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Fluctuation Induced Forces (FIF) in
Equilibrium

Fluctuation-induced forces (FIFs) are prevalent in nature, covering a plethora of phe-
nomena spanning the realms of biophysics to cosmology.The ingredients common in
these phenomena are: (i) A fluctuating medium that can be described by a probabil-
ity distribution; and (ii) External objects whose presence constrains (or in some way
modifies) these fluctuations. The overall strength of the interaction is proportional to
the magnitude of undistorted fluctuations (set by kBT and h̄ for thermal and quantum
fluctuations in equilibrium); while its range is set by the extent of correlations of the
fluctuations. The most interesting cases are when the interactions are long–ranged,
corresponding to scale free fluctuations.

1.1 Constraining a probability distribution functional

Consider a scalar field φ(x) in d-dimensions (x ∈ Rd) whose fluctuations are governed
by a probability distribution functional P [φ]. Now impose constraints on the value
of the field at two points as φ(x1) = a1 and φ(x2) = a2. The probability for the
constrained condition is

W (x1,x2) ≡ P [φ(x1) = a1,φ(x2) = a2] = ⟨δ[φ(x1)− a1][δ[φ(x2)− a2]⟩ (1.1)

=
∫ dQ1

(2π)
dQ2

(2π) ⟨exp[iQ1(φ(x1)− a1) + iQ2(φ(x2)− a2)]⟩. (1.2)

To simplify the algebra, and since this will be the case to the majority of examples
discussed, let us assume that the field φ is Gaussian distributed with zero mean, in
which case (denoting by ⟨−⟩c the covariance)

W (x1,x2) =
∫ dQ1

(2π)
dQ2

(2π) exp
[

−iQ1a1 − iQ2a2 − 1
2 ⟨(Q1φ(x1) +Q2φ(x2))

2⟩c
]

.(1.3)

For the special case of a1 = a2 = 0)1, we have

W (x1,x2) =

∫

dQ1

(2π)

dQ2

(2π)
exp

[

−
Q2

1

2
⟨φ(x1)

2⟩c −
Q2

2

2
⟨φ(x2)

2⟩c −Q1Q2⟨φ(x1)φ(x2)⟩c

]

.

(1.4)
The above equation can be interpreted as follows: W (x1,x2) can be interpreted as a
partition function for fluctuating “charges”Q1 and Q2 at positions x1 and x2. Creating

1Exercise: Compute the result for nonzero a1 and a2, and/or non-zero means for the Gaussian
field φ.
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a charge of magnitude Q carries a cost (reduction in log-probability) of ⟨φ(x)2⟩cQ2/2
(analogous to a capacitative energy), while the charges interact through a “potential”
proportional to ⟨φ(x1)φ(x2)⟩c. The dual perspectives of a constrained fluctuating field,
and interacting fluctuating charges enforcing the constraints are equivalent.

The integrals for Q1 and Q2 are also Gaussian, leading to

W (x1,x2) = 1
(2π) exp

(

− 1
2 ln det

⟨φ(x1)2⟩c ⟨φ(x1)φ(x2)⟩c
⟨φ(x1)φ(x2)⟩c ⟨φ(x2)2⟩c

)

(1.5)

= 1
(2π) exp

[

− 1
2 ln

(

⟨φ(x1)2⟩c⟨φ(x2)2⟩c − ⟨φ(x1)φ(x2)⟩2c
)]

(1.6)

= 1
(2π) exp

[

− ln⟨φ(x1)
2⟩c

2 − ln⟨φ(x2)
2⟩c

2 − 1
2 ln

(

1− ⟨φ(x1)φ(x2)⟩
2

c

⟨φ(x1)2⟩c⟨φ(x2)2⟩c

)]

. (1.7)

If we now move the position of the constraints with respect to each other, the
constrained probability changes. Regarding variations of this probability as originating
from the Boltzmann weight of a potential U(x1,x2) between the two points (as in W ∝

exp
[

− U
kBT

]

), then the first two terms correspond to the cost of individual constraints

(one-body potentials), while the last term can be interpreted as a fluctuation-induced
potential

V (x1,x2) =
kBT

2
ln

(

1−
⟨φ(x1)φ(x2)⟩2c

⟨φ(x1)2⟩c⟨φ(x2)2⟩c

)

. (1.8)

In most physically interesting situations, due to translational symmetry ⟨φ(x1)2⟩c =
⟨φ(x2)2⟩c ≡ ⟨φ2⟩, with correlations ⟨φ(x1)φ(x2)⟩c = ⟨φ(x1 − x2))φ(0)⟩ that typically
fall off rapidly with the relative separation, resulting in

V (r) ≃ −
kBT

2

⟨φ(r)φ(0)⟩2c
⟨φ2⟩2c

. (1.9)

1.2 Gaussian (free) field theory

Let us know specialize to a Gaussian field theory distributed as

P [φ(x)] ∝ exp

{

−
K

2

∫

ddx
[

ξ−2 + (∇φ)2
]

}

. (1.10)

Taking advantage of translational invariance, we can change variables to Fourier modes
(in a system of volume V )

φ̃q =

∫

ddx eiq.x φ(x), with φ(x) =
1

V

∑

q

e−iq.xφ̃q =

∫

ddq

(2π)d
e−iq.xφ̃(q),

(1.11)
in terms of which the probability distribution is becomes a product of independent
random variables as

P [φ̃q] ∝
∏

q

exp

{

−
K

2V

[

ξ−2 + q2
]

|φ̃q|
2

}

, with ⟨|φ̃q|
2⟩ =

V

K(ξ−2 + q2)
. (1.12)
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Correlations in real space are now obtained as

⟨φ(x1)φ(x2)⟩ =

∫

ddq

(2π)d
e−iq.(x1−x2)

K(ξ−2 + q2)
≡ −

1

K
Id(x1 − x2, ξ), (1.13)

where we have defined

Id(x, ξ) = −

∫

ddq

(2π)d
eiq.x

q2 + ξ−2
. (1.14)

The solution to the above equation is spherically symmetric, satisfying

d2Id
dx2

+
d− 1

x

dId
dx

=
Id
ξ2

+ δd(x). (1.15)

We can try out a solution that decays exponentially at large distances as

Id(x) ∝
exp (−x/ξ)

xp
. (1.16)

(We have anticipated the presence of a subleading power law.) The derivatives of Id
are given by

dId
dx

= −
(

p
x + 1

ξ

)

Id, (1.17)

d2Id
dx2

=
(

p(p+1)
x2 + 2p

xξ + 1
ξ2

)

Id. (1.18)

For x ̸= 0, we find

p(p+ 1)

x2
+

2p

xξ
+

1

ξ2
−

p(d− 1)

x2
−

(d− 1)

xξ
=

1

ξ2
. (1.19)

The choice of ξ as the decay length ensures that the constant terms in the above
equation cancel. The exponent p is determined by requiring the next largest terms
to cancel. For x ≪ ξ, the 1/x2 terms are the next most important; we must set
p(p + 1) = p(d − 1), and p = d − 2. This is the familiar exponent for Coulomb
interactions, and indeed at this length scale the correlations don’t feel the presence of
ξ, and decay as

Id(x) ≃ Cd(x) =
x2−d

(2 − d)Sd
(x ≪ ξ). (1.20)

(Note that a constant term can always be added to the solution to satisfy the limits
appropriate to the correlation function under study.) At large distances x ≫ ξ, the
1/(xξ) term dominates and its vanishing implies p = (d − 1)/2. Matching to x ≈ ξ
yields

Id(x) ≃
ξ(3−d)/2

(2− d)Sdx(d−1)/2
exp (−x/ξ) (x ≫ ξ). (1.21)

We now focus on the limit x ≪ ξ, and eliminate dependence on K as follows: To
deal with the divergence as x → 0 in d > 2, we introduce a short-distance (lattice)
cutoff a, defining the value at x = 0 such that
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⟨φ(x)φ(0)⟩ = ⟨φ(0)2⟩
(a

x

)d−2
(d > 2). (1.22)

In d = 2, we need to take care of both short and long distance divergences, and

⟨φ(x)φ(0)⟩ = ⟨φ(0)2⟩

(

ln(L/x)

ln(L/a)

)

(d = 2). (1.23)

Finally, in d = 1, it is best to keep a finite correlation length, and set

⟨φ(x)φ(0)⟩ = ⟨φ(0)2 e−x/ξ (d = 1). (1.24)

1.2.1 Dipole-dipole FIF in three dimensions

With the imposed cutoff, in d = 3 with the imposed constraints, we obtain a fluctuation
induced potential

Vm(r) =
kBT

2
ln

[

1−
(a

r

)2
]

≈ −
kBT

2

a2

r2
. (1.25)

The subscript m is to emphasize that the (Dirichlet) constraints φ = 0 can be in-
terpreted as leading to monopole fluctuations. What happens if we instead impose
(Neumann) constraints ∇φ = 0? The previous calculations should now be modified
with the replacements

δ(φ) → δ3(∇φ) , eiQφ → eiP.∇φ. (1.26)

Integrating the Gaussian field φ now leads to

Wd(x1,x2) =

∫

d3P1

(2π)3
d3P2

(2π)3
exp

[

−
P 2
1

2
⟨∇φ2⟩ −

P 2
2

2
⟨∇φ2⟩ − Pα

1 P β
2 ⟨∂αφ(x1)∂βφ(x2)⟩

]

.

(1.27)
Note that rather than monopole fluctuations, the constraint on ∇φ leads to dipole
fluctuations, modifying the Coulomb interaction to the dipolar form proportional to
Pα
1 P

β
2 (r

2δαβ − d xαxβ)/rd+2 in d-dimensions. The dipolar fluctuations can be de-
composed into a longitudinal component P∥, and (d − 1) transverse components P⊥.
The d-components are independent with interactions of strength P1,∥P1,∥(d − 1)/rd

between the longitudinal components, and P1,∥P1,∥(−1)/rd between the transverse
components.

In three dimensions, once more introducing a short-distance cutoff a′, the corre-
sponding fluctuation-induced interaction is

Vd(r) =
kBT

2
ln

[

1−

(

2a′3

r3

)2
]

+ 2 ln

[

1−

(

−a′3

r3

)2
]

≈ −3kBT
a′6

r6
. (1.28)

That the above answer has the same power law form as van der Waals interactions is
not accidental, and will be discussed in more detail later. For the time being, I note
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that for two objects with polarizabilities χ1 and χ2, dipole fluctuations lead to an
interaction that falls off with separation as Vd(r) = −3kBT (χ1χ2/r6). 2

1.2.2 Different approaches to FIF in one dimension

(a) The method described above in the case of one dimension, and for x ≪ ξ leads to

Vm(x) =
kBT

2
ln
[

1− e−2x/ξ
]

≈
kBT

2
ln

(

2x

ξ

)

, (1.29)

and a corresponding force of

F (x) = −
∂V

∂x
= −

1

2

kBT

x
. (1.30)

On dimensional grounds, the force must indeed be proportional to (kBT/x). The
coefficient (−1/2) is an important proportionality factor which we now obtain from
two other approaches.
(b) In one dimension, the Dirichlet constraints are equivalent to confining the field to
an interval of length x = H , with partition function ((henceforth with ξ → ∞)

Z(H) =

∫

D[φ(x)] exp

{

−
K

2

∫

dx(∂xφ)
2

}

. (1.31)

Discretizing the interval 0 ≤ x ≤ H into N = H/δ segments, the partition function
can be interpreted as that of a N harmonic springs, with one constraints that the
two end-points coincide. Without the constraint, we expect Z ∝ zN , the constraint
reduces the result to Z ∝ zN/N1/2. (This reduction is similar to that of a random
walk constrained to return to its origin, and will be discussed in detail later.) Since
N ∝ H , we have

lnZ(H) = N ln z′ −
1

2
lnH. (1.32)

The leading part of the free energy is a extensive contribution. Fortunately, this non-
universal contribution does not contribute to the force when the constraint is moved
along an interval with the same fluctuations on both sides. The FIF arises from the

2Exercise:The interaction between two dipole moments D⃗1 and D⃗2, at a separation r⃗ = r r̂ is
given by

V (r⃗ ) =
3
(

D⃗1 · r̂
) (

D⃗2 · r̂
)

−
(

D⃗1 · D⃗2

)

r3
.

(a) Consider permanent dipoles of fixed magnitude |D⃗1| = D1 and |D⃗2| = D2 which can point
in any direction in three dimensions. Find the expression for the partition function Z(r), obtained
by integrating over all possible dipole orientations, at the lowest non-trivial order in βV . (Hint:
Angular averages of vector components satisfy ⟨DαDβ⟩0 = D2δαβ/3.) (b) Interpreting the partition
function Z(r) as resulting from an effective fluctuation-induced potential U(r), find U(r) at the lowest
non-trivial order, and comment on its temperature dependence. (c) Most atoms an molecules do not
have a permanent dipole moment, but are polarizable, i.e. there is an energy cost of D2/(2χ) to
create a dipole moment of magnitude D. Now consider the dipolar interaction V (r) emerging from
two polarizable particles with polarizabilities χ1 and χ2. Repeat the calculation of Z(r), including
the energy costs of creating the dipoles. (d) Find effective fluctuation-induced potential between
polarizable particles at the lowest non-trivial order, and comment on its temperature dependence.
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sub-dominant contribution growing as lnH , with a universal amplitude which agrees
with the previous calculation:

F (H) = kBT
∂ lnZ

∂H
= −

1

2

kBT

H
. (1.33)

(c) The partition function can also be evaluated following the earlier decomposition
into independent Fourier modes, as

Z(H) =

∫

D[φ(x)] exp

{

−
K

2

∫

dx(∂xφ)
2

}

(1.34)

∝
∏

n

∫

dφ̃q exp

{

−
Kq2n
2V

|φ̃q|
2

}

(1.35)

∝
∏

n

√

2π

Kq2n
∝ exp

[

−
1

2

∑

n

ln(Kq2n)

]

. (1.36)

The appropriate Fourier modes satisfying the boundary condition are proportional to
∼ (nπx/H), with qn = nπ/H for n = 1, 2, · · ·. This leads to

lnZ(H) = −
1

2

∑

n=1

ln[K(nπ/H)2] = −
1

2

∑

n=1

ln(K)−
∑

n=1

ln(nπ/H). (1.37)

The force is then formally computable from

F (H) = kBT
∂ lnZ

∂H
= −

kBT

H

∑

n=1

1 ! (1.38)

The sum is of course divergent as it includes the extensive part of the free energy
which does not contribute to force.

There is, however, a mathematical procedure for subtracting this infinity, such
that

∑

n=1 1 = ζ(0) = −1/2. This zeta-function regularization can be achieved by
introducing a convergence factor e−ϵn such that

∑

n=1

1 = lim
ϵ→0

e−ϵn = lim
ϵ→0

e−ϵ

1− e−ϵ
= lim

ϵ→0

1− ϵ+O(ϵ2)

1− 1 + ϵ+ ϵ2/2 +O(ϵ3)
(1.39)

= = lim
ϵ→0

1

ϵ

(

1− ϵ + ϵ/2 +O(ϵ2)
)

=
1

ϵ
−

1

2
+O(ϵ). (1.40)

Focusing only on the finite term in the above expansion, we again obtain the FIF

F (H) = kBT
∂ lnZ

∂H
= −

1

2

kBT

H
. (1.41)

1.2.3 Quantum Casimir force in one dimension

In quantum mechanics, after including kinetic energies, a Fourier mode of wavenumber
qn morphs into a harmonic oscillator of frequency ωn = c|qn|, where c is an appropriate
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speed (e.g. speed of light for electromagnetic waves). Each harmonic oscillator can
accommodate quanta of energy h̄ωn above the ground state energy of h̄ωn/2.

Thus even at zero temperature, the collection of normal modes is assigned a ground
state energy of

E0 =
∑

n=1

h̄ωn

2
=

h̄c

2

π

H

∑

n=1

n . (1.42)

Once more, we are dealing with a sum
∑

n=1 n that is infinite, but hides a finite value
of ζ(−1) = 1/12, which can be extracted by regularization as

∑

n=1

n = lim
ϵ→0

ne−ϵn = − lim
ϵ→0

d

dϵ

∑

n=1

e−ϵn (1.43)

= − lim
ϵ→0

d

dϵ

1

eϵ − 1
= lim

ϵ→0

eϵ

(eϵ − 1)2
(1.44)

= lim
ϵ→0

1 + ϵ+ ϵ2/2 +O(ϵ3)

[ϵ(1 + ϵ/2 + ϵ2/6 +O(ϵ3)]2
(1.45)

= = lim
ϵ→0

1

ϵ2
(

1 + ϵ− ϵ+ ϵ2(1− 7/12− 1 + 1/2) +O(ϵ3)
)

(1.46)

=
1

ϵ2
−

1

12
+O(ϵ). (1.47)

The finite part of the ground state energy then leads to a quantum FIF of

F (H) = −
dE0

dH
= −

h̄c

H2
·
π

24
. (1.48)

The Riemann zeta-function is defined through the series

ζ(s) =
∑

n=1

1

ns
, (1.49)

convergent for for s > 1. For s ≤ 0, a finite component can be extract through the
regularization procedure described above, leading to3

ζ(0) = −
1

2
, ζ(−1) = −

1

12
, ζ(−2) = 0, ζ(−3) =

1

120
, ζ(−4) = 0, · · · . (1.50)

1.2.4 Thermal Casimir force in two dimensions

As discussed later, Casimir first studied the FIF per unite area (i.e. pressure) due to
quantum fluctuations of the electromagnetic field confined between two mirrors. We
shall hence forth refer to forces arising due to confinement of a fluctuating field in
d-dimensions, between two plates of (d− 1) dimensions, as Casimir FIF.

Now consider a thermally fluctuating free field theory in two dimensions, confined
between two one-dimensional plates at separation H . Following decomposition into

3Exercise: Using the procedure described compute ζ(−2) and ζ(−3).
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Fourier modes of wave-vector q = (q, nπ/H), the classical (log) partition function is
obtained as

lnZ(H) = −
1

2

∑

q,n

ln
[

K
(

q2 + (
nπ

H
)2
)]

. (1.51)

Assuming long plates of dimension L ≫ H , the sum over the modes q can be replaced
with an integral, using density of states L/(2π), such that

lnZ(H) = −
L

2

∫

dq

2π

∑

n=1

ln
[

K
(

q2 + (
nπ

H
)2
)]

. (1.52)

The (two dimensional) pressure in now obtained as

βP =
∂ lnZ

∂(HL)
=

1

L

∂ lnZ(H)

∂H
=

1

H

∑

n=1

(nπ

H

)2
∫ ∞

−∞

dq

2π

1

q2 + (nπ/H)2
(1.53)

=
1

H

∑

n=1

(nπ

H

)2 2πi

2π · 2 · inπ/H
=

1

H2

π

2

∑

n=1

n (1.54)

= −
1

H2

π

24
, (1.55)

where the last expression follows from zeta-function regularization.
Note the similarity to the previous quantum result in the appearance of

∑

n=1 n.
Quite generally the “partition function” of a quantum field theory in d-dimensions is
related to that of a classical field theory in (d + 1)-dimensions, with kBT → h̄c, and
noting the extra dimension.

1.2.5 Thermal Casimir force in three dimensions

An interesting example of the thermal Casimir force in d = 3 occurs for wetting films
of superfluid helium. The free energy of superfluid phonons (Goldstone modes) can
still be treated classically below (but not too far below) the transition temperature.

The previous calculation from two dimensions is now modified to

lnZ(H) = −
A

2

∫

d2q

(2π)2

∑

n=1

ln
[

K
(

q2 + (
nπ

H
)2
)]

, (1.56)

where A is the area of the film. The corresponding pressure is

βP =
∂ lnZ

∂(HA)
=

1

A

∂ lnZ(H)

∂H
=

1

H

∑

n=1

(nπ

H

)2
∫ Λ

0

2πq dq

4π2

1

q2 + (nπ/H)2
(1.57)

=
1

4πH

∑

n=1

(nπ

H

)2
ln
(

q2 + (nπ/H)2
)
∣

∣

Λ

0
(1.58)

=
1

4πH

∑

n=1

(nπ

H

)2
ln

[

Λ2 + (nπ/H)2

(nπ/H)2

]

(1.59)
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= −
2

4πH
·
π2

H2

∑

n=1

n2 (lnn+ ln(π/H)) + Λ−dependent terms. (1.60)

We don’t need to bother about the term proportional to ln(π/H) as
∑

n=1 n
2 =

ζ(−2) = 0. The other term is related to the derivative of a zeta-function, since

ζ′(s) =
∞
∑

n=1

− lnn

ns
,

∞
∑

n=1

ns lnn = −ζ′(−s). (1.61)

Finally noting that ζ′(−2) = −ζ(3)/4π2, the Casimir pressure becomes

βP = −
1

H3
·
2π2

4π
·
ζ(3)

4π2
= −

1

H3
·
ζ(3)

8π
. (1.62)

1.2.6 Quantum Casimir force in three dimensions

Let us finally compute the celebrated quantum Casimir pressure in d = 3. The fre-
quencies of the Harmonic oscillators are given by ωn(q) = c

√

q2 + (nπ/H)2. The zero
point energy assigned to the ground state is now

E0(H) =
h̄c

2

∑

n=1

A

∫

d2q

(2π)2
√

q2 + (nπ/H)2. (1.63)

Therefore,

E0(H)

A
=

h̄c

2

∑

n=1

∫ Λ

0

2πq dq

4π2

√

q2 + (nπ/H)2 (1.64)

=
h̄c

2

1

4π

∑

n=1

2

3

(

q2 + (
nπ

H
)2
)3/2

∣

∣

∣

∣

Λ

0

(1.65)

= −
h̄c

12π
·
π3

H3

∞
∑

n=1

n3 (1.66)

= −
h̄c

H3
·

π2

1440
. (1.67)

The corresponding pressure is

βP = −
∂E0(H)

A∂H
= −

h̄c

H4
·
π2

480
. (1.68)

The actual Casimir force of QED is twice the above result, as the electromagnetic field
has two sets of normal modes (TE and TM) corresponding to Dirichlet and Neumann
boundary conditions. 4

4Exercise: Complete the set of examples by computing the quantum Casimir force in d = 2
dimensions.


