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Shape dependence of FIF

2.1 Dimensional considerations

Let us consider two microscopic neutral objects (say atoms or molecules) of characteris-
tic sizes a1 and a2 in three dimensions at separations r ≫ a1, a2. Due to overall charge
neutrality of the objects, typical charge fluctuations generate dipoles, quadrapoles,
and higher multipoles. At large separations the dipolar fluctuations are most relevant,
with direct interactions proportional to the product of polarizabilities, which scales as
a31a

3
2. From this information, as well as an energy scale, we can build up the form of

long-range FIF (up to a numerical coefficient) from dimensional analysis.
There are in fact three regimes:

Thermal fluctuations provide an energy scale of kBT , suggesting an interaction poten-
tial of the form

UT (r) ∼ kBT
a31a

3
2

r6
. (2.1)

This behavior is expected to hold for separations r > λT = h̄c
kBT . At room temperature,

with λT ∼ 8µm, interactions at such large scales are too weak to be of relevance to
molecules.
Quantum fluctuations are more important than thermal ones for r < λT , suggesting
interactions of the form

UQ(r) ∼ h̄c
a31a

3
2

r7
. (2.2)

This regime is usually referred to as the retarded van der Waals interactions.
Non-retarded van der Waals interactions correspond to sufficiently short scales, where
the spacing to the first excited state of the atom, h̄ω0, sets the relevant energy scale,
leading to

UvdW (r) ∼ h̄ω0
a31a

3
2

r7
. (2.3)

The transition to the retarded regime occurs for r > c/ω0, roughly around 20nm for
hydrogen.

The next important geometry concerns interaction of a compact object of size
a with a plate. The fluctuation-induced interaction at large separations H ≫ a is
expected to be dominated by dipole fluctuations, and hence proportional to the po-
larizability χ ∝ a3. Dimensional analysis then suggests FIF of the forms

FT ∼ kBT
a3

H4
(thermal), (2.4)
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FQ ∼ h̄c
a3

H5
(retarded van der Waals), (2.5)

FvdW ∼ h̄ω0
a3

H4
(van der Waals), (2.6)

in the corresponding regimes. However, as the compact object approaches the surface
its shape and internal structure become more relevant; higher order multiploes and
their interactions with the surface resulting in more complex FIF.

Since FIF are inherently many-body interactions computing the exact form of the
interaction is a difficult task and various approximation schemes have been developed.
One scheme is based on pairwise summation of van der Waals forces between dif-
ferent volume elements; the resulting sums are typically proportional to the volume
of a compact body. Another scheme is based on the Casimir force between parallel
plates, obtaining the net interaction for objects in close proximity as if arising from
summation of contributions from surface elements facing each other. This proximity
force approximation (PFA) is indeed asymptotically exact, and in fact widely used in
interpretation of Casimir force experiments where a large sphere approaches a surface.
However, only recently systematic corrections to PFA (in terms of surface curvatures)
have been computed.

As illustration of importance of shape, consider the quantum Casimir interaction
of a perfectly conducting cylinder of radius R and length L at a separation H from a
mirror, with R ≪ H ≪ L. We expect the interaction to be of a form than vanishes
as R → 0, but how? Pair-wise summation leads to a force proportional to the volume
R2L, suggesting

Upairwise ∼ h̄c
LR2

H4
. (2.7)

Approximating the cylinder with a ribbon suggests an area of LR presented parallel
to the mirror, and hence a Casimir interaction of

Uribbon ∼ h̄c
LR

H3
. (2.8)

The proximity force approximation, which more systematically adds small ribbon el-
ements at varying separations leads to

UPFA ∼ h̄c
LR1/2

(H −R)5/2
. (2.9)

The correct result in the limit of R → 0 is

Uexact ∼ h̄c
L

H2 ln(H/R)
, (2.10)

due to dominant long-wavelength current fluctuations along the wire.

2.2 Scale invariant shapes

One difficulty with computations for compact objects, even when idealized as per-
fect conductors (hence presenting no additional energy scales from resonances) is the
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presence of multiple length scales (e.g. due to typical extent R). This difficulty is
alleviated for a class of objects that are scale invariant, presenting no characteristic
intrinsic length scale. Examples include the plane, cone, pyramid, and wedge, all of
infinite extent. These objects can still be characterized by dimensionless angles (such
as the opening of the cone, or of the wedge), but no length. If two such objects are
brought to proximity, the combined system presents only a single length scale, e.g
from the nearest distance from the apex of a cone to a plane, which we designate as
H . Forces between the two objects can now be obtained (up to a numerical constant)
by dimensional analysis.

The simplest case corresponds to two parallel plates at separationH . In the case the
relevant force needs to be proportional to area, and the corresponding pressures will
have the forms kBT/H3 and h̄c/H4 as obtained previously. For two wedges (or a wedge
and plane) held parallel, the forces must be proportional to wedge length, and force
per unite length must scale as kBT/H2 and h̄c/H3. The overall amplitude will now
depend on the opening angle of the wedge. Finally, when a cone is brought to proximity
with a plane, we expect forces of the form kBT/H and h̄c/H2, with amplitudes that
reflect opening angle of the cone, and its orientation to the plane. Computation of
these (still universal) amplitudes is still difficult, but possible in certain cases, as will
be shown next in connection with polymers.

2.3 Entropic force from polymers

The flexibility of a long polymer arises from the statistical fluctuations of segments
larger than the persistence length. The important parameter that governs the num-
ber of configurations is thus not the degree of polymerization N , but the number of
unconstrained degrees of freedom, or the Kuhn length NK ≈ Na/(2ξp). To see this
explicitly, let us consider the end to end separation of the polymer, given by

R⃗ = t⃗1 + t⃗2 + · · ·+ t⃗N =
N
∑

i=1

t⃗i .

Because of rotational symmetry (there is no cost for rotating the entire polymer),
⟨R⃗⟩ = 0, and its variance is given by

⟨R2⟩ =
N
∑

i,j=1

⟨⃗ti · t⃗j⟩ = Na2 + 2
∑

i<j

⟨⃗ti · t⃗j⟩ . (2.11)

We shall assume that the orientational correlations decay as a simple exponential (this
is only asymptotically correct), i.e.

⟨⃗ti · t⃗j⟩ = a2e−a|i−j|/ξp . (2.12)

As the correlation function is the same for every pair of points separated by a distance
k, and as there are (N − k) such pairs along the chain

⟨R2⟩ = Na2 + 2a2
N
∑

k=1

(N − k)e−ak/ξp . (2.13)
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The above geometric series are easily summed, and for N ≫ 1 (where only the term
proportional to N is significant), we obtain

⟨R2⟩ = Na2
(

1 +
2e−a/ξp

1− e−a/ξp

)

= Na2 coth

(

a

2ξp

)

(2.14)

≈ 2Naξp = (2ξp)
2

(

Na

2ξp

)

. (2.15)

The approximations in the second line rely on ξp ≫ a. The very last expression
indicates that the behavior of the variance is the same as that of NK ≡ (Na/2ξp)
independent segments of length 2ξp, i.e. the same variance is obtained for a collection
of NK freely–jointed rods, each of length 2ξp. Indeed the correlations between these
Kuhn segments is sufficiently small that in the limit of NK ≫ 1, we expect the Central
Limit Theorem to hold, leading to the probability distribution function

p(R⃗ ) = exp

[

− 3R2

2⟨R2⟩

](

2π⟨R2⟩
3

)3/2

= exp

[

− 3R2

4Naξp

]

1

(4πNaξp/3)3/2
. (2.16)

The final probability distribution is identical to the Boltzmann weight of a Hookian
spring of strength Jpolymer connecting the end points of the polymer, and the result
of entropic fluctuations can be interpreted as conferring an elastic bond between the
ends of the polymer with spring coefficient

Jpolymer =
3kBT

⟨R2⟩ =
3kBT

2Naξp
. (2.17)

For future reference, note that for real polymers, self-avoidance and other (short-
range) interactions modify the scale form to

⟨R2⟩ ≃ a2N2ν (2.18)

with ν ≈ 0.59 in three dimensions.

2.3.1 Force between plates

The overall partition function of a random walk, without constraints is expected to
scale as cN , with c encoding (non-universal) contributions to energy and entropy. When
constrained to have end points separated by x, it takes the functional form

Z(N,x) =
cN

(2πNa2)3/2
exp

(

− x2

2Na2

)

. (2.19)

Note that the part of Z relevant to discussions of FIF satisfies the diffusion equation

∂Z

∂N
= a2∇2Z , (2.20)

and this form can be used to tackle other forms of constraints. For example, consider
the Casimir-like setup in which a very long polymer is confined between two solid
plates.
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With the boundary conditions, Z(0) = Z(H) = 0, the appropriate asymptotic
solution is Z(z) ∝ sin(πz/H). With a corresponding eigenvalue of λ0 = −a2π2/H2,
this leads to

Z(N,H) ∝ exp

(

−Na2π2

H2

)

. (2.21)

The reduction in entropy, then leads to a repulsive entropic force of

F (H) = kBT
∂ lnZ(N,H)

∂H
= kBT

Na2π2

H3
= kBT

π2

3

⟨R2⟩
H3

. (2.22)

2.3.2 Depletion near a surface

The dependence Z(z) ∝ sin(πz/H) indicate that the probability to find the polymer
end point near a rigid surface (close to z = 0 or z = H) goes to zero linearly. This
can also be seen by using the method of images to find the solution to the diffusion
equation with the single boundary condition Z(z) = 0. It is easy to check that

ZS(N, x) = a
d

dz

1

(2πNa2)3/2
exp

(

− x2

2Na2

)

=
az

Na2(2πNa2)1/2
exp

(

− x2

2Na2

)

,

(2.23)
is such a solution, vanishing linearly as z → 0.

Integrating over all positions of the end point yields

ZS(N) =

∫

d3xZS(N, x) = a

∫ ∞

0
dz

d

dz

1

(2πNa2)1/2
exp

(

− z2

2Na2

)

=
1√
2πN

,

(2.24)
i.e. a reduction in the partition function of a random walk starting close to the surface
by a factor of

√
N . Quite generally, the partition function of a polymer depends on its

length as Z(N) ≃ cNNγ−1. The universal exponent γ depends on general properties of
the polymer (e.g. ideal or self-avoiding), as well as constraints (such as its topology, or
constraints). Clearly γ = 1 for an unconstrained random walk in space, while the above
calculation indicates γS = 1/2 for a random walk starting close to an impenetrable
surface.

In the following we shall explore behavior of polymers with one end-point close
to a scale invariant obstacle. In the vicinity of the obstacle the end-point probability
vanishes as zp (generalizing from the linear reduction near a plane). Integrating such
dependence (up to a characteristic separation z ∼ Nν) then leads to Z(N) ≃ cNNγ−1

with the exponent identity
γ − 1 = −pν, (2.25)

which we shall exploit shortly.

2.3.3 Force on a conical tip

Consider an idealized setup in which a polymer is attached to the tip of a solid cone,
approaching a solid plate (or another cone). This exemplifies a geometry of obstacles in
which the only (non-microscopic) length scale is provided by the tip-plate (or tip-tip)
separation h. The polymer itself undergoes self-similar fluctuations, spanning length
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scales intermediate between microscopic (monomer size, or persistence length a) and
macroscopic. The latter is set by the typical end-to-end distance R0, or by the radius
of gyration Rg (which differs from R0 only by a multiplicative factor of order of unity).
The typical size of the polymer grows with the number of monomers N through the
scaling relation R0 ∼ Rg ∝ Nν . The self-similar shape of the obstacles also presumably
extends only up to a characteristic scale H , say the height beyond which the cone is
terminated or changes shape.

Neglecting any structure (and hence energy) associated with the polymer, varia-
tions in free energy as the cone (plus tip-attached polymer) approaches the plate are
entirely entropic in origin and proportional to kBT . The entropic force has dimensions
of energy divided by length, and at separations a ≪ h ≪ R0 ≪ H the relevant length
scale is h, and it is reasonable to posit

F = A kBT

h
. (2.26)

This is because the polymer configurations are constrained only on the scale of con-
finement h; increasing the length of the polymer or the size of the cone (as long as
h ≪ R0 ≪ H) should not influence the force; furthermore the entropy change is
independent of a.

Indeed, the simple force law of Eq. (??) applies to all circumstances where the
separation provides the only relevant length scale. The dimensionless amplitude A
will depend on geometric factors characterizing the confining boundaries such as the
opening angle of a coneΘ (and if tilted, on the corresponding angle). It will also depend
on factors that characterize the scaling of polymeric fluctuations, thus differing in cases
of ideal and self-avoiding polymers, and for linear, star, and brush polymers. In the
following we shall demonstrate that in a number of setups, the amplitude A can be
related to variations of the (universal, but shape dependent) exponent p, characterizing
polymeric depletion near an obstacle.

A random walk starting at the tip of a cone provides a first approximation to a
polymer linked to the tip of an AFM probe as depicted in Fig. ??a. With the cone far
away from a plate (h ≫ Rg), the number of configurations of the polymer grows with
the number of monomers as

Nc = b zNNγc(Θ)−1, (2.27)

where the effective coordination number z, as well as the pre-factor b, depend on
the microscopic details (such as the scale a), while the ‘universal’ exponent γc only
depends on the cone angle. When the cone touches the plate as in Fig. ??c, the number
of configurations is reduced to Ncp with exponent γcp(Θ). We shall henceforth use an
exponent subscript ‘s’ (as in γs) to refer to the above cases, with “s=c” for cone and
“s=cp” for cone+plate; the absence of a subscript (as in γ) will signify a free polymer.
The work done against the entropic force in bringing in the tip from afar to contact
the plate can now be computed as

W =

∫ R0

a
dh AkBT

h
=AkBT ln

R0

a
= A νkBT lnN. (2.28)

This work can also be computed from the change in free energies between the final
and initial states, due to the change in entropy, as



16 Shape dependence of FIF

(b)

h

(a) (c)

Θ

θ

r

(d) (e)

Fig. 2.1 (a) Polymer attached to the tip of a solid cone with apex semi-angle Θ (configuration
“c”); positions are described by the spherical coordinates r, θ and azimuthal angle φ (not

shown). (b) The tip, where the polymer is attached, is at a distance h ≪ R0 from the plate.
(c) The tip touching the plate (configuration “cp”). (d) Tip is at a finite distance from a

plate to which the polymer is attached. (e) Polymer attached to both surfaces.

∆F = −T∆S = TSc − TScp = kBT (γc − γcp) lnN , (2.29)

with the entropy S = −kB lnN computed from Eq. (??). By equating W and ∆F we
find

A =
γc − γcp

ν
= pcp − pc ; (2.30)

the final result obtained from the scaling law γ − 1 = −pν.
The arguments presented in the previous paragraph rely only on the fact that

configurations of the obstacles lack a length scale for both h → 0 and h → ∞. Conse-
quently, similar reasoning can be applied to a variety of objects such as those depicted
in Fig. ??, or combinations of such objects. The force prefactor is then related to the
exponents in the initial and the final states by

A =
γinitial − γfinal

ν
= pfinal − pinitial . (2.31)

Consider, for instance, an ideal polymer in free space (or held by a point-like object
(Fig. ??g)). Its number of configurations is zN , i.e. γ ≡ γ0 = 1, and correspondingly
η0 = 0. If the end of the polymer is brought into contact with a plane, then in any space
dimension d the number of configurations scales as zNN−1/2, i.e. with γ ≡ γp0 = 1/2,
and corresponding to ηp0 = 1. Thus for a long polymer held by a point-like object at a



Entropic force from polymers 17

(e)

(a) (b) (c)

(f)

(d)

(g)

Fig. 2.2 Examples of three dimensional figures without a length scale; grey surfaces indicate
truncation only for graphical representations. (a) circular cone, (b) two-dimensional sector

of a circle (in 3D space), (c) pyramid, (d) wedge, (e) plane, (f) line, (g) point. A polymer is
to be attached to the point (g), to the apex of (a), (b), (c); or to any point on the edge of

(d), or the entirety of (e) or (f). The plane and line can also be semi-infinite with a polymer

attached to their edge or end-point.

distance h from a plane, the entropic force has a prefactor A = 1. This result is valid
for any d.

When the obstacles are separated by h, the loss of polymer entropy (and the cor-
responding pressure leading to a force concentrated in the confinement region. The
part of the polymer that wanders away from this area is relatively unperturbed and
does not contribute to the force, which for large N is independent of polymer size.
This is not the case when the entire polymer contributes to the force, as for a polymer
held between two plates, where the force is proportional to N . Thus, the argument
fails when dimensionality of the system is changed between the initial and final states.
For example when a 3-dimensional polymer connected to a two-dimensional plane ap-
proaches a parallel plane, in the final configuration the confined polymer is essentially
two-dimensional. Free energies in the initial and final state have different extensive
parts, and the polymer-mediated force depends on the number of monomers.

It is worth reiterating that by focusing on entropy, we have assumed that the
only interaction between the polymer and the obstacles is due to hard-core exclusion.
Attractive interactions between the polymer and surface will introduce temperature
dependent corrections, and additional size scales. Weak interactions are asymptotically
irrelevant, but strong interactions may lead to a phase in which the polymer is absorbed
onto the obstacles, rendering the entropic considerations presented here inappropriate.
Real obstacles are self-similar over a range of length scales; for example an AFM tip
may be rounded, or abruptly change its angle.

2.3.4 Two dimensional wedge

Behavior of a random walk near an obstacle can be explored by study of solutions of
the Laplace equation with appropriate boundary conditions. For an object with the
symmetry of a cone (generalized to d spatial dimensions), the solutions can be cast
in the form Z(r, θ) = rpΨ(θ) in terms of a radial coordinate r, and the polar angle
θ. Substituting the above form (dictated by symmetry) in the generalized Laplace
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equation, we find that the exponent p satisfies

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 dΨ

dθ

]

+ p(d− 2 + p)Ψ(θ) = 0 , (2.32)

subject to the appropriate boundary conditions. For an isolated cone, the function Ψc

must be positive and regular outside the cone, with dΨc/dθ|θ=π = 0 to avoid a cusp
on the symmetry axis, and Ψc(Θ) = 0 on the cone surface. For the cone+plate, the
appropriate solution is positive and vanishes both at θ = Θ and θ = π/2. The solution
in general d requires the use of associate Legendre functions, but simplifies for the
generalized wedge geometry (corresponding to d = 2) described below.1

For d = 2, the problem of a cone coincides with that of a wedge. In higher space
dimensions the wedge remains equivalent to the two-dimensional case, as the function
Z(x) is independent of the d−2 coordinates parallel to the wedge. Thus, the following
results for d = 2 are also applicable to wedges in any d. Equation (??) now reduces
to Ψ′′ + p2Ψ = 0; which is solved by linear combinations of sin(pθ) and cos(pθ). The
requirement that Ψ is positive and regular, and vanishes on the object(s), yields

pc =
π

2(π −Θ)
, and pcp =

2π

π − 2Θ
. (2.33)

Both results go to a finite value as Θ → 0, reflecting the strong reduction in config-
urations due to the remnant (barrier) line, and p → ∞ when the boundaries confine
the polymer to a vanishing sector. The resulting force amplitude is

A =
2π

π − 2Θ
− π

2(π −Θ)
=

3π2

2(π −Θ)(π − 2Θ)
. (2.34)

1Exercise: Perform the corresponding computations in for d = 3.
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Role of boundary conditions

3.1 Polymers at the adsorption transition

We considered earlier boundary conditions constraining the field or its gradient. The
Dirichlet (φ = 0) and Neumann (∇φ = 0) cases are instances of scale-invariant bound-
ary conditions. The mixed (Robin) boundary condition, ∂xφ + λφ = 0, on the other
hand, does introduce a length scale ξ = λ−1. Indeed, the solution of the Laplacian
operator in d = 1 near such a mixed boundary has the form Z(x) ∝ e−λx.

The exponentially decaying solution actually describes the physical case of random
walks (polymers) attracted to the substrate, forming an adsorbed layer of thickness ξ =
1/λ. As λ → 0, the adsorbed layer thickens, and is eventually desorbed. The limiting
Neumann boundary condition (∂xφ = 0) is thus appropriate for (ideal) polymers right
at the desorption transition. Since this boundary condition is again scale invariant, the
previous arguments regarding a universal force amplitude are again correct. However,
the computation of the force amplitude in terms of γ and p should involve results for
the new boundary conditions.

Note, however that for any object with Neumann boundary conditions, ∂xΨ = 0
implies Ψ ∼ constant close to the boundary, and hence p = 0 (no depletion). Thus
there is no force for any set of objects with such boundaries, and no entropic force
is exerted by ideal polymers on any combination of surfaces tuned to be at exactly
the desorption transition. There are, however, non-zero forces for mixture of obstacles
presenting both Dirichlet and Neumann boundary conditions.

For the wedges considered earlier, there are only two new setups left to calculate,
with either the plane or the wedge at the desorption point, as depicted in Fig. ??.

Fig. 3.1 Two variants of cone-plane polymer-mediated setups with mixed boundary condi-

tions: In d = 3 we can have an attractive cone and repulsive plane (left), or repulsive cone

and attractive plane (right). In d = 2 these drawing can be viewed as a wedge approaching a
line.
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We now need to compute the exponents in the extreme situations, with the wedge
touching the line. For the Dirichlet wedge and Neumann line, the condition Ψ′(π/2) =
0 is satisfied by

Ψ(θ) ∝ sin

[

(θ −Θ)π

(π − 2Θ)

]

, with p′cp =
π

π − 2Θ
. (3.1)

The force amplitude in this case is given by

A′(Θ) = p′cp − pc =
π2

2(π − 2Θ)(π −Θ)
. (3.2)

In case of the Dirichlet line and Neumann wedge, the conditions Ψ(π/2) = 0 and
Ψ′(Θ) are satisfied by

Ψ(θ) ∝ cos

[

2(θ −Θ)π

(π − 2Θ)

]

, with p′′cp =
2π

π − 2Θ
. (3.3)

The force amplitude in this case is given by

A′′(Θ) = p′′cp − 0 =
2π

(π − 2Θ)
. (3.4)

3.2 Repulsive quantum Casimir force

Having noted the importance of mixed boundary conditions in case of polymers, let
us reexamine the effect of such mixing in case of the quantum Casimir force. Consider
a one-dimensional interval supporting a quantum field subject to boundary conditions
φ(0) = 0 and ∂xφ(H) = 0. The resulting modes sin(qnx) have wavenumbers qn =
(2n− 1)π/(2H) for n = 1, 2, · · ·.

Modifying the earlier computation, the ground state energy in this case is obtained
as

E0(H) =
∑

n=1

h̄ωn

2
=

h̄c

2

π

H

∑

n=1

(

n− 1

2

)

=
h̄c

2

π

H

(

∑

n=1

n− 1

2

∑

n=1

1

)

. (3.5)

Following zeta-function regularization, the first sum becomes -1/12, and the second
sum -1/2, resulting in

E0(H) = +
h̄c

H

π

12
and F (H) = −dE0

dH
= +

h̄c

H2

π

12
. (3.6)

Note that the Casimir force is now positive in this mixed geometry.
A similar computation shows that mixed boundary conditions for the quantized

scalar field in three dimensions lead to a repulsive Casimir pressure of 1

βP = −∂E0(H)

A∂H
= +

h̄c

H4
· 7π

2

60
. (3.7)

1Exercise: Prove the quoted result for the quantum Casimir force in d = 3 with mixed boundary
conditions.
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3.3 Stability and Earnshaw’s theorem

A question that has considerable interest is whether the Casimir force can, for some
geometry, be repulsive.The practical importance of such a finding, is a way to avoid
stiction, the sticking together of components of a microelectromechanical machine due
to the attractive force.Repulsion can indeed occur between if the space between two
dissimilar plates is occupied by a medium (e.g. fluid) of dielectric constant intermediate
between the two plates. This is a situation that mimics the case of mixed boundary
conditions discussed above. However, it is impractical to immerse components of a
micro-machine, composed of distinct dielectrics inside a fluid. The exciting possibility
is to achieve such a repulsion across vacuum, by manipulating shape or electromagnetic
response of the bounding plates.

The possibility of such repulsion was partly motivated by a calculation by Boyerwho
found the Casimir energy of an infinitely thin perfectly conducting spherical shell to be
positive. The square in two dimensions, and the cube in three dimensions, also have a
positive Casimir energy in this sense. It is of course essential to establish the presence
of repulsion in a physical context in which all other material forces (cohesion, surface
tension, etc.) are under control. The piston geometryin which a partition slides inside
a box provides such an example, and is related to some geometries where a repulsive
force is claimed. We showed,however, that the partition is unstable and attracted to
the closest boundary.

The example of the piston suggests that the pertinent question is not if the par-
tition is attracted by one or the other base of the piston, but if there is a point of
stable equilibrium in between. The absence of such would bode ill for avoiding stic-
tionor achieving levitation.For classical electrostatics, this is precisely addressed by
Earnshaw’s theorem: The potential φ acting on a set of charges satisfies Laplace’s
equation, ∇2φ = 0, in free space. This immediately rules out a stable equilibrium
position, which say for a positive charge would require ∇2φ > 0. Is there a version of
this theorem for fluctuation-induced interactions?

At least for some classical situations, the answer is positive: Consider a collection
of non-overlapping enclosures (‘bags’), each containing a fluctuating set of charges
that can move around, appear and disappear in pairs while maintaining overall charge
neutrality in each bag. This is closely related to ionic mixtures of charged macroions
and compensating counterions in a solvent; a system much studied within soft-matter
and biological contexts. An effective FIF between the bags results from averaging
over configurations of the mobile charges in solution. The forces can be obtained from
variations of the free energy

−βF({Ri}) = ln

[

∫

∏

α

drα exp (−βφ[Ri, rα])

]

, (3.8)

where {Ri} are the (constrained) coordinates of the bags, {rα} are the positions of
the mobile charges, while φ[Ri, rα] is the total electrostatic energy. Note that in this
classical context, the fluctuations are entirely of thermal origin, β = 1/(kBT ), and
quantum mechanics plays no role. The stability of a ‘bag’ in this effective potential
can now be checked by considering ∇2

iF , where the gradients are with respect to the
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position Ri of the bag. Standard manipulations of the above formula yield

∇2
iF({Ri}) = ⟨∇2

iφ({Ri})⟩ − β
(

⟨|∇iφ|2⟩ − |⟨∇iφ⟩|2
)

≤ 0. (3.9)

Note that the first term is zero because of Laplace’s equation– the origin of the standard
Earnshaw’s theorem. The second term is negative, as it is (minus) the variance of a
fluctuating force. Fluctuations thus tend to destabilize, and the containers cannot find
a position of stable equilibrium.

For the quantum Casimir force, the container in the above picture are replaced by
neutral objects (metals or dielectrics), and the quantized EM field takes the place of the
thermally fluctuating charges. Ideas similar to the above calculations were used by us to
demonstrate an analog of such an Earnshaw constraint for material composed entirely
of dielectrics of arbitrary shape, as long as their response to the electromagnetic field
can be captured by a classical dielectric function ϵ(x,ω), which can in principle vary
across space and frequency (subject to usual stability criteria).


