Introduction to biological networks

Outline

- Measurements
- Analysis
- Modelling

Outline

- Measurements
 - + Expression
 - + Protein-protein interactions
 - + Protein-DNA interactions
- Analysis
- Modelling

Wanted measurements:

- 1. Concentration of mRNA RNA(t,c)
- 2. Concentration of protein Protein(t,c)
- 3. Protein interactions K(Protein1,Protein2|t,c)
- 4. Protein-DNA interactions K(Protein,Site|t,c)

Research problems

- 1. Characterize statistical properties of the network.
- 2. Connect statistical properties to biological function and evolution.
- 3. Reveal biologically important features of the network e.g. *clusters* or *motifs*.
- 4. Use networks to predict function of specific genes.
- 5. Compare/align networks.

Data

- 1. Many genes (up to 30%).
- 2. Measurements in vivo, but not in the endogenous cells.
- 3. Average over large population of cells.
- 4. High level of false-positives.
- 5. Non discrimination between direct and indirect interactions.
- 6. No quantitative measure of the interaction strength.

Research problems

- 1. Find motifs recognized by each DNA-binding protein.
- 2. Find genes regulated by these proteins.
- 3. Use networks to predict function of specific genes.
- 4. Characterize statistical properties of the network.
- 5. Compare/align networks.

it's not a random graph!

Table 1 Comparison of Statistical Features Between Random Graphs and the Yeast Protein Interaction Network

		RANDOM GRAPHS		
	Yeast	ER	$\begin{array}{c} PL\\ (\tau=2.5) \end{array}$	
Whole graph				
Nodes	985	984.02 (10.39)	970.7 (81.57)	
Degree	1.83	1.85 (0.98)	1.64 (1.76)	
No. of components	163	108 (8)*	266.3 (30.6)*	
Giant component				
Nodes	466	624.0 (38.7)*	336.9 (86)	
Degree	2.3	2.07 (1.05)	2.50 (2.6)	
Clustering coefficient $(\times 10^{-3})$	22	0.59 (0.9)*	4.02 (2.3)*	
Characteristic path length	7.14	15.88 (1.76)*	6.01 (1.14)	

Random vs power-law Barabasi A et.al. Nature:411(2001) Wagner A Mol Biol Evol:18(2001) The network of protein-protein interactions (and other molecular biological networks) are power-law networks! WHY? • Power law networks are "better"... OR/AND • Biological networks became power-law due to evolution.

the largest cluster S (open symbols) and the average size of the isolated clusters s (filled symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1

b

SF

2

0.0

d

w

0.04

000₀₀0

3

2

0.00

f

Evolution of graphs

• Growth

- 1. start with mo nodes
- 2. add a node with m edges
- 3. connect these edges to existing nodes
- at timestep t : t+mo nodes, tm edges

Evolution of graphs

• Preferential attachment Probability Π of connection to node *i* depends on the degree k_i of this node.

E.g.
$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$

"Rich gets richer"

Yule model

Growth of biological genera (families)

- 1. New species evolve at a constant rate
- 2. Out of new m species, one diverges to form a new family

equivalent to:

Measure time in the number of families

At each time step:

- 1. a new family is created.
- m species are placed in existing families with prob. ~ to the number of species in each family.

Better evolution of graphs

A. Wagner, M.Lassig, A.Maritan etc

- Gene duplication
- Mutations
- Preferential attachment

A biophysical model of apparent power-law

A simple physical model for scaling in **PNAS** protein–protein interaction networks

PNAS | January 10, 2006

Eric J. Deeds*, Orr Ashenberg[†], and Eugene I. Shakhnovich⁺[§]

Generalization of evolution by duplication and attachment

For fixed parameters, $\gamma \in \mathbf{R}$, $0 \leq p < 1$ and a positive integer k > 1, begin with k bins, each containing one ball and then introduce balls one at a time. For each new ball, with probability p, create a new bin and place the ball in that bin; with probability 1 - p, place the ball in an existing bin, such that the probability the ball is placed in a bin is proportional to m^{γ} , where m is the number of balls in that bin.

	Finite Polya process p = 0	Infinite Polya process $0 one bin dominates$	
$\gamma > 1$	one bin dominates		
$\gamma = 1$	Polya's urn problem	power law distribution	$f_i \propto i^{(-1+1/(1-p))}$
$\begin{array}{c} 0 < \gamma < 1 \\ \gamma = 0 \\ \gamma < 0 \end{array}$	all bins grow at the same rate asymptotically	exponentially decreasing assuming (*)	$\frac{f_i \propto i^{-\gamma} e^{-K i^{1-\gamma}/(1-\gamma)}}{f_i \propto (K+1)^{-i}}$ $f_i = O\left(\left((i-1)!\right)^{\gamma}/K$
TAP f_i is	BLE 1. The distribution of the limit of the fraction of b	of bin sizes. ins with <i>i</i> balls and $K = \frac{1}{1-1}$	$\frac{p}{-p}\sum_{i=1}^{\infty}f_i i^{\gamma}.$

