Introduction to biological networks

Outline

- Measurements
- Analysis
- Modelling

Outline

- Measurements
+ Expression
+ Protein-protein interactions
+ Protein-DNA interactions
- Analysis
- Modelling

Wanted measurements:

1. Concentration of mRNA RNA(t,c)
2. Concentration of protein Protein (t, \mathbf{c})
3. Protein interactions K(Protein1,Protein2|t, c)
4. Protein-DNA interactions K(Protein,Site|t, c)

Expression

Expression

- mRNA level (average over many cells) at
- different time points
- different conditions
- Expression profiles
- Demo

Demo http://www.bio.davidson.edu/courses/genomics/chip/chip.html

DNA chip measurements

Make fluorescently labeled complements of all present mRNAs

DNA chip measurements

Hybridization

DNA chip

GeneChip ${ }^{\circledR}$ Probe Array

cDNA microarray exp \dagger

cDNA Spotted Microarrays

Outcome

- mRNA level (average over many cells) at
- different time points
- different conditions
- different tissues
- normal and malignant samples

Expression profiles

Expression profile

Expression profile: cell cycle

Research problems

1. Find genes that are differentially expressed, e.g. in response to perturbation.
2. Compare profiles and group genes or conditions that exhibit similar expression profiles: clustering.
3. Compare samples from two (or more) tissues and find features that can discriminate tissue, e.g. expression signatures of cancer types.
4. Given expression profiles from various perturbation experiments, infer the regulatory network.
5. Compare expression of different organisms alignment of profiles/networks.

Data

1. High coverage (all genes)
2. Average over large population of cells
3. Significant level of experimental noise
4. Hard cross-platform comparison
5. Few data-points

Protein-protein Interactions

Protein-protein Interactions

Yeast two-hybrid assay:
Does a protein A interact with B ?

Protein-protein Interactions

Large scale yeast two-hybrid assay:
Find pairs of interacting proteins

A comprehensive two-hybrid analysis to explore the yeast protein interactome. Ito T et al, PNAS 2001
A comprehensive analysis of protein-protein interactions in S. cerevisiae.
P. Uetz et al, Nature 2000

Research problems

1. Characterize statistical properties of the network.
2. Connect statistical properties to biological function and evolution.
3. Reveal biologically important features of the network e.g. clusters or motifs.
4. Use networks to predict function of specific genes.
5. Compare/align networks.

Data

1. Many genes (up to 30\%).
2. Measurements in vivo, but not in the endogenous cells.
3. Average over large population of cells.
4. High level of false-positives.
5. Non discrimination between direct and indirect interactions.
6. No quantitative measure of the interaction strength.

Protein-DNA interactions

Chromatin Immunoprecipitation (ChIP)

ChIP chip measurements

DNA
PROBES ON A CHIP
For promoters ($\sim 1-2 \mathrm{~Kb}$ around start of a gene)
Or tiling array of the whole genome
$-\infty-\infty-\infty-\infty-\infty$

Make fluorescently labeled complements of DNA fragments bound to the protein of interest

ChIP chip measurements

For promoters ($\sim 1-2 \mathrm{~Kb}$ around start of a gene)

$$
\square \square \square \square \square \square \square
$$

Or tiling array of the whole genome

HYBREDIZATION

protein-DNA interactions

Chromatin Immunoprecipitation (ChIP)

Research problems

1. Find motifs recognized by each DNA-binding protein.
2. Find genes regulated by these proteins.
3. Use networks to predict function of specific genes.
4. Characterize statistical properties of the network.
5. Compare/align networks.

Biochemical reactions

- Biochemical, metabolic reactions -"Chemical engine" - Determines cell physiology - Similar in all organisms.
- KEGG
- EcoCyc
- Metabolic Fluxes

the other chart: Cellular and Molecular Processes

Metabolic Pathways

Metabolic Pathways

KEGG database

Examples of biological networks

- Regulation

Drew Endy (MIT)

Outline

- Measurements
- Analysis
+ Expression
+ Interactions/Reactions

Alignment of networks

b

Cross-species analysis of biological networks by Bayesian alignment

Clusters in PPI networks

Fig. 2. Fragment of the protein network. Nodes and interactions in discov
ered clusters are shown in bold. Nodes are colored by functional categories in
为
tional modules in molecular networks

Global protein function prediction from protein-protein interaction networks

Alexei Vazquez, Alessandro Flammini, Amos Maritan \& Alessandro Vespignani

Clustering

STATEMENT OF THE PROBLEM

GIVEN DATA POINTS $\mathbf{X}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \mathrm{~N}$, EMBEDDED IN D - DIMENSIONAL SPACE, IDENTIFY THE UNDERLYING STRUCTURE OF THE DATA. AIMS: PARTITION THE DATA INTO M CLUSTERS, POINTS OF SAME CLUSTER - "MORE SIMILAR"

- M ALSO TO BE DETERMINED!
- GENERATEDENDROGRAM,
- IDENTIFY SIGNIFICANT, "STABLE" CLUSTERS
"ILL POSED": ■ WHAT IS "MORE SIMILAR"?
- RESOLUTION

Eytan Domany@Weizmann

Gene expression

Clustering

CLUSTER ANALYSIS YIELDS DENDROGRAM

 T (RESOLUTION)

Eytan Domany@Weizmann

CLUSTERING METHODS

-AGGLOMERATIVE HIERARCHICAL
-AVERAGE LINKAGE (GENES: EISEN ET. AL., PNAS 1998)
-CENTROID (REPRESENTATIVE)
-SELF ORGANIZED MAPS (KOHONEN 1997;
(GENES: GOLUB ET. AL., SCIENCE 1999)
--K-MEANS (GENES; TAMAYO ET. AL., PNAS 1999)
-PHYSICALLY MOTIVATED
-DETERMINISTIC ANNEALING (ROSE ET. AL.,PRL 1990; GENES: ALON ET. AL., PNAS 1999)
-SUPER-PARAMAGNETIC CLUSTERING (SPC)(BLATT ET.AL. GENES: GETZ ET. AL., PHYSICA 2000,PNAS 2000)

Hierarchical (bottom-up) clustering

- Hierarchical agglomerative clustering:
we sequentially merge the
pair of "closest" points/clusters
- The procedure

1. Find two closest points (clusters) and merge them
2. Replace clusters with pseudo-points.
3. Proceed until we have a single cluster (all the points)

- Two prerequisites:

1. distance measure between two points
2. distance measure between clusters and
way of replacing clusters with points(cluster linkage)

- No notion of optimality, greedy algorithm

Clustering

a) Single linkage

$$
d_{k l}=\min _{i \in C_{k}, j \in C_{l}} d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

b) Average linkage

$$
d_{k l}=\frac{1}{\left|C_{l}\right|\left|C_{k}\right|} \sum_{i \in C_{k}, j \in C_{l}} d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

c) Centroid linkage

$$
d_{k l}=d\left(\overline{\mathbf{x}}_{k}, \overline{\mathbf{x}}_{l}\right), \quad \overline{\mathbf{x}}_{l}=\frac{1}{\left|C_{l}\right|} \sum_{i \in C_{l}} \mathbf{x}_{i}
$$

Clustering

K-means

- Start with random
positions of centroids.

Iteration $=0$

K-means

- Start with random positions of centroids.
- Assign data points to centroids: find closest centroid for each point

Iteration $=1$

K-means

- Start with random
positions of centroids.
- Assign data points to centroids: find closest centroid for each point - Move centroids to center of assigned points

Iteration $=1$

K-means

- Start with random positions of centroids.
- Assign data points to centroids: find closest centroid for each point
- Move centroids to center
of assigned points
-Iterate till minimal cost:
sum of distances to

centroids

K-means - Summary

- Result depends on initial centroids' position
- Fast algorithm: compute distances from data points to centroids
- Must preset K
- Clusters are convex and comact
- Fails for non-spherical distributions

Super-paramagnetic clustering (SPC)
 - Potts model

- a spin in each node
- connected spins inte $s_{i}=1, \ldots q$

$$
J_{i j}>0
$$

$$
\mathcal{H}(\mathcal{S})=\sum J_{i j}\left(1-\delta_{s_{i}, s_{j}}\right)
$$

- Order Parameter

$$
\begin{aligned}
N_{\max }(\mathcal{S}) & =\max \left\{N_{1(\mathcal{S})}, N_{2}(\mathcal{S}), \ldots N_{q}(\mathcal{S})\right\} \\
m(\mathcal{S}) & =\frac{q N_{\max }(\mathcal{S})-N}{(q-1) N}
\end{aligned}
$$

3circles:

$\mathrm{N}=4800$ POINTS $\mathrm{IN} \mathrm{D}=2$

identifying stable clusters

Same data - Average Linkage

Same data - Average Linkage

Choosing a value for T

Chosen clusters

Progression of the cell-cycle

Statistical properties of biological networks

Metabolic Pathways

KEGG database

Andreas it's not a random graph!

Mol. Biol. Evol. 18(7):1283-1292. 2001

Other power-law networks

Barabasi A et.al. Nature:411(2001)
Other power-law networks:

- Metabolic network
- Network of social interactions:
scientific collaborations, actors in films
- The Internet:
links, physical connections

it's not a random graph!

Table 1
Comparison of Statistical Features Between Random Graphs and the Yeast Protein Interaction Network

	Yeast	Random Graphs	
		ER	$\begin{gathered} \mathrm{PL} \\ (\tau=2.5) \end{gathered}$
Whole graph			
Nodes	985	984.02 (10.39)	970.7 (81.57)
Degree.	1.83	1.85 (0.98)	1.64 (1.76)
No. of components.	163	108 (8)*	266.3 (30.6)*
Giant component			
Nodes	466	624.0 (38.7)*	336.9 (86)
Degree.	2.3	2.07 (1.05)	2.50 (2.6)
Clustering coefficient ($\times 10^{-3}$)	22	0.59 (0.9)*	4.02 (2.3)*
Characteristic path length	7.14	15.88 (1.76)*	6.01 (1.14)

$$
\text { Random vS power-law }
$$

Barabasi A et.al. Nature:411(2001)
Wagner A Mol Biol Evol:18(2001)
The network of protein-protein interactions
(and other molecular biological networks)
are power-law networks!
WHY?
• Power law networks are "better"...
OR/AND
• Biological networks became power-law due to
evolution.

Figure 2 Changes in the diameter d of the network as a function of the fraction f of the removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network models, each containing $N=10,000$ nodes and 20,000 links (that is, $k=4$).

Figure 3 Network fragmentation under random failures and attacks. The relative size of the largest cluster S (open symbols) and the average size of the isolated clusters s (filled symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is, $S=1$

Figure 3 Network fragmentation under rando the largest cluster S (open symbols) and the a symbols) as a function of the fraction of remo The size S is defined as the fraction of nodes , for $f=0$). a, Fragmentation of the exponential and attacks (circles). b, Fragmentation of the : (blue squares) and attacks (red circles). The ir whole range of f, indicating that the main clus completely deflated

Random
 Power-law

Equally stable to random failures

More sensitive to attacks

POWER-LAW NETWORKS

- Tolerant to random "attacks",
- But more sensitive to targeted attacks!

Evolution of power-law graphs

1. Growth
2. Preferential attachment

Albert and Barabasi 2000
Herbert A. Simon 1955
Yule 1925

Evolution of power-law graphs

1. Growth
2. Preferential attachment

Alberts and Barabasi 2000
Herbert A. Simon 1967

Evolution of graphs

- Growth

1. start with mo nodes
2. add a node with m edges
3. connect these edges to existing nodes at timestep \dagger : $\dagger+$ mo nodes, tm edges

Evolution of graphs

- Preferential attachment

Probability Π of connection to node i depends on the degree k_{i} of this node.
E.g. $\quad \Pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{j} k_{j}}$
"Rich gets richer"

Yule model
 Growth of biological genera (families)

1. New species evolve at a constant rate
2. Out of new m species, one diverges to form a new family
equivalent to:
Measure time in the number of families
At each time step:
3. a new family is created.
4. m species are placed in existing families with prob. ~ to the number of species in each family.

Yule model

Measure time in the number of families
At each time step:

1. a new family is created.
2. m species are placed in existing families with prob. ~ to the number of species in each family.

$$
\begin{aligned}
& p_{k}=\frac{k-1}{k+1+1 / m} p_{k-1} \\
& p_{k} \rightarrow k^{-\alpha} \quad \alpha=2+1 / m
\end{aligned}
$$

[Alberts and Barabasi, 2000] = [Yule, 1925 for $\mathrm{m}=1$]

Better evolution of graphs

A. Wagner, M.Lassig, A.Maritan etc

- Gene duplication
- Mutations
- Preferential attachment

More biological neutral evolution of graphs

A.Wagner, M.Lassig, A.Maritan, S.Redner etc.

- Gene duplication

- Mutations
a)

More biological neutral evolution of graphs

A.Wagner, M.Lassig, A.Maritan, S.Redner etc.

- Gene duplication

- Mutations (rich gets richer)
a)
$0-$

=> Broad (not power-law) distribution!

More biological neutral evolution of graphs

- Gene duplication and re-wiring

Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network
J. Kim ${ }^{1}$, P. L. Krapivsky ${ }^{2}$, B. Kahng ${ }^{1}$, and S. Redner ${ }^{2}$

FIG. 1. Growth steps of the protein interaction network: The new node duplicates 2 out of the 3 links between the target node (shaded) and its neighbors. Each successful duplication occurs with probability $1-\delta$ (solid lines). The new node also attaches to any other network node with probability β / N (dotted lines). Thus 3 previously disconnected clusters
are joined by the complete event.

A biophysical model of apparent power-law

A simple physical model for scaling in PNAS | January 10, 2006 protein-protein interaction networks
Eric J. Deeds*, Orr Ashenberg ${ }^{\dagger}$, and Eugene I. Shakhnovich ${ }^{\ddagger 5}$

A biophysical model of apparent power-law

A simple physical model for scaling in PNAS | January 10,2006 protein-protein interaction networks

Eric J. Deeds*, Orr Ashenberg ${ }^{\dagger}$, and Eugene I. Shakhnovich ${ }^{\ddagger 5}$

Binding constant $\mathrm{Kd}=\exp (-\Delta \mathrm{G} / \mathrm{kT})$
Bound in experiment: $\mathrm{Kd}<\mathrm{Kc}$
If $\Delta \mathrm{G}$ is distributed normally

$$
\mathrm{P}(\Delta \mathrm{G}) \sim \exp \left(-(\Delta \mathrm{G}-<\Delta \mathrm{G}>)^{2} /\left(2 \mathrm{~s}^{2}\right)\right)
$$

then
$\mathrm{P}(\mathrm{Kd}) \sim \exp \left((\log (\mathrm{Kd})-\mu)^{2} /\left(2 \mathrm{~s}^{2}\right)\right)<--$ looks like power-law!

Connecting to biology

Lethality and centrality (2001)
 H. Jeong*, S. P. Mason \dagger, A.-L. Barabísi*.

 Z. N. Oltvai \dagger

Lethality and centrality in protein networks

Lethality and centrality (2008)

Network properties of genes harboring inherited disease mutations
Igor Feldman*, Andrey Rzhetsky**, and Dennis Vitkup**

Generalization of evolution by duplication and attachment

For fixed parameters, $\gamma \in \mathbf{R}, 0 \leq p<1$ and a positive integer $k>1$, begin with k bins, each containing one ball and then introduce balls one at a time. For each new ball, with probability p, create a new bin and place the ball in that bin; with probability $1-p$, place the ball in an existing bin, such that the probability the ball is placed in a bin is proportional to m^{γ}, where m is the number of balls in that bin.

Generalization of evolution by duplication and attachment

	Finite Polya process $p=0$	Infinite Polya process$0<p<1$	
$\gamma>1$	one bin dominates	one bin dominates	
$\gamma=1$	Polya's urn problem	power law distribution	$f_{i} \propto i^{(-1+1 /(1-p))}$
$0<\gamma<1$	all bins grow at the same rate asymptotically	exponentially decreasing assuming (*)	$f_{i} \times i^{-\gamma} e^{-K i^{1-\gamma} /(1-\gamma)}$
$\gamma=0$			$f_{i} \propto(K+1)^{-i}$
$\gamma<0$			$f_{i}=O\left(((i-1)!)^{\gamma} / K^{i}\right)$

Table 1. The distribution of bin sizes.
f_{i} is the limit of the fraction of bins with i balls and $K=\frac{p}{1-p} \sum_{i=1}^{\infty} f_{i} i^{\gamma}$.

Generalization of evolution by duplication and attachment

	Finite Polya process $p=0$	Infinite Polya process$0<p<1$	
$\gamma>1$	one bin dominates	one bin dominates	
$\gamma=1$	Polya's urn problem	power law distribution	$f_{i} \propto i^{(-1+1 /(1-p))}$
$0<\gamma<1$	all bins grow at the same rate asymptotically	exponentially decreasing assuming (*)	$f_{i} \propto i^{-\gamma} e^{-K i^{1-\gamma} /(1-\gamma)}$
$\gamma=0$			$f_{i} \propto(K+1)^{-i}$
$\gamma<0$			$f_{i}=O\left(((i-1)!)^{\gamma} / K^{i}\right)$

Table 1. The distribution of bin sizes
f_{i} is the limit of the fraction of bins with i balls and $K=\frac{p}{1-p} \sum_{i=1}^{\infty} f_{i} i^{\gamma}$

Flux Balance Analysis

```
No accumulation of intermediates \(=\)
\# of molecules in = \# of molecules out \(=\)
Vin + Vout \(=0\)
```


Example:

2A+B -> 3D
D+C->E

$$
\left(2 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) / 3=\mathrm{V}_{\mathrm{E}}
$$

Flux Balance Analysis

Steady state Mass Balance

Flux Balance Analysis

Steady state Mass Balance

Flux Balance Analysis

Total Number of fluxes $=11$
Total numer of known flux $=1$
Total number of Metabolites $=5$
Total number of d.f $=11-1+5=5$
(i.e 5 possible solutions for this reaction network)

Flux Balance Analysis

- If cells optimize their growth rate then we need to find a solution that maximizes growth.
- Growth = biomass/time
$+1 \mathrm{BIOM}-0.582 \mathrm{GLY}-0.0485 \mathrm{Me}$ thylTHF-0.25GLN- $\quad 45.135 \mathrm{ATP}+44.96 \mathrm{ADP}+44.96 \mathrm{Pi}$
$0.25 \mathrm{GLU}-0.176 \mathrm{PHE}-0.131 \mathrm{TYR}-0.205 \mathrm{SER}-0.054 \mathrm{TRP}-0.229 \mathrm{ASP}-0.229 \mathrm{ASN}-0.326 \mathrm{LYS}-$

Millimoles of metabolites present in 1 gm (dry wt.) of biomass

Flux Balance Analysis

- Input: stoichiometric matrix optimization function (biomass)
- Calculations:

$$
\frac{d \mathbf{X}}{d t}=\mathbf{S} \bullet \mathbf{v}-\mathbf{b}=0
$$

Maximize Z

$$
Z=\sum c_{i} \cdot v_{i}=\mathbf{c} \bullet \mathbf{v}
$$

- Output: fluxes, growth rate

Flux Balance Analysis

- Linear programming
CLnear Programming - -

Constraint 1
Constraint 2
Constraint 3
Constraint 4
Constraint 5
Constraint 6
Constraint 7
Constraint 8
Constraint 9
Constraint 10
Objective function

Flux Balance Analysis

- Linear programming

Flux Balance Analysis

- Effects of external conditions
- Effect of mutations
- Predictive cell physiology

Flux Balance Analysis

- Effect of C and N starvation

Flux Balance Analysis

- Effect of mutations and starvation

Networks

- Structure and dynamics of some biological network can be studied experimentally
(partially and with lots of mistakes!)
- Networks don't look like random graphs, more like power-law graphs.
- results of neutral evolution
- results of selection

