
IITS: Statistical Physics in Biology
Assignment # 5 KU Leuven 5/31/2013

Drift, Diffusion, and Dynamic Instability

1. Treadmilling Actin: Actin filaments are long, asymmetric, polymers involved in a variety
of cellular functions. In some cases the filaments are in a dynamic state in which monomers
are removed from one end and added to the other. (The two ends are called minus and plus
respectively, and this process is known as treadmilling.)

(a) Assume that monomers are added to the plus-end at rate a, and removed from the minus
end at rate b. Write down the equations governing the rate of change of the probabilities
{p(ℓ, t)}, for finding a filament of length ℓ at time t. Note that ℓ = 1, 2, , 3, · · · , and that
the equation of p(1, t) is different from the rest.
• For ℓ > 1 the rate of change of the probabilities is:

∂p(ℓ, t)

∂t
= a p(ℓ− 1, t) + b p(ℓ+ 1, t)− (a+ b) p(ℓ, t).

For ℓ = 1 a monomer cannot be destroyed or created from nothing:

∂p(1, t)

∂t
= b p(2, t)− a p(1, t).

Note that the total probability
∑

ℓ p(ℓ, t) does not change with time.

(b) It is possible to have a dynamic steady state with probabilities p∗(ℓ) that do not change
with time. Find the (properly normalized) distribution p∗(ℓ) in such a case.
• We are looking for a solution of the form p∗(ℓ) = ckℓ. In steady state rate of change is
zero:

∂p∗(ℓ)

∂t
= ckℓ

(a

k
+ bk − (a+ b)

)

= 0 =⇒ bk2 − (a+ b)k + a = 0

with solutions k = 1 and k = a/b. k = 1 is not a good solution because distribution cannot
be normalized. The only good solution is k = a/b, when a < b. If a > b then we have
exponentially increasing distribution that cannot be normalized. It is easy to verify that this
ansatz also satisfy rate of change for ℓ = 1. Normalization:

1 =

∞
∑

ℓ=1

c
(a

b

)ℓ

= c
a/b

1− a/b
=⇒ c =

b− a

a

Properly normalized distribution is thus:

p∗(ℓ) =
(b− a)

a

(a

b

)ℓ

(c) What is the condition for the existence of a time independent steady state, and the mean
length of the filament in such a case?
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• As mentioned in the previous item, the condition for the existence of a time independent
steady state is a < b. To calculate the mean length we introduce the function f(x):

f(x) =
∞
∑

ℓ=0

(a

b

)xℓ

=
1

1− (a/b)x

f ′(x) =
∞
∑

ℓ=0

ℓ ln(a/b)
(a

b

)xℓ

=
(a/b)x ln(a/b)
(

1− (a/b)x
)2

Note that excluding the term ℓ = 0 from summation does not change the f ′(x).

〈ℓ〉 =

∞
∑

l=1

ℓ p∗(l) =
(b− a)

a

f ′(1)

ln(a/b)
=

1

1− a/b
=

b

b− a

(d) For a > b, what is the average length of a filament at time t, starting from individual
monomers at time t = 0? Calculate the fluctuations (variance) in length, and write down an
approximate probability distribution p(ℓ, t) with the correct first and second moment.
• At t = 0 average length is 〈ℓ(t = 0)〉 = 1 and variance is σ2(t = 0) = 0. First we derive
the average length:

∂ 〈ℓ(t)〉

∂t
=

∞
∑

ℓ=1

ℓ
∂p(ℓ, t)

∂t

∂ 〈ℓ(t)〉

∂t
=

∞
∑

ℓ=1

ℓ

(

ap(ℓ− 1, t) + bp(ℓ + 1, t)− (a+ b)p(ℓ, t)

)

∂ 〈ℓ(t)〉

∂t
=

∞
∑

ℓ=1

(

a(ℓ+ 1) + b(ℓ− 1)− (a+ b)ℓ

)

p(ℓ, t)

∂ 〈ℓ(t)〉

∂t
= a 〈ℓ(t)〉+ a + b 〈ℓ(t)〉 − b− (a + b) 〈ℓ(t)〉 = a− b

〈ℓ(t)〉 = (a− b)t + 1

In the same way we can calculate variance:

σ2(t) =

∞
∑

ℓ=1

ℓ2p(ℓ, t)− 〈ℓ(t)〉2

∂σ2(t)

∂t
=

∞
∑

ℓ=1

ℓ2
(

ap(ℓ− 1, t) + bp(ℓ+ 1, t)− (a+ b)p(ℓ, t)

)

− 2(a− b) 〈ℓ(t)〉

∂σ2(t)

∂t
=

∞
∑

ℓ=1

(

a(ℓ + 1)2 + b(ℓ− 1)2 − (a+ b)ℓ2
)

p(ℓ, t)− 2(a− b) 〈ℓ(t)〉

∂σ2(t)

∂t
= a + b

σ2(t) = (a+ b)t
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An approximate probability distribution with correct first and second moment is thus:

p(ℓ, t) =
1

√

2π(a+ b)t
exp

[

−
(ℓ− (a− b)t− 1)2

2(a+ b)t

]

The last result can be obtained also in the continuum limit of the Master equation:

∂p(ℓ, t)

∂t
= a p(ℓ− 1, t) + b p(ℓ+ 1, t)− (a+ b) p(ℓ, t)

∂p(ℓ, t)

∂t
= a

[

p(ℓ, t)−
∂p(ℓ, t)

∂ℓ
+

1

2

∂2p(ℓ, t)

∂ℓ2

]

+ b

[

p(ℓ, t) +
∂p(ℓ, t)

∂ℓ
+

1

2

∂2p(ℓ, t)

∂ℓ2

]

− (a+ b) p(ℓ, t)

∂p(ℓ, t)

∂t
= −v

∂p(ℓ, t)

∂ℓ
+D

∂2p(ℓ, t)

∂ℓ2
,

with v = a− b and D = (a+ b)/2. Average length and variance are thus:

〈ℓ(t)〉 = vt + 1 = (a− b)t + 1

σ2(t) = 2Dt = (a + b)t.

*****

2. Growing/shrinking microtubules: Consider a slightly generalized model of microtubule
growth and shrinkage [M. Dogterom and S. Leibler, Phys. Rev. Lett. 70, 1347 (1993)],
described by the equations

∂tp+(x, t) = −f+−p+ + f−+p− − ∂x (v+p+) + d ∂2
xp+

∂tp−(x, t) = +f+−p+ − f−+p− + ∂x (v−p−) + d ∂2
xp−

(a) Such coupled linear equations are usually solved by first Fourier transforming to p̃(k, ω) =
∫

dxdtei(kx−ωt)p(x, t). Find the dispersion relations for allowed ω(k).
• First we invert the Fourier transform p(x, t) =

∫

dk dω e−i(kx−ωt)p(k, w). Inserting this
into equations above we obtain matrix equation:

iω

(

p̃+
p̃i

)

=

(

−f+− + ikv+ − dk2 f−+

f+− −f−+ − ikv− − dk2

)(

p̃+
p̃i

)

Dispersion relation is obtained from eigenvalues:

ω(k) =
1

2

(

i(f+− + f−+) + k(v+ − v−) + 2idk2

±i
√

(f+− + f−+)2 + 2ik(f−+ − f+−)(v+ + v−)− k2(v+ + v−)2
)

We must choose the negative sign, because ω(k = 0) = 0.
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(b) Expand the ‘slowly varying’ mode as ω(k) = vk + iDk2 + O(k3), and hence obtain the
dependence of the drift velocity and diffusion coefficient of the microtubule length on the
parameters describing the growing and shrinking states.
• Taylor expansion of dispersion relation

ω(k) = k
f−+v+ − f+−v−

f−+ + f+−

+ ik2

(

d+
f−+f+−(v− + v+)

2

(f−+ + f+−)3

)

+O(k3),

gives us velocity and diffusion coefficient:

v =
f−+v+ − f+−v−

f−+ + f+−

,

D = d+
f−+f+−(v− + v+)

2

(f−+ + f+−)3
.

Note that the sign in front of D in dispersion relation (ω(k) = vk ± iDk2), depends on the
sign definition of the Fourier transform (p̃(k, ω) =

∫

dxdte±i(kx−ωt)p(x, t)).

(c) Typical values of parameters for microtubules growing in a tubulin solution of concen-
tration c ≈ 10µM are v+ ≈ 2µm/min, v− ≈ 20µm/min, f+− ≈ 0.004s−1, f−+ ≈ 0.05s−1.
Use these parameters (along with d = 0) to estimate a time scale τ beyond which diffusion
effects are less important than the average drift. (Hence microtubules that have survived to
a time τ are unlikely to be completely eliminated by catastrophes.)
• Plugging in the parameter values in results from previous parts gives velocity v =
0.37µm/min and diffusion coefficient D = 610µm2/min. Using this coefficients we calculate
typical timescale τ of the system

τ =
D

v2
= 4500min = 75hr.

(d) Let us assume a microscopic model in which growth occurs by addition of discrete
molecules of size a at rates r+ to the growing state, and detachment at rate r− shrinking
state. Write the corresponding Master equations and construct their continuum limit.
• Master equation:

∂tp+(x, t) = −f+−p+(x, t) + f−+p−(x, t) + r+p+(x− a, t)− r+p+(x, t)

∂tp−(x, t) = +f+−p+(x, t)− f−+p−(x, t) + r−p−(x+ a, t)− r−p−(x, t)

Continuum limit is obtained by Taylor expansion of terms p±(x∓ a, t):

∂tp+(x, t) = −f+−p+(x, t) + f−+p−(x, t)− ∂x (v+p+) + d+ ∂2
xp+

∂tp−(x, t) = +f+−p+(x, t)− f−+p−(x, t) + ∂x (v−p−) + d− ∂2
xp−,

where v± = ar± and d± = a2r±/2. Unlike in the previous parts in this microscopic model
diffusion constants d± are different.
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*****

3. Internal states: Consider a molecular motor modeled by an asymmetric hopping model
with m internal states. Assume equal forward rates and no backward rates; i.e. ui = u and
wi = 0 for i = 1, · · · , m. Visscher et al., in Nature 400, 184 (1999), use such a model to
estimate the number of (rate limiting) internal states from observations of motion of kinesin
on microtubules. In particular, they measure a ‘randomness parameter’ defined by

r ≡ lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

d 〈x(t)〉
,

where x(t) is the displacement of the motor after a time t, and d is the step size of kinesin
along the microtubule.

(a) Relate r defined above to the parameters v and D of a drift–diffusion equation.
• For drift equation ∂tp(x, t) = −v∂xp(x, t) +D ∂2

x p(x, t) we know that:

∂t 〈x(t)〉 = v,

∂t
〈

x2(t)
〉

c
= 2D.

Thus the randomness is:

r =
2D

dv
.

(b) Obtain v and D in terms of the parameters u, d, and m of the model.
• Let us first consider the case m = 1. This is equivalent to problem 1 (d) with parameters
a = u and b = 0 and we find v = du and D = d2u/2. Introducing m internal variables is
equivalent to rescaling the size of the step d → d/m in continuum limit of drift-diffusion
equation.

v =
ud

m
, D =

ud2

2m2
, r =

2D

dv
=

1

m
.

(c) The experimental data (Fig. 4b of the above reference) indicate r ≈ 1/2 at small force,
and r ≈ 1 at large force. What does this imply about the internal states of the motor?
• For small force there are two (m = 2) internal states (ADP + ATP processes). At large
forces ATP process is dropped and there is only one (m = 1) internal state (ADP process).

*****

4. Two state motor: Let us examine the two-state motor (with step length d) in more detail.
At each site the motor can be in one of two states, indicated by n or n′ for the nth site. The
forward transition rates are u1 (for internal state change from n to n′) and u2 (for hopping
from n′ to n+ 1), and the corresponding backward transition rates are w1 and w2.

(a) Write down the master equations governing the time evolution of the probabilities p(n, t)
and p(n′, t).
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• Master equation:

∂p(n, t)

∂t
= −(u1 + w2)p(n, t) + w1p(n

′, t) + u2p((n− 1)′, t)

∂p(n′, t)

∂t
= +w2p(n+ 1, t) + u1p(n, t)− (u2 + w1)p(n

′, t)

(b) Use Fourier transforms to obtain the dispersion relation ω(k) for the slowly varying
mode.
• Using the same Fourier transform as in problem 2 and expanding probabilities at n± 1
into Taylor series to the second order (because we are interested in the solutions up to the
second order in k), we get matrix equation:

iω

(

p̃
p̃′

)

=

(

−u1 − w2 w1 + u2(1 + ikd− k2d2/2)
u1 + w2(1− ikd+ k2d2/2) −u2 − w1

)(

p̃
p̃′

)

Dispersion relation is obtained from eigenvalues:

ω(k) =
i

2

(

u1 + u2 + w1 + w2

±
√

(u1 + u2 + w1 + w2)2 + 4ikd(u1u2 − w1w2)− 2k2d2(u1u2 + w1w2) + k4d4u2w2

)

We have to choose the − sign, to satisfy ω(k = 0) = 0 condition.

(c) Calculate the drift velocity v, the diffusion coefficient D, and the Einstein force fE, as a
function of u1, u2, w1, and w2.
• From Taylor series expansion of ω(k) = vk + iDk2 we find velocity v and diffusion
coefficient D:

v = d
(u1u2 − w1w2)

(u1 + u2 + w1 + w2)

D = d2
(

(u1u2 + w1w2)

2(u1 + u2 + w1 + w2)
−

(u1u2 − w1w2)
2

(u1 + u2 + w1 + w2)3

)

fE =
kBTv

D
=

kBT

d
(

(u1u2+w1w2)
2(u1u2−w1w2)

− (u1u2−w1w2)
(u1+u2+w1+w2)2

)

(d) Assume that under an external load F , the forward hopping rate changes as u2 →

u2 exp
(

− fd

kBT

)

, while all the other rates remain unchanged. Calculate v(f), and obtain the

stalling force fs.
•

v(f) = d

(

u1u2 exp
(

− fd

kBT

)

− w1w2

)

(

u1 + u2 exp
(

− fd

kBT

)

+ w1 + w2

)
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Stalling force is defined as v(fs) = 0:

fs =
kBT

d
ln

(

u1u2

w1w2

)

(e) Direct observation of kinesin motors moving along microtubules (by Block’s group at
Stanford using in vitro solution of [ATP]=2mM) indicate v ≈ 670nm/s, D ≈ 1400nm2/s,
and fs ≈ 5pN. Data from chemical analysis suggest that forward state changes occur at
rates of u1 ∼ 2×103s−1 and u2 ∼ 50s−1. The backward rates are harder to measure- assume
values of w1 ∼ u1/100 and w2 ∼ u2/100. How consistent are these results with a two state
model?
• From equations for v, D and fs at room temperature we can calculate step size d and
compare the results:

v ⇒ d ∼ 14nm

D ⇒ d ∼ 8nm

fs ⇒ d ∼ 8nm

Because our parameters are not very precise we can conclude that these results are consistent
with two state model even though one of the values is off by factor ≈ 2.

*****

5. Chemotaxis: The motion of E. Coli in a solution of nutrients consists of an alternating
sequence of runs and tumbles. During a run the bacterium proceeds along a straight line for
a time tr with a velocity v. It then tumbles for a time tt, after which it randomly chooses
a new direction n̂ to run along. Let us assume that the times tr and tt are independently
selected from probability distributions

pr (tr) =
4tr
τ 2r

exp

(

−
2tr
τr

)

, and pt (tt) =
4tt
τ 2t

exp

(

−
2tt
τt

)

.

(a) Assuming values of τr ≈ 2s, τt ≈ 0.2s, and v ≈ 30µms−1, calculate the diffusion coefficient
D for the bacterium at long times.
• Directions of runs are uniformly distributed, thus 〈~R(t)〉 = 0, where ~R(t) presents
relative displacement from origin after time t. After N runs and tumbles the average value
of 〈~R2〉 = N 〈ℓ2〉 where 〈ℓ2〉 is averaged square length of each run. For given distribution
averaged square length of each run is:

〈

ℓ2
〉

= v2
〈

t2r
〉

=
3

2
v2τ 2r

For a given distributions the average time spent for N runs and tumbles is 〈T 〉 = N(τr + τt).
For 3D random walk 〈R2〉 = 6Dt, thus the diffusion coefficient is:

D =
〈~R2〉

6〈T 〉
=

3v2τ 2r
12(τr + τt)

= 410µm2s−1,
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(b) In the presence of a chemical gradient the run times become orientation dependent, and
are longer when moving in a favorable direction. For preferred motion up the z axis, let us
assume that the average run time depends on its orientation n̂ according to τr (n̂) = τ0+gn̂·ẑ.
Calculate the average drift velocity at long times.
• Because of the rotational symmetry around ẑ axis the drift velocity is in the ẑ direction.
We need to calculate the average displacement along the ẑ axis in each run:

〈z〉 =
1

2

∫ 1

−1

d(cos θ)v cos θ(τ0 + g cos θ) =
vg

3
,

where we have already used the averaged time in each direction θ. The average time of run
and tumble is:

〈T 〉 = τt +
1

2

∫ 1

−1

d(cos θ)(τ0 + g cos θ) = τt + τ0

Finally average drift velocity along ẑ is:

vd =
〈z〉

〈T 〉
=

vg

3(τt + τ0)

*****
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