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Introduction to biological
networks

Outline
• Measurements

• Analysis

• Modelling
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Outline
• Measurements

+ Expression

+ Protein-protein interactions

+ Protein-DNA interactions

• Analysis

• Modelling

DNA
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DNA

mRNA

DNA

mRNA

Proteins
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DNA

mRNA

Proteins

Protein-protein

and

Protein-DNA 

interactions

Wanted measurements:

1. Concentration of mRNA RNA(t,c)

2. Concentration of protein Protein(t,c)

3. Protein interactions K(Protein1,Protein2|t,c)

4. Protein-DNA interactions K(Protein,Site|t,c)



5

Expression

Expression

• mRNA level (average over many cells) at
– different time points

– different conditions

• Expression profiles

• Demo
     Demo http://www.bio.davidson.edu/courses/genomics/chip/chip.html
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hybridization1

DNA

mRNA

Make fluorescently labeled complements of all present mRNAs

…ATTGGCT…

…TAACCGA…

PROBES ON A CHIP

ATTGGCT

GENES

expressed not expressed

…CCAACCAT…

…GGTTGGTA…

   GGTTGGT    TTAAAGTA CCGGCA

DNA chip measurements
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DNA

mRNA

Hybridization

…ATTGGCT…

…TAACCGA…

ATTGGCT

GENES

expressed not expressed

…CCAACCAT…

…GGTTGGTA…

   GGTTGGT    TTAAAGTA CCGGCA

Signal **** ****                    

DNA chip measurements
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DNA chip

p 16 of geneexp.pdf
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GeneChip® Probe Array

cDNA microarray expt
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cDNA Spotted Microarrays

Outcome
• mRNA level (average over many cells) at

– different time points

– different conditions

– different tissues

– normal and malignant samples

        Expression profiles
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Expression profile

Expression profile: cell cycle
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Research problems
1. Find genes that are differentially expressed, e.g. in

response to perturbation.

2. Compare profiles and group genes or conditions

that exhibit similar expression profiles: clustering.

3. Compare samples from two (or more) tissues and find

features that can discriminate tissue,

e.g. expression signatures of cancer types.

4. Given expression profiles from various perturbation

experiments, infer the regulatory network.

5. Compare expression of different organisms

alignment of profiles/networks.

Data
1. High coverage (all genes)

2. Average over large population of cells

3. Significant level of experimental noise

4. Hard cross-platform comparison

5. Few data-points
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Protein-protein Interactions

Protein-protein Interactions

      Yeast two-hybrid assay:
Does a protein A interact with B ?

 A  A

Doesn’t active 
transcription 

Doesn’t bind
DNA Activate transcription

and grow on -his media
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Large scale yeast two-hybrid assay:
   Find pairs of interacting proteins

A comprehensive two-hybrid analysis to explore

the yeast protein interactome.

Ito T et al, PNAS 2001

A comprehensive analysis of protein-protein

interactions in S. cerevisiae.

P. Uetz et al, Nature 2000

Protein-protein Interactions

Baker’s yeast:

9000 interactions

3000 proteins
(combined, 2006)

Protein-protein Interactions
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Research problems

1. Characterize statistical properties of the network.

2. Connect statistical properties to biological function and

evolution.

3. Reveal biologically important features of the network

e.g. clusters or motifs.

4. Use networks to predict function of specific genes.

5. Compare/align networks.

Data
1. Many genes (up to 30%).

2. Measurements in vivo, but not in the endogenous cells.

3. Average over large population of cells.

4. High level of false-positives.

5. Non discrimination between direct and indirect interactions.

6. No quantitative measure of the interaction strength.
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Protein-DNA interactions

Chromatin Immunoprecipitation (ChIP)

DNA

Make fluorescently labeled complements of DNA fragments bound

to the protein of interest

PROBES ON A CHIP

For promoters (~1-2Kb around start of a gene)

Or tiling array of the whole genome

ChIP chip measurements
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DNA

PROBES ON A CHIP

For promoters (~1-2Kb around start of a gene)

Or tiling array of the whole genome

ChIP chip measurements

HYBREDIZATION

protein-DNA interactions

Chromatin Immunoprecipitation (ChIP)
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Protein-DNA interactions

Research problems

1. Find motifs recognized by each DNA-binding protein.

2. Find genes regulated by these proteins.

3. Use networks to predict function of specific genes.

4. Characterize statistical properties of the network.

5. Compare/align networks.
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Biochemical reactions

• Biochemical,
metabolic reactions

•“Chemical engine”

•Determines cell physiology

•Similar in all organisms.

• KEGG

• EcoCyc

• Metabolic Fluxes
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Metabolic Pathways

KEGG

database

Metabolic Pathways

KEGG

database
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Metabolic Pathways

KEGG

database

Metabolic Pathways

KEGG

database
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Examples of biological
networks

• Regulation

Drew Endy (MIT)

Outline
• Measurements

• Analysis

+ Expression

+ Interactions/Reactions
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Alignment of networks

Clusters in PPI networks



24

Clustering

  STATEMENT OF THE PROBLEM             

GIVEN DATA POINTS  Xi,  i=1,2,...N, EMBEDDED IN

D - DIMENSIONAL SPACE,  IDENTIFY THE

UNDERLYING STRUCTURE OF THE DATA.

AIMS:PARTITION THE DATA INTO  M  CLUSTERS,

POINTS OF SAME CLUSTER  - "MORE SIMILAR“

      M ALSO TO BE DETERMINED!

      GENERATE DENDROGRAM,

      IDENTIFY  SIGNIFICANT, “STABLE” CLUSTERS

"ILL POSED":    WHAT IS "MORE SIMILAR"?

                             RESOLUTION

Statement of the problem2

Eytan Domany@Weizmann
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Giraffe

DEFINITION OF THE CLUSTERING PROBLEM

CLUSTER ANALYSIS YIELDS DENDROGRAM

Dendrogram1

T (RESOLUTION)
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Giraffe + Okapi

BUT WHAT ABOUT THE OKAPI?           

Gene expression

co-expressed genes

TIME

1

2

3

4

5

6

1

3

6

2

4

5

CLUSTERINGCLUSTERING
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Clustering
CLUSTER ANALYSIS YIELDS DENDROGRAM

Dendrogram1

T (RESOLUTION)

Eytan Domany@Weizmann

•AGGLOMERATIVE HIERARCHICAL

–AVERAGE LINKAGE (GENES: EISEN ET. AL., PNAS 1998)

•CENTROID (REPRESENTATIVE)

–SELF ORGANIZED MAPS (KOHONEN 1997;

                      (GENES: GOLUB ET. AL., SCIENCE 1999)

--K-MEANS (GENES;  TAMAYO   ET. AL., PNAS 1999)

•PHYSICALLY MOTIVATED

–DETERMINISTIC ANNEALING (ROSE ET. AL.,PRL 1990;

                                GENES: ALON ET. AL., PNAS 1999)

–SUPER-PARAMAGNETIC CLUSTERING (SPC)(BLATT ET.AL.

                      GENES:  GETZ ET. AL., PHYSICA 2000,PNAS 2000)

               CLUSTERING METHODS 
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Hierarchical (bottom-up)
clustering

• Hierarchical agglomerative clustering: 
    we sequentially merge the

     pair of “closest” points/clusters
• The procedure
1. Find two closest points (clusters) and merge them
2. Replace clusters with pseudo-points.
3.  Proceed until we have a single cluster (all the points)
• Two prerequisites:
1. distance measure between two points
2. distance measure between clusters and 

way of replacing clusters with points(cluster linkage)
• No notion of optimality, greedy algorithm

52 41 3

Agglomerative Hierarchical Clustering

3

1

4 2

5

Distance between joined clusters

Need to define the distance between the

new cluster and the other clusters.

Single Linkage:     distance between closest pair.

Complete Linkage: distance between farthest pair.

Average Linkage:   average distance between all pairs

                          or   distance between cluster centers

Dendrogram

The dendrogram induces a linear ordering

of the data points
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Clustering

Clustering
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K-means

Iteration = 0

•Start with random

positions of  centroids.
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K-means

Iteration = 1

•Start with random

positions of  centroids.

•Assign data points to

  centroids: find closest

  centroid for each point

K-means

Iteration = 1

•Start with random

positions of  centroids.

•Assign data points to

  centroids: find closest

  centroid for each point

•Move centroids to center

 of assigned points
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K-means

Iteration = 3

•Start with random

positions of  centroids.

•Assign data points to

  centroids: find closest

  centroid for each point

•Move centroids to center

 of assigned points

•Iterate till minimal cost:

sum of distances to

centroids

• Result depends on initial centroids’
position

• Fast algorithm: compute distances
from data points to centroids

• Must preset K

• Clusters are convex and comact

• Fails for non-spherical distributions

K-means - Summary
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Super-paramagnetic clustering
(SPC)

• Potts model
– a spin in each node
– connected spins interact

• Order Parameter

Marcelo Blatt, Shai Wiseman, Eytan Domany 1997

3circles:

N=4800 POINTS IN D=2
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identifying stable clusters

Same data - Average Linkage

No analog for !
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Same data - Average Linkage

Examining

this cluster

Choosing a value for T
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2
1

Chosen clusters

Cell-cycle clusters
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Progression of the cell-cycle
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Statistical properties of biological

networks
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Metabolic Pathways

KEGG

database

it’s not a random graph!
Andreas Wagner

Mol. Biol. Evol. 18(7):1283–1292. 2001
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Random vs power-law
Barabasi A et.al. Nature:411(2001)

Wagner A Mol Biol Evol:18(2001)

Random

Other power-law networks
Barabasi A et.al. Nature:411(2001)

Other power-law networks:

• Metabolic network

• Network of social interactions: 
scientific collaborations, actors in films

• The Internet:
links, physical connections
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it’s not a random graph!

Wagner MBE 2000

Random vs power-law
Barabasi A et.al. Nature:411(2001)

Wagner A Mol Biol Evol:18(2001)

The network of protein-protein interactions 
(and other molecular biological networks)
are power-law networks!

                        WHY?

• Power law networks are “better”…

           OR/AND

• Biological networks became power-law due to

  evolution.
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    Random       Power-law

• Removal of a randomly
picked node
significantly increases
the average path.

• All nodes are of equal
“importance”.

• Removal of a random
node slightly increases
the average path.

• Removal of a highly-
connected node leads to
drastic increase of the
average path!

POWER-LAW NETWORKS

• Tolerant to random “attacks”,
• But more sensitive to targeted  attacks!

Figure 2 Changes in the diameter d of the network as a function of the

fraction f of the removed nodes. a, Comparison between the

exponential (E) and scale-free (SF) network models, each containing

N = 10,000 nodes and 20,000 links (that is, k = 4).
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Figure 3 Network fragmentation under random failures and attacks. The relative size of

the largest cluster S (open symbols) and the average size of the isolated clusters s (filled

symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2.

The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1

for f = 0). a, Fragmentation of the exponential network under random failures (squares)

and attacks (circles). b, Fragmentation of the scale-free network under random failures

(blue squares) and attacks (red circles). The inset shows the error tolerance curves for the

whole range of f, indicating that the main cluster falls apart only after it has been

completely deflated

Figure 3 Network fragmentation under random failures and attacks. The relative size of

the largest cluster S (open symbols) and the average size of the isolated clusters s (filled

symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2.

The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1

for f = 0). a, Fragmentation of the exponential network under random failures (squares)

and attacks (circles). b, Fragmentation of the scale-free network under random failures

(blue squares) and attacks (red circles). The inset shows the error tolerance curves for the

whole range of f, indicating that the main cluster falls apart only after it has been

completely deflated
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Figure 3 Network fragmentation under random failures and attacks. The relative size of

the largest cluster S (open symbols) and the average size of the isolated clusters s (filled

symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2.

The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1

for f = 0). a, Fragmentation of the exponential network under random failures (squares)

and attacks (circles). b, Fragmentation of the scale-free network under random failures

(blue squares) and attacks (red circles). The inset shows the error tolerance curves for the

whole range of f, indicating that the main cluster falls apart only after it has been

completely deflated

    Random       Power-law

Equally stable to random failures

POWER-LAW NETWORKS

• Tolerant to random “attacks”,
• But more sensitive to targeted  attacks!

More sensitive
to attacks
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Evolution of
power-law graphs

1. Growth
2. Preferential attachment

Albert and Barabasi 2000

Herbert A. Simon 1955

Yule 1925

Evolution of
power-law graphs

1. Growth

2. Preferential attachment

              Alberts and Barabasi 2000
         Herbert A. Simon 1967
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Evolution of graphs
• Growth

1. start with m0 nodes

2. add a node with m edges

3. connect these edges to existing nodes

at timestep t : t+m0 nodes, tm edges

Evolution of graphs
• Preferential attachment

   Probability " of connection to
node i depends on the degree ki of this
node.

E.g.

             “Rich gets richer”
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Yule model
Growth of biological genera (families)

1. New species evolve at a constant rate

2. Out of new m species, one diverges to
form a new family

equivalent to:

Measure time in the number of families

At each time step:

1. a new family is created.

2.  m species are placed in existing families
with prob. ~ to the number of species in
each family.

Yule model
Measure time in the number of families

At each time step:

1. a new family is created.

2.  m species are placed in existing families
with prob. ~ to the number of species in
each family.

pk =
k !1

k +1+1 / m
pk!1

pk ! k
"#

# = 2 +1 / m

[Alberts and Barabasi, 2000] = [Yule, 1925 for m=1] 
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Better evolution of graphs

• Gene duplication

• Mutations

• Preferential attachment

A. Wagner, M.Lassig, A.Maritan etc

More biological
neutral evolution of graphs

• Gene duplication

• Mutations

A.Wagner,  M.Lassig,  A.Maritan,  S.Redner  etc.
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More biological
neutral evolution of graphs

• Gene duplication

• Mutations (rich gets richer)

=> Broad (not power-law) distribution!

A.Wagner,  M.Lassig,  A.Maritan,  S.Redner  etc.

More biological
neutral evolution of graphs

• Gene duplication and re-wiring



49

A biophysical model of
apparent power-law

Correlation between PPI networks

Deeds E. J. et.al. PNAS 2006;103:311-316

©2006 by National Academy of Sciences
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A physical model for PPI measurements

Deeds E. J. et.al. PNAS 2006;103:311-316

©2006 by National Academy of Sciences

A biophysical model of
apparent power-law

Binding constant Kd=exp(-#G/kT)

Bound in experiment: Kd<Kc 

If #G is distributed normally

P(#G )~exp(-(#G-<#G>)2/(2s2))

then

P(Kd)~exp((log(Kd)-µ)2/(2s2)) <-- looks like power-law! 
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Degree distributions and correlations for model PPI networks

Deeds E. J. et.al. PNAS 2006;103:311-316

©2006 by National Academy of Sciences

Connecting to biology
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Lethality and centrality (2001)

Lethality and centrality (2008)
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Generalization of evolution by
duplication and attachment

Generalization of evolution by
duplication and attachment
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Generalization of evolution by
duplication and attachment

http://www.math.uah.edu/stat/applets/PolyaExperiment.xhtml

Metabolic Pathways

KEGG

database
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Flux Balance Analysis

  No accumulation of intermediates 
= 
  # of molecules in = # of molecules out
=
  Vin+Vout = 0

Example:
2A+B -> 3D

D+C->E

(2VA+VB)/3 =VE 

Flux Balance Analysis

S.v = b
A:-r1=-R

A

B:-r1+r4-r2-r3=0

C:+r2-r5-r6=+R
c

D:+r3+r5-r4-r7=+R
D

E:+r6+r7=+R
E

Steady state Mass Balance

Internal fluxes

-1  0  0  0  0  0  0  

 1 –1 -1  1  0  0  0 

 0  1  0  0 –1 –1  0   

 0  0  1 –1  1  0 –1 

 0  0  0  0  0  1  1   

Transportation fluxes

r
1 
r
2 
r
3 
r
4
 r

5
 r

6
 r

7 

-R
A

 0

 R
C

 R
D

 R
E
 

=

A B C E
RA r1 r2

r3

RE

Boundary

D

r4 r5

r6

r7

RD

RC
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Flux Balance Analysis

S’.v’ = b’

Steady state Mass Balance

-10

 0

 0

 0

 0 

=

A B C E
RA=10 r1 r2

r3

RE

Boundary

D

r4 r5

r6

r7

RD

RC

10 Unknown fluxes

-1  0  0  0  0  0  0  0  0  0

 1 –1 -1  1  0  0  0  0  0  0

 0  1  0  0 –1 –1  0 –1  0  0  

 0  0  1 –1  1  0 –1  0 –1  0

 0  0  0  0  0  1  1  0  0 -1   

1 Known fluxes

r
1 
r
2 
r
3 
r
4
 r

5
 r

6
 r

7 
R
C 
R
D 
R
E 

A:-r1=-10

B:-r1+r4-r2-r3=0

C:r2-r5-r6-R
C
=0

D:r3+r5-r4-r7-R
D
=0

E:r6+r7-R
E
=0

Flux Balance Analysis

Boundary

A B C E
r
1

r
2

r
3

D

r
4 r

5

r
6

r
7

Total Number of fluxes      = 11

Total numer of known flux   =  1

Total number of Metabolites =  5

Total number of d.f         = 11-1+5=5

(i.e 5 possible solutions for this

reaction network)

R
A

R
E

R
D

R
C
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Growth rxn

Requirement of metabolites based on the biomass
composition for E.coli.

+1BIOM-0.582GLY-0.0485MethylTHF-0.25GLN- 45.135ATP+44.96ADP+ 44.96Pi -

0.25GLU-0.176PHE-0.131TYR-0.205SER-0.054TRP-0.229ASP-0.229ASN-0.326LYS-

0.087CYS-0.146MET-0.241THR-0.276ILE-0.21PRO-0.281ARG-0.488ALA-0.402VAL-

0.428LEU-0.09HIS-0.203GTP-0.136UTP-0.126CTP-0.0247dATP-0.0254dGTP-

0.0254dCTP-0.0247dTTP-0.00258PS -0.09675PE-0.02322PG-0.00645CL-

0.00785LPS-0.0276Pept-0.0341PTRSC-0.007SPRMD-0.154Glycogen;

Millimoles of metabolites present in 1 gm (dry wt.) of biomass

Flux Balance Analysis
• If cells optimize their growth rate

then we need to find a solution that
maximizes growth.

• Growth = biomass/time

Flux Balance Analysis
• Input: stoichiometric matrix

           optimization function (biomass)

• Calculations:

Maximize Z

• Output: fluxes, growth rate

0=!•= bvS
X

dt

d

! •="= vc
ii
vcZ
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Flux Balance Analysis
• Linear programming

Flux Balance Analysis
• Linear programming
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Flux Balance Analysis

• Effects of external conditions

• Effect of mutations

• Predictive cell physiology

Flux Balance Analysis
• Effect of C and N starvation
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Flux Balance Analysis
• Effect of mutations and starvation

Networks
• Structure and dynamics of some

biological network can be studied
experimentally
(partially and with lots of mistakes!)

• Networks don’t look like random graphs,
more like power-law graphs.

- results of neutral evolution
- results of selection


