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It has recently been demonstrated that many biological networks
exhibit a ‘‘scale-free’’ topology, for which the probability of ob-
serving a node with a certain number of edges (k) follows a power
law: i.e., p(k) ! k!". This observation has been reproduced by
evolutionary models. Here we consider the network of protein–
protein interactions (PPIs) and demonstrate that two published
independent measurements of these interactions produce graphs
that are only weakly correlated with one another despite their
strikingly similar topology. We then propose a physical model
based on the fundamental principle that (de)solvation is a major
physical factor in PPIs. This model reproduces not only the scale-
free nature of such graphs but also a number of higher-order
correlations in these networks. A key support of the model is
provided by the discovery of a significant correlation between the
number of interactions made by a protein and the fraction of
hydrophobic residues on its surface. The model presented in this
paper represents a physical model for experimentally determined
PPIs that comprehensively reproduces the topological features of
interaction networks. These results have profound implications for
understanding not only PPIs but also other types of scale-free
networks.

biological networks ! hydrophobic effect ! scale-free networks

Many studies in recent years have revealed that a large
variety of systems, from the World Wide Web to the

network of chemical reactions catalyzed in a cell, exhibit a
particularly interesting ‘‘scale-free’’ topology when represented
as graphs (1–6). In these systems the probability of finding an
object (or node) that connects k other nodes in the graph follows
a power-law; i.e., the degree distribution [or p(k)] has the form
p(k) ! k"! (1). This observation has (in general) been explained
in terms of dynamical models based on the principles of network
growth and an effective ‘‘preferential attachment’’ whereby
objects that have many links at some point in time are more likely
to acquire nodes as the graph grows than objects with fewer
connections (1, 7). The fact that scale-free networks are so often
observed in biological systems has lead to the proposal that many
evolutionary processes exhibit mechanisms similar to preferen-
tial attachment that are based on the duplication and divergence
of genes (4, 8–11).

One of the biological networks that has undergone consider-
able study is the set of interactions between proteins in the cell.
The advent of high-throughput methods for measuring the
binding of one protein to another using the yeast two-hybrid
(Y2H) system has allowed for the characterization of large
numbers of interactions between proteins in organisms such as
Saccharomyces cerevisiae, Helicobacter pylori, Caenorhabditis
elegans, and Drosophila melanogaster (12–16). Two major inde-
pendent Y2H experiments have been performed to determine
the ‘‘interactome’’ of S. cerevisiae (12, 13), and graphs of these
interactions reveal that these systems constitute scale-free net-
works with power-law exponents ranging from #2.0 to #2.7
(1, 3, 12, 13, 17, 18).

It has long been noted, however, that Y2H screens are rather
inaccurate and can lead to relatively ‘‘noisy’’ sets of interactions

(19–22). Indeed, when the two major S. cerevisiae protein–
protein interaction (PPI) experiments are compared with one
another, one finds that only #150 of the thousands of interac-
tions identified in each experiment are recovered in the other
experiment (22). A similar lack of agreement has recently been
found for independent Y2H experiments in D. melanogaster (23).
Although computational methods have been proposed that may
allow for some reduction of noise, it is clear that the rate of false
positives and false negatives in these experiments may be quite
high (19–22). Moreover, it is known that when a protein is used
as bait (i.e., fused to the DNA-binding component of the Y2H),
it will tend to exhibit more interactions than when used as prey
(19). It is thus very clear that these experiments may contain a
large number of artifacts.

In the present work we have explored these potential artifacts
by considering the hypothesis that the interactions reported by
the Y2H method are dominated by nonspecific interactions
between proteins. This hypothesis is primarily motivated by our
observation that, in general, the connectivity of a given protein
is not well correlated between the Uetz et al. (12) and Ito et al.
(13) experiments (see Fig. 1). We propose an entirely physical
model to explain how two networks with essentially uncorrelated
connectivities could nonetheless display profoundly similar
(scale-free) topologies. We demonstrate that this model, when
combined with an elemental source of experimental noise,
reproduces the degree distributions of the experimentally de-
termined PPI networks. The exposure of random surfaces
between experiments (and thus a varying number of hydropho-
bic residues that thermodynamically drive interactions) is suffi-
cient to explain the lack of correlation between two experiments
that exhibit scaling in their degree distributions. We further show
that ‘‘higher-order’’ features of these networks, such as the
scaling of the clustering coefficient of a node with its connec-
tivity (i.e., C as a function of k), are also recovered in this model.
These results indicate that the observation of such topological
features is not contingent on any specific evolutionary dynamics
or evolutionary pressure for such networks to be ‘‘robust,’’
‘‘hierarchical,’’ or ‘‘modular,’’ as has been previously proposed.
Finally, we observe a strong correlation between the hydropho-
bicity of a protein and its number of interacting partners, a
finding that is in complete agreement with our physical model.
Together these results demonstrate that the PPIs as assayed by
the Y2H techniques need not report only evolved and specific
interactions and that the interesting (nonrandom) topological
features of these graphs need not have an evolutionary origin.
Although our results do not indicate that these networks contain
no evolutionarily or biologically important information, they do
imply that a large number of observations in these and (perhaps)
other biological networks might contain considerable influences
from nonspecific interactions.
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Materials and Methods
Interaction Data. All of the interaction data used in this paper was
obtained from the web site maintained by the authors of the
relevant references, i.e., Uetz (12) and Ito"ItoCore (13). Inter-
actions were obtained from these experiments and were not
modified or filtered in any way.

Hydrophobicity. To determine the exposed hydrophobicity of
proteins in these experiments (for use in determining the surface
fraction of hydrophobic residues, p, and creating the correlations
as discussed below), we employ an approximate ‘‘homology
modeling’’ procedure whereby solvent accessibilities obtained
from crystal structures are transferred to residues in the yeast
proteins that align to the structurally determined homolog. This
procedure is discussed in greater detail in the supporting infor-
mation, which is published on the PNAS web site.

Results and Discussion
Correlations in the Number of Interacting Partners. To further
explore the scale-free graphs obtained from these potentially
noisy experiments we considered the graph of interactions
between proteins for the 676 proteins that exhibited interactions
in both the Uetz et al. (12) and the Ito et al. (13) experiments.
We then compared the number of interactions measured for a
given protein in one of the assays to the number of interactions
for that same protein observed in the other assay. As evidenced
by Fig. 1a, the correlation between the degree of a given protein
in the two experiments is quite weak, with an R2 of 0.18 for nodes
of all degrees and an R2 of 0.068 if the three outliers are ignored
(i.e., considering only nodes of degree $20). The situation is

much the same when the comparison is made with the more
reliable ItoCore data set (13) (Fig. 1b). These very low R2 values
are striking, considering that they represent the same proteins
from the same organism assayed in very similar experiments, and
it is clear that these two graphs, although topologically similar,
are statistically unrelated. If one set of interactions is assumed
to represent the ‘‘true’’ set of evolved PPIs in yeast, it follows that
the other graph must consist largely of experimental noise, a
finding that casts doubt on the reliability of either data set.
Indeed, this observation may indicate why the number of inter-
actions made by a protein in PPI networks is only very weakly
correlated with evolutionary rates (24).

The fact that these networks are scale-free, however, rules out
the possibility that apparent PPIs in either case are entirely
random: If they were, the graph would represent a random graph
and one would observe a Poisson or Gaussian degree distribu-
tion in the resulting networks (1). To reconcile these two
observations, we posit a simple physical model of PPIs. First, we
assume that much of the free energy of binding that characterizes
a particular PPI is due to the burial and desolvation of hydro-
phobic groups at the binding interface (25–28). In this case, we
hypothesize that the low correlation in connectivity between the
two data sets is largely due to the exposure of different surfaces
for each protein in each of the Y2H experiments.

The MpK Model. Suppose there are N surface residues for a
particular protein, and a given fraction p of them are hydropho-
bic. Say that M of those residues are actually exposed and
involved in binding the other proteins in the experiment, and that
K out of those M residues are hydrophobic. If we assume that M
is sampled from N randomly and independently, it is clear that
the probability of finding K hydrophobic residues within M
follows a binomial distribution:

p%K& " #M
K$pK%1 # p&M"K. [1]

In this case, each PPI will result in the burial of a certain total
number of hydrophobic groups; i.e., Kij ' Ki ( Kj (see Fig. 2).
The desolvation of Kij hydrophobic residues is related to the free
energy of protein binding and represents a standard way to treat
the strength of hydrophobic interactions (25–27). In this case we
simply take the free energy of binding Fij to be equal to "Kij. The
Y2H experiments are based on binding affinity, not binding free
energy, and it follows from statistical mechanics and thermody-
namics that the affinity Aij between two proteins i and j will
follow Aij ! exp("Fij) if we set the temperature scale of our
experiment such that kT ' 1. To build a PPI network we define
an experimental limit of sensitivity AC corresponding to the
weakest interaction (the interaction that buries the fewest hy-
drophobic groups) that is nonetheless sufficiently strong to be
detected by the experiment. AC is directly related to the number
of hydrophobic residues that must be buried to observe an
interaction (i.e., KC).

To simulate this model we must first understand the distri-
bution of p values for proteins in the experiment; therefore, we
employ a simple homology modeling procedure (described in the
supporting information) to transfer solvent accessibilities from
proteins of known structures to their corresponding homologs
from the Ito Y2H data set. We find that this distribution is well
fit by a Gaussian function (see Fig. 2b). In our model of the Y2H
experiment, we sample 3,200 values of p from a Gaussian
distribution with the same mean and standard deviation (Fig.
2b). We use the same value of M for each protein in the
experiment given that the stereotypical size of the binding
surface is not determined by the surface area of the protein itself
but rather the average size of the interface across all of the other
proteins in the experiment. The choice of M is essentially

Fig. 1. Correlation between PPI networks. (a) The correlation between the
network degree of a given protein in the Ito (13) and Uetz (12) data sets. Each
point corresponds to a particular protein that exhibited interactions in both
experiments. (b) A plot similar to a but comparing the ItoCore data set with
Uetz.
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arbitrary (see the discussion of AC below and in the supporting
information), and in the case of our results it is set to be 100.

We find that, within certain ranges of AC (and its logarithm
KC), the networks created by this MpK model discussed above
exhibit degree distributions that are well fit by power-law
functions; a representative example is shown in Fig. 2c (for a
discussion of the variance in the degree distributions for differ-
ent realizations of this model, see the supporting information).
This model indicates that, at stringent cutoffs, many of the nodes
in the graph are orphans, a finding that fits well with experi-
mental observations from both the Uetz and ItoCore data sets
(12, 13) (note that, in contrast to the graphs from Fig. 3, orphans
are displayed on the log–log plot in Fig. 2c by adding 1 to the
degree of each node). This finding indicates that the apparent
scaling in these systems could very easily arise from a set of
completely nonspecific interactions that contain no evolutionary
information. AC determines the apparent power-law exponent !
and is the only truly fittable parameter in the model; for any
value of M that is sufficiently large to capture the differences in
p that exist in the population, one may obtain a degree distri-
bution of a given ! simply by changing the value of AC. The
dependence of ! on the cutoff parameter, as well as the
distribution of ! values obtained from different realizations of
the MpK model at a given cutoff, are explored in greater detail
in the supporting information. We have also solved the MpK
model analytically in the limit of high connectivity and find that

the power-law fit we observe is well justified given the limited
number of proteins we are simulating (for a discussion of this
analytical work, see the supporting information). This solution
explicitly demonstrates that the power-law exponent should be
related to the cutoff parameter (AC or the cutoff in buried
hydrophobicity, KC). Although this model is mathematically
related to other static models of scale-free networks (29), it is
important to note that our model represents a model of PPI
networks that attempts to consider the physics of protein binding
and is based on a Gaussian distribution of some underlying
property. It should also be noted that, although the MpK model
represents a very useful model for comparison with the exper-
imental results (see below), it is actually simply one member of
a large class of models that produced scale-free networks based
on Gaussian distributions of quantities from which graphs are
built (see the analytical solution in the supporting information
for an example of one such related model).

Random Noise. The above model, although suggestive, is not
necessarily a complete model of all of the PPI experiments; for
instance, in the case of the original Ito data set, the number of
orphans is much smaller (the experiment reports many more
connected nodes than our model predicts), and the degree
distribution deviates from power-law behavior at small values of
k (6). To better model both of these experimental observations,
we add an elemental source of noise to our model by linking a

Fig. 2. A physical model for PPI measurements. (a) A schematic of the model described in the text. Association free energies are largely the result of desolvation
of the two protein surfaces. The overall burial of hydrophobic groups is represented by the sum of the contributions from each protein. (b) The distribution of
surface hydrophobicities in yeast proteins. The fraction of surface residues that are hydrophobic (defined as residues AVILMFYW) is calculated according to the
description in the supporting information. This distribution is taken from proteins in the Ito experiment (13). The red squares represent the model
hydrophobicities sampled from a Gaussian distribution with the same mean and standard deviation as the Ito proteins themselves. (c) A degree distribution for
the realization of the model used in b. The cutoff was chosen such that the power-law fit gives an exponent of approximately"2.0, close to that of Ito graph.
The degrees in this plot are shifted by (1 to allow for orphans (nodes of degree 0) to be displayed on a log–log plot. Note that the fraction of orphans in the
graph is very high.
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number of orphans to randomly chosen nodes in the graph. To
model a particular data set, we first fit the value of AC to the
power-law exponent that is observed in the experimental data.
We randomly connect a number of orphans to nodes in the graph
to obtain a number of connected nodes in the graph exactly equal
to the number of connected nodes in the data set. The degree
distributions of these random linking graphs exhibit surprisingly
good agreement with the experimental results in all cases (see
Fig. 3a for the Ito model and the supporting information for the
ItoCore and Uetz models). The relationship between Ito and
ItoCore is quite natural in this model: ItoCore is a data set that
is obtained at higher stringency [representing the greater num-
ber of colonies needed to count an interaction in the ItoCore
case (13)] with less random noise, and this is represented in the
model by a higher value of AC and fewer random links. The
number of edges in the resulting graph is generally very close to
that in the data set that is being modeled; for instance, in the case
shown in Fig. 3a the number of edges is 2% larger than the
number in the Ito data set (the results are similar for ItoCore and
Uetz; see the supporting information). Although the above
algorithm represents only one method of adding random noise

to the system, other random linking strategies (such as adding a
random link to every node in the graph regardless of connec-
tivity) yield similar results (see the supporting information). In
this model, the exposure of two different surfaces for individual
proteins in the Uetz and Ito experiments represents creating
graphs from two independent realizations of the MpK model,
holding p fixed for each model protein but resampling K inde-
pendently. Two model graphs sampled in this way exhibit a very
low correlation between connectivities, as expected (Fig. 3b). In
this case, the value of R2 is 0.012, an order of magnitude smaller
than that observed for the Ito vs. Uetz data sets, indicating that
samplings of the surfaces in the two experiments are most likely
not completely unrelated to one another. Nonetheless, the above
results demonstrate that a purely physical model can produce
networks that are unrelated topologically but nonetheless scale-
free from a single population of proteins.

Recent studies have indicated that topological properties aside
from the degree distribution also exhibit interesting scaling
behaviors in the PPI and other biological networks (6, 17,
30–32). Perhaps most interesting is the fact that the clustering
coefficient of a node (a measure of the tendency of a node’s
neighbors to contact one another, denoted C) scales with the
degree of the node; i.e., C(k) ! k"2 (17, 30, 32). This finding has
been explained in terms of a tendency for such networks to
display ‘‘hierarchical modularity,’’ but we find that our purely
physical model displays similar scaling behavior in the absence
of any considerations of modularity (supporting information).
We also find that other, higher-order features of the graph, such
as the relationship between the connectivity of a node and the
average connectivity of its neighbors (31), is also observed in our
physical model (supporting information). It is therefore clear
that interpretation of global topological features in light of
evolutionary or functional pressures is difficult to evaluate in the
absence of purely physical, nonevolutionary controls, and these
results highlight the potential utility of our model as a ‘‘null
model’’ for understanding such observations in the future.
Although it has also been shown that more local properties of a
graph may potentially contain interesting evolutionary traces
(33, 34), we leave exploration of those properties to future work.

Correlation between Connectivity and Hydrophobicity. Although the
above graph theoretic results are suggestive, our model makes
another key testable prediction that explicitly relates the MpK
model to the physical reality of protein–protein binding. Spe-
cifically, our model suggests that a relationship should exist
between the connectivity of a protein in the PPI network and the
surface hydrophobicity of that protein. In the case of the
experimental data, we do not know which specific surface is
exposed in the experiment; we only know the (approximate)
value of p for a subset of proteins. In the MpK model, it is clear
that the average value of K will follow

)K* " Mp, [2]

with a standard deviation ($K) of

$K " %M%p&%1 # p&. [3]

These features of the binomial distribution of K indicate that
averaging over populations of proteins with similar values of p
should provide a method for overcoming the inherent uncer-
tainty in the relationship between p and K (especially at values
of p of #0.5, where $K is maximal). We thus expect a strong
correlation between )log(k)* and )p* at some bin size in p and a
weak correlation between log(k) and p for individual proteins
[given that affinity, not free energy, determines connectivity, the
log(k) gives a stronger correlation than k]. The model also
predicts that $K will increase with increasing p up to p ' 0.5. The

Fig. 3. Degree distributions and correlations for model PPI networks. (a)
Comparison of degree distributions for the Ito data set (13) and a realization
of the random linking model. In this case, all orphans from the model graph
of 3,200 nodes are connected to one node that does exhibit connections
randomly. The line represents a power-law with an exponent of "2. The
degrees in this plot are not shifted as they are in Fig. 2c. (b) The correlation
between degrees for in the model of Ito (13) compared with the model of Uetz
(12). In this case, the different experiments are represented as independent
sampling of values of K from a population of proteins with the distribution of
p values shown in Fig. 2b. The Ito model is equivalent to the random linking
results in a, and the Uetz degrees are taken from its random linking model (the
degree distribution for that graph may be found in the supporting informa-
tion). The linear correlation is 0.04 in this case.
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MpK model therefore provides a mechanism whereby the em-
pirically observed hydrophobicity distribution presented in Fig.
2b can be compared with the connectivities obtained from the
Y2H experiments.

The above analysis introduces a new parameter into the
system; namely, the bin size in p over which the averaging occurs.
In general, larger bin sizes result in larger correlations but
weaker statistical significance given the fact that fewer points are
used to calculate the correlation. If we take the largest bin size
in p that nonetheless results in a statistically significant corre-
lation (P $ 0.05), we find that the correlations between )log(k)*
and )p* are 0.84 for ItoCore, 0.79 for Uetz, and 0.17 for Ito (P
values of 0.012, 0.025 and 0.014, respectively). The bin size for
ItoCore, Uetz, and Ito in this case is 0.05, 0.05, and 0.001 units
in p, respectively (although it is important to note that a
correlation of 0.74 exists for Ito at a bin size of 0.05, but the P
value in this case is 0.052, just above the P-value cutoff for
significance). The maximum correlation is displayed for ItoCore
and the ItoCore model graph (the graph with the degree
distribution shown in Fig. 3a) in the supporting information (the
maximum for the ItoCore model is 0.89 and occurs at a bin size
of 0.05). The dependence of R on the bin size is similar between
the model and the data (Fig. 4 for ItoCore and the supporting
information for Uetz and Ito), although the correlation at
intermediate bin sizes is somewhat larger in the model in all
cases. The lower correlations in the experimental data are likely
due to the fact that p is only approximately known for the
proteins in the data sets but is exactly known for the model and
the fact that every hydrophobic residue contributes equally to
binding, whereas, for the experimental PPI networks, more bulky
hydrophobic residues may contribute more to stickiness and thus
to connectivity. In the case of the Ito data, our random-linking
model indicates that there is a significant amount of noise at low
values of k (especially for those nodes with k ' 1). Consistent
with this finding, the maximal correlation between )log(k)* and
)p* in Ito increases to 0.89 (P ' 0.019) at a bin size of 0.05 when
all k ' 1 nodes are removed from the data set (see the supporting
information).

It is important to note that the binning procedure does not
produce statistically significant correlations between connectiv-
ity and other types of amino acids. For instance, we observe no
statistically significant correlation between the percentage of

charged amino acids (DEKR) on the surface and connectivity,
despite the fact that such residues have been implicated in the
determination of specificity in PPIs. The raw correlation be-
tween the percentage of charged residues on the surface and the
log of connectivity is "0.09 for the ItoCore data set, and we
observe no statistically significant correlation at any bin size (see
Fig. 4; P values in this case are between 0.15 and 0.3 for all bin
sizes, indicating a lack of statistical significance). As a further
control, we calculated the correlation between connectivity and
the percentage of eight randomly chosen amino acids and again
find no statistically significant correlations at any bin size (data
not shown). From these results it is clear that binning alone does
not guarantee strong and statistically significant correlations.

A clear and nontrivial prediction of our model is that the
standard deviation in the log of the connectivity will increase
as the hydrophobicity of the surface increases up to a maxi-
mum at 0.5. The increase in standard deviation arises from the
fact that higher values of p simply represent the possibility that
a protein will expose a large number of hydrophobic residues
(and thus exhibit a large connectivity) but does not ensure that
the subset of residues that actually are involved in binding are
actually hydrophobic. Consistent with this prediction, we find
an increase in the dispersion in connectivity with increasing )p*
(see Fig. 5 for the ItoCore and model results). We observe the
same behavior is true for all of the experimental data sets (data
not shown). Although the correlation results themselves rep-
resent strong support of our model, one could posit that
proteins that make a large number of specific connections (as
reported by the Y2H system) have simply evolved to be more
hydrophobic. This argument would predict, however, that
hydrophobic proteins would have universally large numbers of
specific, evolved interactions, a finding that is directly contrary
to our observation of increasing dispersion with increasing )p*.
It is therefore clear that the MpK model not only reproduces
the lack of correlation between independent realizations of the
same PPI experiment but also the dependence of both the
average and standard deviation in connectivity as a function of
hydrophobicity.

The model discussed above represents an extremely attractive
alternative to evolutionary models of these graphs given that this
model is inherently simpler and is based on very basic physical
properties and not elaborate evolutionary mechanisms. This
model also explains a number of the observations that have been
made regarding PPI networks: the existence of scale-free net-

Fig. 4. Correlations between hydrophobicity and connectivity. The depen-
dence of the correlation between )log(k)* and )p* as a function of the bin size
in p used to define the populations over which p and log(k) are averaged. The
dependence for hydrophobic residues is very similar between the ItoCore data
and the physical model for ItoCore. In the case of the charged data set, p is
taken to be the percentage of charged residues on the surface, and the
correlation dependence is calculate exactly as for the hydrophobic residues.
None of the correlations for the charged data set are statistically significant.

Fig. 5. Standard deviation in connectivity. As predicted by the MpK model,
in the model and the ItoCore network, the standard deviation of log(k) in a
given bin in p increases with increasing )p* for that bin. The bin size is set at 0.05
for the model and experimental networks. The lack of a maximum at p ' 0.5
(as predicted by Eq. 3) is due to the fact that very few proteins exist in those
bins with large )p*, decreasing the standard deviation for the most hydropho-
bic bin in each case.
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works in very noisy experiments, the lack of correlation between
degrees in Uetz and Ito, the promiscuity of baits when compared
with preys, and the scaling of C with k. The model reproduces
such features of the experimental PPI networks based on only
one fittable parameter (AC). To our knowledge, no evolutionary
model has exhibited all of the above features. Indeed, evolu-
tionary models that produce pseudobipartite structures (35) are
inherently unable to reproduce the observed p(C) distribution
and C(k) behavior because each node in these networks has C '
0. Finally, the correlation of k with the fraction of hydrophobic
surface residues (and the strong similarity in the behavior of this
correlation between the model and the data as a function of the
bin size in p) is a straightforward demonstration of the feasibility
of our physical model.

Although the results of our model are very suggestive, our
findings do not imply that the PPI experiments or especially
curated online PPI databases do not contain any relevant
biological or evolutionary information at all. Indeed it is possible
to find weak correlations between biological observables and PPI
network quantities (24), just as it is possible to find cases in which

network features replicate findings from more careful biological
studies. These weak correlations are completely consistent with
a picture in which the majority of links in the network are the
result of nonspecific interactions or experimental noise. Our
results strongly indicate, however, that the interpretation of
graph theoretic features of high-throughput experiments in the
light of evolutionary processes must be tempered by the explo-
ration of alternative physical hypotheses; indeed, this physical
picture represents a null model against which future results
regarding PPI networks should be measured. The model dis-
cussed above, although very important in terms of the PPI
network, might also be used in various forms to describe other
types of scale-free networks. Physical models based on additive
or multiplicative processes could be used to provide explanations
for many scale-free graphs, especially those that involve net-
works of macromolecules that bind one another.
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