5e+13 2^45 [-81,-69,-55,59,75,129] 4.4e+13 5*2^43 [-41,-33,-27,3,13,21] 4.5e+13 Fib67 [-204,-166,-132,36,38,50] 5.3e+13 3*2^44 [-91,-85,-71,55,85,113] 7.0e+13 2^46 [-63,-57,-21,15,127,139] 7.3e+13 Fib68 [-112,-110,-22,28,76,86] 8.8e+13 5*2^44 [-79,-37,-31,3,17,147] 1.0e+14 10^14 [-41,-29,-27,31,67,97] 1.1e+14 3*2^45 [-97,-13,-7,13,31,35] 1.2e+14 Fib69 [-81,-63,-31,143,165,189] 1.4e+14 2^47 [-147,-127,-115,5,9,41] 1.8e+14 5*2^45 [-57,-23,-9,99,111,133] 1.9e+14 Fib70 [-46,-34,-4,32,72,84] 2.1e+14 3*2^46 [-53,-31,-23,55,59,115] 2.8e+14 2^48 [-89,-65,-59,21,61,75] 3.1e+14 Fib71 [-50,-36,-32,58,72,88] 3.5e+14 5*2^46 [-61,-49,-27,17,27,33] 3.6e+14 17! [-239,-61,-59,31,53,59] 4.2e+14 3*2^47 [-101,-35,-31,17,29,49] 5.0e+14 Fib72 [-73,-31,-11,29,37,67] 5.6e+14 2^49 [-123,-111,-81,69,191,261] 7.0e+14 5*2^47 [-141,-119,-99,7,21,67] 8.1e+14 Fib73 [-152,-80,-12,96,126,136] 8.4e+14 3*2^48 [-47,-7,-5,89,115,169] 1.0e+15 10^15 [-117,-53,-11,37,91,159] 1.1e+15 2^50 [-51,-35,-27,55,99,145] 1.3e+15 Fib74 [-128,-78,-60,100,102,124] 1.4e+15 5*2^48 [-63,-51,-1,41,87,101] 1.7e+15 3*2^49 [-77,-67,-35,17,61,83] 2.1e+15 Fib75 [-43,-9,-7,33,47,101] 2.3e+15 2^51 [-165,-139,-129,21,65,81] 2.8e+15 5*2^49 [-77,-51,-29,33,37,103] 3.4e+15 3*2^50 [-85,-35,-11,25,29,35] 3.4e+15 Fib76 [-188,-176,-76,2,20,140] 4.5e+15 2^52 [-173,-143,-47,21,37,55] 5.5e+15 Fib77 [-40,-28,-6,30,44,72] 5.6e+15 5*2^50 [-79,-73,-19,3,47,101] 6.4e+15 18! [-47,-43,-41,37,61,73] 6.8e+15 3*2^51 [-67,-53,-13,83,85,155] 8.9e+15 Fib78 [-63,-51,-45,27,53,65] 9.0e+15 2^53 [-231,-145,-111,5,41,57] 1.0e+16 10^16 [-113,-83,-63,61,69,79] 1.1e+16 5*2^51 [-129,-119,-71,7,39,157] 1.4e+16 3*2^52 [-115,-37,-5,31,149,191] 1.4e+16 Fib79 [-170,-128,-14,12,42,46] 1.8e+16 2^54 [-131,-53,-33,159,163,187] 2.3e+16 5*2^52 [-33,-19,-7,3,47,99] 2.3e+16 Fib80 [-206,-184,-148,62,106,116] 2.7e+16 3*2^53 [-119,-43,-37,95,101,173] 3.6e+16 2^55 [-99,-67,-55,3,11,51] 3.8e+16 Fib81 [-117,-87,-77,25,31,91] 4.5e+16 5*2^53 [-119,-81,-23,13,31,33] 5.4e+16 3*2^54 [-163,-121,-83,5,19,119] 6.1e+16 Fib82 [-54,-32,-20,46,106,138] 7.2e+16 2^56 [-47,-27,-5,81,97,175] 9.0e+16 5*2^54 [-123,-109,-1,69,123,167] 9.9e+16 Fib83 [-64,-54,-6,0,56,60,72] 1.0e+17 10^17 [-39,-23,-3,3,13,19] 1.1e+17 3*2^55 [-37,-17,-1,37,53,77] 1.2e+17 19! [-197,-113,-101,89,109,113] 1.4e+17 2^57 [-49,-25,-13,9,35,75] 1.6e+17 Fib84 [-71,-61,-19,133,139,185] 1.8e+17 5*2^55 [-63,-47,-33,1,21,31] 2.2e+17 3*2^56 [-227,-41,-35,35,71,101] 2.6e+17 Fib85 [-402,-312,-298,78,96,98] 2.9e+17 2^58 [-63,-57,-27,69,105,175] 3.6e+17 5*2^56 [-129,-81,-37,9,11,27] 4.2e+17 Fib86 [-34,-10,-6,26,110,134] 4.3e+17 3*2^57 [-139,-113,-55,5,43,55] 5.8e+17 2^59 [-225,-99,-55,131,161,245] 6.8e+17 Fib87 [-77,-71,-39,3,33,51] 7.2e+17 5*2^57 [-203,-161,-29,39,81,99] 8.6e+17 3*2^58 [-89,-79,-25,49,59,89] 1.0e+18 10^18 [-123,-33,-11,3,9,31] 1.1e+18 Fib88 [-104,-50,-40,2,106,176] 1.2e+18 2^60 [-173,-107,-93,33,91,105] 1.4e+18 5*2^58 [-93,-67,-19,3,47,63] 1.7e+18 3*2^59 [-107,-101,-31,17,43,127] 1.8e+18 Fib89 [-222,-140,-72,90,114,144] 2.3e+18 2^61 [-45,-31,-1,15,21,57] 2.4e+18 20! [-151,-71,-31,29,37,53] 2.9e+18 Fib90 [-59,-23,-9,7,37,49] 2.9e+18 5*2^59 [-231,-131,-123,7,21,31] 3.5e+18 3*2^60 [-155,-149,-137,5,89,113] 4.6e+18 2^62 [-117,-87,-57,135,169,177] 4.7e+18 Fib91 [-90,-72,-6,20,60,108] 5.8e+18 5*2^60 [-121,-99,-81,129,153,279] 6.9e+18 3*2^61 [-143,-133,-119,47,95,103] 7.5e+18 Fib92 [-142,-82,-28,28,58,82] 9.2e+18 2^63 [-259,-165,-25,29,99,123] 1.0e+19 10^19 [-81,-57,-39,51,87,91] 1.2e+19 5*2^61 [-209,-201,-173,9,91,99] 1.2e+19 Fib93 [-61,-55,-7,15,69,125] 1.4e+19 3*2^62 [-91,-71,-31,17,77,91] 1.8e+19 2^64 [-95,-83,-59,13,37,51] 2.0e+19 Fib94 [-66,-64,-4,44,72,150] 2.3e+19 5*2^62 [-73,-57,-3,39,53,77] 2.8e+19 3*2^63 [-151,-103,-25,55,59,125] 3.2e+19 Fib95 [-108,-66,-44,18,36,58] 3.7e+19 2^65 [-115,-79,-49,131,165,207] 4.6e+19 5*2^63 [-119,-69,-21,39,67,69] 5.1e+19 21! [-43,-41,-31,31,37,47] 5.2e+19 Fib96 [-95,-89,-29,41,107,109] 5.5e+19 3*2^64 [-29,-5,-1,35,79,119] 7.4e+19 2^66 [-173,-45,-5,9,85,169] 8.4e+19 Fib97 [-164,-104,-6,16,24,94] 9.2e+19 5*2^64 [-127,-51,-13,47,99,119] 1.0e+20 10^20 [-59,-27,-11,39,129,151] 1.1e+20 3*2^65 [-113,-95,-53,83,211,341] 1.4e+20 Fib98 [-108,-96,-66,84,88,94] 1.5e+20 2^67 [-49,-31,-19,3,63,71] 1.8e+20 5*2^65 [-137,-123,-87,3,19,37] 2.2e+20 Fib99 [-225,-145,-39,11,41,107] 2.2e+20 3*2^66 [-193,-55,-25,1,35,37] 3.0e+20 2^68 [-125,-83,-23,33,57,61] 3.5e+20 Fib100 [-28,-4,-2,56,128,194] 3.7e+20 5*2^66 [-163,-147,-27,3,123,147] 4.4e+20 3*2^67 [-145,-107,-31,13,103,157] 5.7e+20 Fib101 [-114,-90,-10,60,116,218] 5.9e+20 2^69 [-93,-91,-19,29,105,117] 7.4e+20 5*2^67 [-47,-11,-9,21,69,87] 8.9e+20 3*2^68 [-331,-245,-67,59,91,215] 9.3e+20 Fib102 [-63,-27,-25,47,75,213] 1.0e+21 10^21 [-171,-113,-101,117,193,213] 1.1e+21 22! [-139,-101,-73,31,71,127] 1.2e+21 2^70 [-167,-71,-35,25,67,79] 1.5e+21 5*2^68 [-217,-57,-7,87,143,207] 1.5e+21 Fib103 [-186,-44,-30,6,132,142] 1.8e+21 3*2^69 [-175,-43,-25,17,31,41] 2.4e+21 2^71 [-411,-325,-231,11,63,95] 2.4e+21 Fib104 [-142,-64,-22,76,176,244] 3.0e+21 5*2^69 [-57,-39,-27,31,43,103] 3.5e+21 3*2^70 [-211,-191,-131,17,179,187] 3.9e+21 Fib105 [-29,-23,-9,21,33,69] 4.7e+21 2^72 [-129,-107,-93,15,105,115] 5.9e+21 5*2^70 [-277,-273,-187,21,99,161] 6.4e+21 Fib106 [-72,-42,-2,30,70,100] 7.1e+21 3*2^71 [-245,-175,-113,95,97,125] 9.4e+21 2^73 [-199,-181,-69,29,101,197] 1.0e+22 10^22 [-131,-71,-27,9,57,81] 1.0e+22 Fib107 [-186,-142,-102,6,66,80] 1.2e+22 5*2^71 [-491,-393,-201,81,151,157] 1.4e+22 3*2^72 [-137,-121,-35,83,91,169] 1.7e+22 Fib108 [-149,-83,-13,35,145,197] 1.9e+22 2^74 [-57,-45,-35,37,67,85] 2.4e+22 5*2^72 [-49,-3,-1,119,159,171] 2.6e+22 23! [-197,-191,-89,97,109,149] 2.7e+22 Fib109 [-360,-228,-178,60,248,332] 2.8e+22 3*2^73 [-199,-133,-77,95,101,221] 3.8e+22 2^75 [-231,-207,-97,33,53,75] 4.4e+22 Fib110 [-184,-126,-84,6,26,68] 4.7e+22 5*2^73 [-137,-93,-89,91,129,141] 5.7e+22 3*2^74 [-139,-83,-13,67,85,125] 7.0e+22 Fib111 [-245,-237,-17,99,159,235] 7.6e+22 2^76 [-117,-63,-15,15,51,87] 9.4e+22 5*2^74 [-79,-73,-51,9,11,27] 1.0e+23 10^23 [-111,-53,-23,117,157,171] 1.1e+23 3*2^75 [-175,-161,-91,115,167,199] 1.1e+23 Fib112 [-86,-76,-16,34,38,118] 1.5e+23 2^77 [-145,-43,-33,11,57,69] 1.8e+23 Fib113 [-284,-254,-12,94,198,310] 1.9e+23 5*2^75 [-143,-107,-71,1,63,91] 2.3e+23 3*2^76 [-119,-47,-1,5,175,179] 3.0e+23 Fib114 [-423,-315,-189,79,147,159] 3.0e+23 2^78 [-111,-95,-11,7,43,109] 3.8e+23 5*2^76 [-141,-139,-51,23,51,69] 4.5e+23 3*2^77 [-227,-209,-13,35,41,53] 4.8e+23 Fib115 [-216,-96,-42,66,98,156] 6.0e+23 2^79 [-249,-199,-67,23,29,95] 6.2e+23 24! [-191,-103,-73,131,193,263] 7.6e+23 5*2^77 [-59,-53,-33,13,69,103] 7.8e+23 Fib116 [-218,-134,-34,16,40,122] 9.1e+23 3*2^78 [-223,-151,-43,89,187,191] 1.0e+24 10^24 [-347,-303,-257,7,49,121] 1.2e+24 2^80 [-117,-93,-65,13,85,235] 1.3e+24 Fib117 [-81,-69,-39,41,87,165] 1.5e+24 5*2^78 [-91,-57,-7,17,81,171] 1.8e+24 3*2^79 [-103,-67,-11,35,79,137] 2.0e+24 Fib118 [-228,-100,-88,128,170,194] 2.4e+24 2^81 [-163,-63,-51,17,81,101] 3.0e+24 5*2^79 [-117,-71,-27,121,183,229] 3.3e+24 Fib119 [-192,-84,-54,46,66,172] 3.6e+24 3*2^80 [-109,-107,-55,73,193,223] 4.8e+24 2^82 [-185,-113,-57,9,43,45] 5.4e+24 Fib120 [-109,-71,-17,89,101,257] 6.0e+24 5*2^80 [-403,-217,-31,123,203,249] 7.3e+24 3*2^81 [-233,-173,-65,47,101,121] 8.7e+24 Fib121 [-338,-308,-200,66,220,250] 9.7e+24 2^83 [-117,-97,-55,75,89,119] 1.0e+25 10^25 [-327,-321,-123,13,223,343] 1.2e+25 5*2^81 [-83,-63,-39,73,87,129] 1.4e+25 Fib122 [-242,-204,-170,12,46,52] 1.5e+25 3*2^82 [-215,-161,-25,55,95,167] 1.6e+25 25! [-239,-191,-149,41,97,107] 1.9e+25 2^84 [-213,-69,-35,3,45,73] 2.3e+25 Fib123 [-169,-121,-85,11,167,227] 2.4e+25 5*2^82 [-189,-181,-109,89,131,141] 2.9e+25 3*2^83 [-301,-251,-115,137,329,529] 3.7e+25 Fib124 [-164,-140,-22,106,130,188] 3.9e+25 2^85 [-181,-61,-19,171,237,261] 4.8e+25 5*2^83 [-429,-177,-3,91,139,171] 5.8e+25 3*2^84 [-137,-127,-35,103,133,155] 5.9e+25 Fib125 [-174,-112,-76,108,114,122] 7.7e+25 2^86 [-65,-41,-35,27,69,85] 9.6e+25 Fib126 [-271,-75,-31,83,89,213] 9.7e+25 5*2^84 [-27,-13,-7,71,87,113] 1.0e+26 10^26 [-279,-249,-141,67,123,127] 1.2e+26 3*2^85 [-373,-259,-155,61,133,361] 1.5e+26 2^87 [-181,-129,-67,39,71,221] 1.6e+26 Fib127 [-140,-110,-86,16,24,166] 1.9e+26 5*2^85 [-81,-77,-57,1,199,223] 2.3e+26 3*2^86 [-109,-101,-83,55,109,137] 2.5e+26 Fib128 [-214,-158,-44,32,50,68] 3.1e+26 2^88 [-483,-455,-299,7,133,165] 3.9e+26 5*2^86 [-343,-117,-43,33,89,117] 4.0e+26 26! [-191,-179,-37,59,173,241] 4.1e+26 Fib129 [-125,-107,-47,37,49,79] 4.6e+26 3*2^87 [-113,-85,-7,163,187,253] 6.2e+26 2^89 [-31,-21,-1,29,89,107] 6.6e+26 Fib130 [-108,-74,-18,138,178,238] 7.7e+26 5*2^87 [-177,-99,-21,13,199,211] 9.3e+26 3*2^88 [-85,-59,-17,73,215,311] 1.0e+27 10^27 [-117,-107,-99,103,279,283] 1.1e+27 Fib131 [-22,-18,-6,0,30,60,144] 1.2e+27 2^90 [-53,-41,-33,133,355,399] 1.5e+27 5*2^88 [-163,-69,-43,21,71,159] 1.7e+27 Fib132 [-125,-71,-61,13,245,287] 1.9e+27 3*2^89 [-275,-179,-157,43,173,185] 2.5e+27 2^91 [-111,-81,-45,59,129,135] 2.8e+27 Fib133 [-220,-160,-22,36,68,176] 3.1e+27 5*2^89 [-143,-113,-51,49,129,153] 3.7e+27 3*2^90 [-331,-281,-55,17,91,449] 4.5e+27 Fib134 [-150,-94,-48,14,42,432] 5.0e+27 2^92 [-197,-149,-83,25,165,223] 6.2e+27 5*2^90 [-339,-289,-223,113,117,183] 7.3e+27 Fib135 [-351,-81,-59,3,27,33] 7.4e+27 3*2^91 [-155,-121,-91,7,17,119] 9.9e+27 2^93 [-79,-51,-25,105,137,149] 1.0e+28 10^28 [-279,-261,-209,331,457,469] 1.1e+28 27! [-173,-71,-43,1,47,59] 1.2e+28 Fib136 [-220,-164,-4,22,76,100] 1.2e+28 5*2^91 [-189,-119,-53,33,163,457] 1.5e+28 3*2^92 [-119,-95,-77,35,133,283] 1.9e+28 Fib137 [-180,-150,-8,0,52,144,150] 2.0e+28 2^94 [-105,-11,-3,129,147,169] 2.5e+28 5*2^92 [-249,-157,-127,87,153,159] 3.0e+28 3*2^93 [-137,-127,-125,103,253,463] 3.1e+28 Fib138 [-81,-47,-45,193,249,363] 4.0e+28 2^95 [-211,-37,-15,9,53,261] 5.0e+28 5*2^93 [-123,-81,-11,67,73,91] 5.0e+28 Fib139 [-268,-108,-52,50,92,108] 5.9e+28 3*2^94 [-229,-221,-1,5,41,55] 7.9e+28 2^96 [-93,-87,-17,61,81,121] 8.1e+28 Fib140 [-272,-202,-56,188,202,238] 9.9e+28 5*2^94 [-211,-187,-109,9,111,147] 1.0e+29 10^29 [-101,-53,-27,319,379,459] 1.2e+29 3*2^95 [-211,-161,-121,19,169,173] 1.3e+29 Fib141 [-253,-153,-33,35,125,135] 1.6e+29 2^97 [-349,-165,-141,105,267,315] 2.0e+29 5*2^95 [-353,-189,-93,39,79,111] 2.1e+29 Fib142 [-250,-172,-28,26,48,66] 2.4e+29 3*2^96 [-125,-109,-25,421,425,433] 3.0e+29 28! [-197,-127,-101,67,101,103] 3.2e+29 2^98 [-107,-65,-51,7,37,79] 3.4e+29 Fib143 [-110,-38,-26,150,226,280] 4.0e+29 5*2^96 [-231,-207,-9,39,113,173] 4.8e+29 3*2^97 [-95,-29,-7,55,61,65] 5.6e+29 Fib144 [-229,-167,-101,25,29,71] 6.3e+29 2^99 [-247,-145,-115,255,443,509] 7.9e+29 5*2^97 [-371,-117,-71,111,147,201] 9.0e+29 Fib145 [-146,-138,-132,58,154,228] 9.5e+29 3*2^98 [-323,-191,-125,31,55,91] 1.0e+30 10^30 [-171,-17,-11,57,99,211] 1.3e+30 2^100 [-153,-99,-15,277,331,447] 3.4e+38 2^128 [-233,-173,-159,51,81,165] 1.2e+77 2^256 [-435,-357,-189,297,301,357] 1.0e+100 10^100 [-1287,-911,-797,267,949,1243] 1.3e+154 2^512 [-875,-629,-569,75,145,285] 1.8e+308 2^1024 [-1397,-179,-105,643,1081,2113] 3.2e+616 2^2048 [-7437,-2543,-1557,981,1617,3063] 1.0e+1000 10^1000 [-9861,-6567,-1769,453,1357,2713] 1.0e+1233 2^4096 [-8627,-8067,-2549,1761,7227,7423]