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Fluctuation Induced Forces (FIF)
out of Equilibrium

4.1 Dissipative dynamics in open systems

In many contexts in nature, such as drifting clouds or flowing rivers, we can identify
some interesting quantity (such as density) which varies over time, to all intents and
purposes stochastically. Fluctuations are partially the result of the open nature of the
system, with constant excahnges of particles, energy and other constituents with the
‘environment.’ It is not likely that an approach to the dynamics of such phenomena,
starting from fundamental principles has any hope of success. Here, we instead take
a general approach to following the dynamics of open and extended systems that is
similar in spirit to the Landau’s construction of effective coarse-grained field theories
in equilibrium. Let us again consider the dynamics of a static field, φ(x, t):
1. The starting point in equilibrium statistical mechanics is the Hamiltonian H[φ].
Landau’s prescription is to include in H all terms consistent with the symmetries of
the problem. The underlying philosophy is that in a generic situation an allowed term
is present, and can only vanish by accident. In the case of non-equilibrium dynamics
we shall assume that the equation of motion is the fundamental object of interest.
Over sufficiently long time scales, inertial terms (∝ ∂2

t φ) are irrelevant in the presence
of dissipative dynamics, and the evolution of h is governed by

∂tφ(x, t) =

deterministic
︷ ︸︸ ︷

v [φ(x, t)] +

stochastic
︷ ︸︸ ︷

η(x, t) . (4.1)

2. If the interactions are short ranged, the velocity at (x, t) depends only on φ(x, t)
and a few derivatives evaluated at (x, t), i.e.

v(x, t) = v
(

φ(x, t),∇φ(x, t), · · ·
)

. (4.2)

3. We must next specify the functional form of deterministic velocity, and the correla-
tions in noise. Generalizing Landau’s prescription, we assume that all terms consistent
with the underlying symmetries and conservation rules will generically appear in v.
The noise, η(x, t), may be conservative or non-conservative depending on whether
there are only internal rearrangements, or external inputs and outputs.

(Note that with these set of rules there is no reason for the velocity to be derivable
from a potential (v ̸= −µ̂δH/δφ), and there is no fluctuation–dissipation connection.
It is even possible for the deterministic velocity to be conservative, while the noise is
not. Thus various familiar results of near equilibrium dynamics may no longer hold.)
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A generic expansion of v[φ] assuming locality, small fluctuations, as well as spatial
variations, takes the form

v[φ] = −aφ+ bφ2 + · · ·+ K

2
∇2φ+

K

2
∇4φ+ · · · . (4.3)

The various terms in the above expansion should be generically present, unless explic-
itly forbidden by symmetry or some other principle. The leading term in the above
expansion is −aφ, and generically imparts a characteristic time scale τ = a−1 for re-
laxation of fluctuations. There must be an explicit reason for relaxation of fluctuations
to occur over macroscopic time scales as opposed to a microscopic τ .
• One possibility is the tuning of an external parameter (e.g. environment temperature
T ) on which system parameters depend to arrive at the special point a(Tc) = 0. This
is similar to what happens at a critical point in an equilibrium setting, but the need
to tune makes this a non-generic mechanism.
• A more generic situation is caused by a continuous symmetry, requiring the dynamics
to be the same under the transformation φ(x) → φ(x)+ϵ. The requirement v[φ(x)+ϵ],
then forbids any dependence on φ. We discussed such symmetry already in the context
of the phonons (Goldstone) modes of a superfluid.
• A more interesting case, specific to dynamics is the presence of a conserved quantity
as discussed next.

4.2 Conservation laws

As an example consider the flow of water along a river (or traffic along a highway).
The deterministic part of the dynamics is conservative (the amount of water, or the
number of cars is unchanged), requiring

d

dt

∫

ddxφ(x, t) =

∫

ddx
∂φ(x, t)

∂t
= 0. (4.4)

This equation is satisfied if ∂tφ(x, t) is the divergence of a current, i.e. −∇j⃗ [φ], with
j⃗ = j⃗D + j⃗S including deterministic and stochastic components. The deterministic
current, j⃗D, is a vector, and must be constructed out of the other vectorial quantities
in the problem: the gradient operator∇ provides the only such operator in an isotropic
system. The leading term in the expansion now starts with the Laplacian operator,

∂tφx, t) = µ∇2φ+ · · · , (4.5)

and equivalently in terms of Fourier modes

∂tφ̃(q, t) = −µq2φ̃(q, t) + · · · , (4.6)

The characteristic relaxation time of fluctuations is now related to macroscopic length
scales ℓ, as τ(ℓ) ∼ µℓ2. (Higher order terms can potentially change the scaling expo-
nent, but are unlikely to remove the dependence of relaxation time on macroscopic
scales.)

It is not strictly necessary in an open system for the stochastic noise to be conserva-
tive. One can imagine cases, as in a traffic along a highway, in which the deterministic
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flow is conservative, with stochastic changes as cars leave and enter through exits.
However, in the following we shall assume that the conservation condition is strict,
applying also to the stochastic noise. In its most generic form, conservative white noise
has zero mean, with covariance

⟨η(x, t)η(x′, t′) = 2Dδ(t− t′)∇2δd(x− x′) + · · · , (4.7)

which in Fourier space reads

⟨η̃(q, t)η̃(q′, t′) =
[

2Dq2 + · · ·
]

δ(t− t′)(2π)dδd(q+ q′) . (4.8)

4.3 Scale invariance?

Does the absence of a microscopic time scale imply the absence of a microscopic length
scale? Let us examine the generic conservative linear model in Fourier space

∂tφ̃(q, t) = −µq2φ̃(q, t) + · · · , (4.9)

whose solution in time (assuming φ(x, t = 0) = 0 for simplicity) satisfies

φ̃(q, t) =

∫ t

0
dt′e−µq2(t−t′)η̃(q, t) . (4.10)

The mean at all times is zero, while the covariances satisfy

⟨φ̃(q, t)φ(q′, t)⟩ =
∫ t

0
dt′1dt

′
2e

−µq2(t−t′
1
)−µq2(t−t′

2
)⟨η̃(q, t)η̃(q′, t)⟩ . (4.11)

Using the co-variance of noise from Eq. (4.8) leads to

⟨φ̃(q, t)φ(q′, t)⟩ = (2π)dδd(q+ q′)(2Dq2)

∫ t

0
dt1e

−2µq2(t−t′) . (4.12)

At long times t → ∞ the integral over time equals (2µq2)−1, leading to the simple
result

⟨φ̃(q, t)φ(q′, t)⟩ = (2π)dδd(q+ q′)
D

µ
. (4.13)

The q-independent noise leads to long-time (steady state) correlations in real space of

⟨φ(x, t)φ(x′, t)⟩ =
∫

ddq

(2π)d
ddq′

(2π)d
eiq.x+iq′.x′

⟨φ̃(q, t)φ̃(q′, t)⟩ (4.14)

=

∫
ddq

(2π)d
eiq.x−iq.x′ D

µ
=

D

µ
δd(x− x′) . (4.15)

Thus, despite the fact that relaxation times are macroscopic, in this model the corre-
lations are short-ranged.
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The above calculation presents an example of the more general case of so called
model B dynamics. Starting with a functional H[φ], a dynamics can be constructed as

∂tφ = −∇.(⃗jD + j⃗S), with j⃗D = −µ∇δH
δφ

, and j⃗S =
√
2D∇(white noise).

(4.16)
Such stochastic dynamics for a field φ(x, t), subject to a conservation law on

∫

ddxφ(x, t),
leads at long times to an equilibrium steady state

P [φ] ∝ exp (−βH[φ]) , with β =
µ

D
. (4.17)

Although we had not imposed such a requirement by hand, our attempts to construct
a low order linear theory on the basis of isotropy and conservation lead to dynamics
similar to model B with the local Hamiltonian H[φ] =

∫

ddxφ(x)2/2.

4.4 Generic scale invariance from anisotropy

Grinstein, Sachdev, and Lee 1 pointed out that anisotropy is sufficient to generically
generate long-range spatial correlations in the previously considered linear model. As-
sume that due to some asymmetry (e.g. flow or a gradient of some field) different
directions of space are not equivalent, with a specific direction (labeled parallel) dis-
tinguished in some manner. Due to such anisotropy the generic forms of relaxation
and noise coefficients in Fourier space are modified from the isotropic case as

µq2 → µ⊥q
2
⊥ + µ∥q

2
∥, and Dq2 → D⊥q

2
⊥ +D∥q

2
∥ . (4.18)

(Somewhat schematically, this can be thought of as introducing two distinct temper-
atures, D∥/µ∥ and D⊥/µ⊥ along the different directions.) In this case,

⟨|φ̃q|2⟩ =
D⊥q2⊥ +D∥q

2
∥

µ⊥q2⊥ + µ∥q2∥
, (4.19)

is no longer q-independent, leading to long-range spatial correlations.
To quantify consequences of anisotropy on spatial correlations, let us simplify by

assuming that only the noise is anisotropic, D⊥ ̸= D∥, while µ⊥ = D∥ = µ. To obtain
correlations in real space, we now need integrals of the form

∫
ddq

(2π)d
eiq.x

qαqβ
q2

= −∂α∂β

∫
ddq

(2π)d
eiq.x

qαqβ
q2

(4.20)

= ∂α∂β

(
|x|2−d

(2− d)Sd

)

=
1

Sd
∂α

(
xβ

|x|d

)

(4.21)

=
1

Sd

(
δαβ
|x|d − d

xαxβ

|x|d+2

)

. (4.22)

This leads to

⟨φ(x)φ(0)⟩ = 1

µSd

∫
ddq

(2π)d
eiq.x

D⊥q2⊥ +D∥q
2
∥

q2
(4.23)

1G. Grinstein, S. Sachdev, and D.H. Lee, Phys. Rev. Lett. 64, 1927 (1990).
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=
1

µSd

[

D⊥

(
d− 1

|x|d − d
x2
⊥

|x|d+2

)

+D∥

(

1

|x|d − d
x2
∥

|x|d+2

)]

(4.24)

=
1

µSd

[

(d− 1)D⊥ +D∥

|x|d − d
D⊥x2

⊥ +D∥x
2
∥

|x|d+2

]

. (4.25)

Thus, unlessD⊥ = D∥, the correlations are long-ranged, falling off as |x|−d, and cannot
be expressed as originating from the Boltzmann weight of a local Hamiltonian.

More generally, with relaxation µ(q) and noise correlation D(q), a generic linear
model leads to ⟨|φ̃q|2⟩ = D(q)/µ(q). Only if this ratio can be written as a analytic
series in q2 (i.e. if D(q)/µ(q) = a+ bq2 + · · ·), can we express the resulting weight as
coming from the familiar Boltzmann weights of a local Hamiltonian. In the absence of
the detailed balance symmetry of equilibrium we thus expect long-range correlations
to be generic in noisy anisotropic systems with conserved quantities.

4.5 Correlations in confined geometry

Now consider confining the field φ(x, t) in the Casimir set-up, between two plates
at separation H . For simplicity, we further impose Neumann (“no flux”) boundary
conditions, which render all points statistically similar. For such a boundary condition,
the Fourier modes are discretized with wavevectors qn = πn/H for n = 0, 1, 2 · · · (note
the inclusion of the n = 0 mode in this case.)

The variance of the field at any point is now obtained as

⟨φ(x)2⟩ = 1

V

∑

q

⟨|φ̃q|2⟩. (4.26)

Note the 1/V factor, which ensures that ⟨φ(x)2⟩ remains an intensive quantity. In the
‘isotropic’ case with ⟨|φ̃q|2⟩ = D/µ, this leads to ⟨φ(x)2⟩ = (D/µ)(N/V ), where N is
the total number of modes in the system after appropriate discretization. In general,
we treat the wave-number q as continuous in the directions parallel to the confining
plates, and discrete in the orthogonal direction, leading to

⟨φ(x)2⟩ = 1

H

∑

n=0

∫
dd−1q∥

(2π)(d−1)

D∥q
2
∥ +D⊥(nπ/H)2

µq2∥ + µ(nπ/H)2
. (4.27)

Note that the above integrals are somewhat similar to those encountered in compu-
tations of the thermal Casimir effect, as in Eq. (1.53) (for d = 2) and Eq. (1.62) (for
d = 3). (With the exception of the term n = 0, the integrals become in fact identical
to the above equations up to a factor of D⊥/µ for D∥ = 0.) We thus expect the ex-
pression for ⟨φ(x)2⟩ to include a term decaying as 1/Hd, proportional to (D⊥−D∥)/µ
with a universal coefficient. Thus, due to the long-range nature of correlations in the
non-equilibrium setting, the internal correlations become sensitive to the presence
of the boundaries, acquiring corrections (which can be of either sign, depending on
(D⊥ −D∥)) that scale as H−d.


