
2.3.4 The Random Energy Model (REM) for compact heteropolymers

Deep in the globular phase, the states of the compact polymer can be visualized as the col-
lection of all maximally compact configurations. In a lattice version, these are self-avoiding
walks that visit all sites, leaving no empty ones, and are referred to as Hamiltonian walks.
The number of Hamiltonian walks also grows exponentially with the number of steps as g′N ,
but is much smaller than the number of self-avoiding walks ((z − 1)N ≫ gN ≫ g′N). (If
there are z neighbors for each lattice site, the number of non-self-avoiding walks that do
not step back grows as (z − a)N .) For a homopolymer, all such configurations are equally
likely, but in a heteropolymer the distinct interactions between different monomers leads to
variations in energy. Presumably at low temperatures the lower energy states are preferred,
and there can potentially be a phase transition to a specific (ground state) configuration.
For biological molecules, there are non-specific attractive forces that tend to aggregate all
monomers, whereas specific interactions select a particular (native) shape amongst the man-
ifold of possible compact states.

Figure 11: Hamiltonian walk representation for a protein.

To explore this scenario, consider all compact configurations for a multi-component het-
eropolymer such as a protein. The energy of a configuration α is given by

Eα =
∑

〈ab〉

Vab , (2.58)

where the sum is over all non-polymeric nearest-neighbor pairs 〈ab〉, and Vab is the interaction
energy assigned to a neighboring pair of monomers a and b. The partition function is obtained
by the sum

Z =
∑

α

e−βEα , (2.59)

over the g′N states. To make headway with this hard problem, we make the drastic approx-
imation of assuming that the bond energies Vab are independent random variables. Subject
to this assumption, the energies Eα are themselves random variables, and as long as the
number of terms NB in Eq. (2.58) is large, taken from a Gaussian distribution. The mean
and variance of the distribution are given by

〈Eα〉 = NB〈Vab〉 ≡ Nε0 , 〈E2
α〉c = NB〈V 2

ab〉c ≡ Nσ2 , (2.60)
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where noting that NB = (z−2)N (of the z nearest neighbors for each site of the lattice, two
connect subsequent monomers along the chain), we have folded the proportionality constant
into the definitions of ε0 and σ2.

For large N , the probability distribution for the energy will take the Gaussian form

p(E) =
1√

2πNσ2
exp

[

−(E −Nε0)
2

2Nσ2

]

. (2.61)

Since the total number of states is g′N , the density of states is Ω(E) = g′Np(E), and the
entropy of this random energy model (REM) is given by

S(E) = kB ln Ω(E) = kB

[

N ln g′ − (E −Nε0)
2

2Nσ2

]

− kB
2

ln(2πNσ2) . (2.62)

The last term is not extensive (proportional to N) and can be safely ignored.

Figure 12: Entropy of a random energy model.

According to Eq. (2.62), S(E) is shaped like a parabola, but thermodynamic constraints
imply that only a certain portion of this curve is physical. First, the temperature T is
obtained from the slope of the curve via T−1 = dS/dE. Positive temperatures require the
entropy to increase with temperature, and thus only the states with E < Nε0 are physically
accessible. Second, the entropy cannot be negative, and S(E) should thus stick to zero for
E < Ec, where Ec is easily obtained as

S(Ec) = 0 =⇒ Ec

N
= ε0 − σ

√

2 ln g′ . (2.63)

(Note the connection to the extreme value problem studied earlier: Ec is also the mean value
of the lowest of g′N energies randomly selected from p(E).) The singularity of entropy at Ec

signifies a phase transition into a glassy state, at a temperature Tc given by

1

Tc
=

dS

dE

∣

∣

∣

∣

Ec

= −kB

(

Ec −Nε0
Nσ2

)

= kB

√
2 ln g′

σ
⇒ kBTC =

σ√
2 ln g′

. (2.64)

There are presumably a few low energy states with energy close to Ec, and the system freezes
into one of these for T ≤ Tc.
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Figure 13: Schematic depiction of entropy for a random heteropolymerl.

2.3.5 Designed REM for protein folding

It is tempting to equate the freezing of the heteropolymer with the folding transition sep-
arating denatured and folded states of a protein. There is, however, a problem with such
an interpretation: As the temperature is lowered towards Tc, the number of states decreases
drastically. It is unlikely that the lower energy configurations of the REM polymer in the
vicinity of Ec have much in common. To change its state, the polymer will likely have to
rearrange many of its monomers, running into high energy barriers in the process. Thus we
expect that the kinetics of the REM polymer will slow down significantly on approaching
Tc. This contradicts the observation that most proteins fold easily and in a short time.
Of course proteins are not typical random heteropolymers, and are presumably “designed”
through evolution for both function and ease of folding. Fortunately, we can mimic such
“design” by a small modification of the REM; we only need to add to the continuum of
random energy states, a single state with low energy (En < Ec) representing the native
configuration.

With the added state at En, the system makes a transition to the native configuration
(i.e. folds) at a temperature Tf , high enough that there are still many equivalent states to
explore. The location of Tf , and the corresponding energy Ef , can be obtained by equating
free energies or Boltzmann weights, and leads to the “tangent construction” whereby Tf and
Ef are related to En via

βf =
S(Ef )/kB
Ef − En

=
N ln g′ − (Ef −Nε0)

2/(2Nσ2)

Ef −En
. (2.65)

As depicted in the figure, the above result equates the slope of the tangent line from the
point at En computed in two different ways.

To justify the above result, note that in the canonical ensemble, the probability of finding
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Figure 14: Tangent construction for a designed random energy model.

the system in the native state is

pn =
e−βEn

Z(β)
, with Z(β) = e−βEn +

∫

dEΩ(E)e−βE . (2.66)

A phase transition in which pn changes discontinuously from zero to one occurs only in the
thermodynamic limit of N → ∞. For the system to have a well-behaved thermodynamic
limit (in which case various thermodynamic identities involving entropy and temperature
can be safely used), we must insist that the range of energies as well as lnΩ(E) should be
proportional to N ; the former implies that En ∝ N . If so, then at a particular value of
β a single value of energy E completely dominates the partition function Z(β). For the
partition function in Eq. (2.66), the dominant value occurs for some E ≥ Ef for β ≤ βf ,
and for E = En for β > βf . The probability to find the system in its native state then
jumps discontinuously from 0 to 1 at the point when the corresponding contributions to the
partition function are equal, i.e. at

e−βfEn = Ω(Ef )e
−βfEf , (2.67)

which after taking the logarithm leads to the tangent rule in Eq. (2.65).
We can eliminate Ef in terms of βf by noting that E = Nε0−Nσ2β, and ln g′ = (βcσ)

2/2.
Using these expressions and defining a quantity βn = (En−Nε0)/(Nσ2), the above equation
reduces to

βf =
β2
c − β2

f

−2βf + 2βn
. (2.68)

This can be rearranged as a quadratic equation with solution

βf = βn −
√

β2
n − β2

c . (2.69)

The ratio of the folding temperature to the REM freezing temperature is thus

Tf

Tc
=

βc

βf
=

βn

βc
+

√

(

βn

βc

)2

− 1. (2.70)
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Faster folding to the native state can be achieved at higher temperatures by increasing the
energy difference between En and Ec.

2.4 DNA structure

DNA molecules come in a wide range of length scales, from roughly 50,000 monomers in a
λ-phage, 6× 109 for human, to 9× 1010 nucleotides in the lily. The latter would be around
thirty meters long if fully stretched. If we consider DNA as a random (non-self avoiding)
chain of persistence length ξp ≈ 50 nm, its typical size would be Rg ≈

√

L ·Rp, coming to
approximately 0.2 mm in human. Excluded volume effects would further increase the extent
of the polymer. This is much larger than the size of a typical cell, and thus DNA within
cells has to be highly compactified. Eukaryotes organize DNA by wrapping the chain around
histone proteins (nucleosomes), which are then packed together.

At the microscopic level the double helix is held together through Watson–Crick pairs,
G–C and A–T, the former (with a binding energy of around 4kBT ) being roughly twice
as strong as the latter. At finite temperatures, this energy gain competes with the loss of
entropy that comes with braiding the two strands. Indeed at temperatures of around 80◦C
the double strand starts to unravel, denaturing (melting) into bubbles where the two strands
are apart. Regions of DNA that are rich in A–T open up at lower temperatures, those with
high G–C content at higher temperatures. These events are observed as separate blips in
ultraviolet absorption as a function of temperature for short DNA molecules, but overlap
and appear as a continuous curve in very long DNA.

There are software packages that predict the way in which a specific DNA sequence
unravels as a function of temperature. The underlying approach is the calculation of free
energies for a given sequence based on some model of the binding energies, e.g. by adding
energy gains from stacking successive Watson-Crick pairs. Another component is the gain in
entropy upon forming a bubble, which is observed experimentally to depend on the length l
of the denatured fragment as

S(l) ≈ bl + c log l + d , with c ≈ 1.8kB . (2.71)

The leading linear term in l is a measure of the gain in entropy per base pair, while the
subleading logarithmic dependence is a consequence of loop closure, and can be justified as
follows: A bubble is composed of two single stranded segments of length l, with start and end
positions on the double strand. First we sum over all configurations of these two segments,
assuming that the two end points are separated by a distance ~r. Regarding each segment
as a non-interacting random walk of length l and end-to-end separation ~r, the number of
configurations is easily obtained by appropriate extension of Eq. (2.40) to

Wloop(~r, 2l) = W (~r, l)2 = g2l1 exp

[

− dr2

2lξp

]

1

(4πlξp/d)d
, (2.72)

where we have further generalized to the case of random walks in d space dimensions. The
total number of configurations of a bubble is now obtained by integrating over all positions
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of the intermediate point as

Ω(l) =

∫

ddrWloop(~r, 2l) =

(

d

8πξp

)d/2
gl

lc
, (2.73)

with g = g21 and c = d/2.
For the more realistic case of self-avoiding polymers, a naive scaling argument (ignoring

interactions between segments) suggests

Wloop(~r, 2l) =
gl

Rd
Φ

(

~r

R

)

, with R ∼ lν , and Ω(l) =
gl

ldν
. (2.74)

We can justify this dependence by noting that in the absence of the loop closure constraint the
end-point is likely to be anywhere in a volume of size roughly Rd ∝ ldν , and that brining the
ends together reduces the number of choices by this volume factor. As we shall see shortly,
the parameter g is important in determining the value of the denaturation temperature,
while c controls the nature (sharpness) of the transition.

2.4.1 The Poland–Scheraga model for DNA Denaturation

Strictly speaking, the denaturation of DNA can be regarded as a phase transition only in
the limit where the number of monomers N is infinite. In practice, the crossover in behavior
occurs over an interval that becomes narrower with large N , so that it is sharp enough
to be indistinguishable from a real singularity, say for N ∼ 106. We shall describe here
a simplified model for DNA denaturation due to Poland and Scheraga1. Configurations of
partially melted DNA are represented in this model as an alternating sequence of double-
stranded segments (rods), and single-stranded loops (bubbles).

Figure 15: Partially denatured DNA as a sequence of bubbles and rods.

Ignoring any interactions between the segments, each configuration is assigned a proba-
bility

p (l1, l2, l3, · · · ) =
R(l1)B(l2)R(l3) · · ·

Z
, (2.75)

1D. Poland and H. A. Scheraga, “Phase transitions in one dimension and the helix-coil transition in
polyamino acids,” J. Chem. Phys. 45, 1456 (1966).
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where we have assumed that the first segment is a rod of length l1, the second a bubble
formed from two single strands of length l2, and so on. The double stranded segments are
energetically favored, but carry little entropy. To make analytical computations feasible, we
shall ignore the variations in binding energy for different nucleotides, and assign an average
energy ǫ < 0 per double-stranded bond. (In this sense, this is a model for denaturation of a
DNA homo-polymer.) The weight of a rod segment of length l is thus

R(l) = e−βǫl ≡ wl, where w = e−βǫ > 1 . (2.76)

The single-stranded portions are flexible, and provide an entropic advantage that is modeled
according to a weight similar to Eqs. (2.73-2.74), as

B(l) =
gl

lc
. (2.77)

Clearly the above weight cannot be valid for strands shorter than a persistence length, but
better describes longer bubbles.

For DNA of length L the individual segment lengths are constrained such that

l1 + l2 + l3 + · · · = L , (2.78)

and the partition function, normalizing the weights in Eq. (2.75), is given by

Z(L) =

′
∑

l1,l2,l3,...

wl1Ω(l2)w
l3Ω(l4) · · · , (2.79)

where the prime indicates the constraint in Eq. (2.78). The passage from canonical to
grand canonical ensemble in a typical example from statistical physics in which a global
constraint (the number of particles) is removed by introducing a conjugate variable (chemical
potential). It is similarly convenient here to consider an ensemble of DNA of variable length
L, distinguished by assigning a weights of zL. (The quantity z, sometimes called a “fugacity”
is related to a chemical potential µ for basepairs by z = eβµ.) In such an ensemble, the
appropriate (grand) partition function is

Z(z) =
∞
∑

L=1

zLZ(L) . (2.80)

Since L can now take any value, we can sum over the {li} independently without any
constraint, to obtain

Z(z) =

(

∑

l1

zl1wl1

)(

∑

l2

zl2Ω(l2)

)(

∑

l3

zl3wl3

)(

∑

l4

zl4Ω(l4)

)

· · · . (2.81)

The result is thus a product of alternating contributions from rods and bubbles. For each
rod segment, we get a factor of

R(z) =
∞
∑

l=1

(zw)l =
zw

1− zw
, (2.82)
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while the contribution from a bubble is

B(z) =

∞
∑

l=1

zlΩ(l) =

∞
∑

l=1

zlgl

lc
≡ f+

c (zg) . (2.83)

The result for bubbles has been expressed in terms of the special functions f+
n (x), frequently

encountered in describing the ideal Bose gas in the grand canonical ensemble. We recall
some properties of these functions. First, note that taking the logarithmic derivative lowers
the index by one, as

z
df+

c (zg)

dz
=

∞
∑

l=1

(zg)l

lc−1
= f+

c−1(zg) . (2.84)

Second, each f+
n (x) is an increasing function of its argument, and convergent up to x = 1,

at which point
f+
c (1) ≡ ζc , (2.85)

where ζn is the well-known Riemann zeta-function. The zeta-function is well behaved only
for c > 1, and indeed for c < 1, f+

c (x) diverges is (1− x)c−1 for x → 1.2

Next, we must sum over all possible numbers of bubbles in between two rod segments as
end points, leading to

Z(z) = R(z) +R(z)B(z)R(z) +R(z)B(z)R(z)B(z)R(z) + · · · . (2.86)

This is a just geometric series, easily summed to

Z(z) =
R(z)

1− R(z)B(z)
=

1

R−1(z)−B(z)
=

1

(zw)−1 − 1− f+
c (zg)

. (2.87)

The logarithm of the sum provides a useful thermodynamic free energy,

logZ(z) = − log

[

1

zw
− 1− f+

c (zg)

]

, (2.88)

from which we can extract physical observables. For example, while the length L is a
random variable in this ensemble, for a given z, its distribution is narrowly peaked around
the expectation value

〈L〉 = z
∂

∂z
logZ(z) =

1
zw

+ gf+
c−1(zg)

1
zw

− 1− f+
c (zg)

. (2.89)

We can also compute the fraction of the polymer that is in the denatured state. Since
each double-strand bond contributes a factor w to the weight, the number of bound pairs
NB has a mean value

〈NB〉 = w
∂

∂w
logZ(z) =

1
zw

1
zw

− 1− f+
c (zg)

. (2.90)

2Furthering the mathematical analogy between DNA melting and Bose-Einstein condensation, note that
when the bubble is treated as a random walk, c = d/2, implying that B(z) is only finite for d ≤ 2. Indeed,
d = 2 is also a critical dimension for Bose-Einstein condensation.
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Taking the ratio of NB and L gives the fraction of the polymer in the native state as

Θ =
〈L〉
〈NB〉

=
1

1 + zwgf+
c−1(zg)

. (2.91)

Equation (2.91) is not particularly illuminating in its current form, because it gives Θ in
terms of z, which we introduced as a mathematical device for removing the constraint of
fixed length in the partition function. For meaningful physical results we need to solve for
z as a function of L by inverting Eq. (2.90). This task is simplified in the thermodynamic
limit where L,NB → ∞, while their ratio is finite. From Eqs. (2.90-2.91), we see that this
limit is obtained by setting the denominator in these expressions equal to zero, i.e. from the
condition

f+
c (zg) =

1

zw
− 1 . (2.92)

The type of phase behavior resulting from Eqs. (2.92-2.91), and the very existence of a
transition, depend crucially on the parameter c, and we can distinguish between the following
three cases:
(a) For c < 1, the function f+

c (zg) goes to infinity at z = 1/g. The right hand side of
Eq. (2.92) is a decreasing function of z that goes to zero at z = 1/w. We can graphically
solve this equation by looking for the intersection of the curves representing these functions.
As temperature goes up, 1/w = eβǫ increases towards unity, and the intersection point
moves to the right. However, there is no singularity and a finite solution z < 1/g exists
at all temperatures. This solution can then be substituted into Eq. (2.91) resulting in a
native fraction that decreases with temperature, but never goes to zero. There is thus no
denaturation transition in this case.

Figure 16: Graphical solution for c ≤ 1.

(b) For 1 ≤ c ≤ 2, the function f+
c (zg) reaches a finite value of ζc at zg = 1. The two curves

intersect at this point for zc = 1/g and wc = g/(1 + ζc). For all values of w ≤ wc, z remains
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fixed at 1/g. The derivative of f+
c (zg), proportional to f+

c−1(zg) from Eq. (2.84), diverges as
its argument approaches unity, such that

f+
c (zg)− ζc ∝ (1− zg)c−1 . (2.93)

From the occurrence of f+
c−1(zg) in the denominator of Eq. (2.91), we observe that Θ is zero

for w ≤ wc, i.e. the polymer is fully denatured. On approaching the transition point from
the other side, Θ goes to zero continuously. Indeed, Eq. (2.93) implies that a small change

δw ≡ w−wc is accompanied by a much smaller change in z, such that δz ≡ (zc−z) ∝ (δw)
1

c−1 .
Since f+

c−1(zg) ∝ (1 − zg)c−2, we conclude from Eq. (2.91) that the native fraction goes to
zero as

Θ ∝ (δz)2−c ∝ (w − wc)
β , with β =

2− c

c− 1
. (2.94)

For a loop treated as a random walk in three dimensions, c = 3/2 and β = 1, i.e. the

Figure 17: Graphical solution for 1 < c < 2.

denatured fraction disappears linearly. Including self-avoidance with c = 3ν ≈ 1.8 leads to
β ≈ 1/4 and a much sharper transition.
(c) For c > 2, the function f+

c−1(zg) approaches a finite limit of ζc−1 at the transition point.
The transition is now discontinuous, with Θ jumping to zero from Θc = (1+ζc)/(1+ζc+ζc−1).
Including the effects of self-avoidance within a single loop increases the value of c from 1.5 to
1.8. In reality there are additional effects of excluded volume between the different segments.
It has been argued that including interactions between the different segments (single and
double-strands) further increases the value of c to larger than 2, favoring a discontinuous
melting transition.3

A justification of the role of the exponent c in controlling the nature/existence of the
phase transition can be gleaned by considering the behavior of a single bubble. Examining

3Y. Kafri, D. Mukamel, and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).
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Figure 18: Graphical solution for c ≥ 2.

the competition between entropy and energy suggests that the probability (weight) of a loop
of length ℓ = 2l is proportional to

p(ℓ) ∝
( g

w

)ℓ

× 1

ℓc
. (2.95)

The probability broadens to include larger values of ℓ as (g/w) → 1.
(a) For c < 1, the above probability cannot be normalized if arbitrarily large values of ℓ are
included. Thus at any ratio of (g/w), the probability has to be cut-off at some maximum ℓ,
and the typical size of a loop remains finite.
(b) For 1 ≤ c ≤ 2 the probability can indeed be normalized including all values of ℓ (the
normalization is f+

c (g/w)), but the average size of the loop (related to f+
c−1(g/w)) diverges

as (g/w) → 1 signaling a continuous phase transition.
(c) For c > 2, the probability is normalizable, and the loop size remains finite as (g/w) → 1.
There is a limiting loop size at the transition point suggesting a discontinuous jump.

2.5 RNA structure

Like DNA, RNA is a hetero-polymer composed from nucleotides, each consisting of sugar, a
phosphate and a nucleic acid base. The sugar ribose in RNA has one more OH group, com-
pared to deoxyribose in DNA. The four distinct bases in DNA are adenine (A), guanine (G),
cytosine (C) and thymine (T), while in RNA uracil (U) takes the place of thymine. While
the central role of DNA is storage of genetic information, RNA molecules carry a variety
of roles from structural (as in the protein building machinery of ribosome) to information
transfer (in messenger RNA). Concomitant with their diverse roles, the structure of RNA
molecules is more complicated and they can assume a variety of shapes. An important dis-
tinction to DNA that enables such diversification is that RNA is a single stranded molecule.
While two complimentary strands of DNA wrap around each other to form a stable and
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relatively rigid molecule, the single strand of RNA is more flexible. The molecule can fold
upon itself bringing bases far apart along the backbone of the molecule close enough to form
complimentary Watson-Crick pairs. While the primary structure refers to the sequence of
bases along RNA, its secondary structure indicates the bases that come into contact to form
complimentary bonds. The thus connected macromolecule then assumes particular shape(s)
in three dimensions, known as its tertiary structure.

Given the sequence of RNA, can one predict its secondary structure? In principle one
should list all possible pairings, compute their energies say by adding specified energies for
the different Watson-Crick pairings), and select the lowest energy ones (or with appropriate
Boltzmann weights). ForN base pairs there a maximum ofN/2 base pairing, which (ignoring
constraints) can occur in (N−1)(N−3) · · · = (N−1)!! possible ways. Including the possibility
that some bases are unpaired will increase the above number of states even further. However,
for largeN , (N−1)!! ≈ (N/e)N/2 which far exceeds the total number of possible arrangements
of a polymer, which as we have seem grows at most as gN . Thus a large fraction of pairings
is excluded by steric constraints of foldability into a viable three dimensional structure
Although the number of foldable states still grows quite rapidly for large N , there are a
number of algorithms that perform this computational task for specific subsets of pairings

in polynomial time. A particularly convenient subset of pairing is that of planar graphs for
which the RNA backbone, and all secondary connections can be drawn on a two dimensional
plane, without any two lines crossing. Secondary connections that violate planarity lead
to three dimensional structures containing elements called pseudoknots which are very rare
(though not impossible) in actual RNAs. Thus limiting the search to this subset is not too
severe a restriction.

Figure 19: RNA secondary structure without pseudoknots represented as a planar graph or
arch diagram.

The advantage of the planar subset of pairings is that it can be represented in multiple
ways, and importantly enables finding the optimal configuration in polynomial time. One
simple representation, indicated above, is obtained by stretching the RNA along a straight
line and connecting the paired monomers by arches. Two arches are either disconnected, or
one is entirely enclosed by the other– the arches will not intersect for planar graphs. Another
representation is in terms of parentheses: Starting from one end of the RNA sequence, an
open parenthesis is placed when the first nucleotide of pair is encountered, the parenthesis
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is closed when its partner is encountered. A planar diagram will then correspond to a gram-
matically correct string. The latter representation then yields a useful graphical prescription
as a random walk: Moving along the sequence an up step indicates a parenthesis opened, a
down step one that is closed. The planar diagram is now depicted as an island or mountain
landscape with no segments where the height is negative.

Figure 20: RNA secondary structure without pseudoknots represented with parenthesis, and
as a mountain landscape.

Let us consider a simple model for secondary structures in which all pairings without
pseudo-knots are allowed (i.e. without consideration of bending or steric constraints). For
each configuration C, the energy is the sum over energies assigned to all bonded pairs, i.e.
E[C] =

∑

<ij> εij , where εij is the energy of the bond between monomers i and j; naturally
the sum includes only the subset of indices paired in configuration C. The configuration of
minimal E can be obtained recursively as follows. Suppose we have found optimal config-
urations (and energies) for all sub-sequences of length n and shorter. The optimal energy
for a sub-sequence of length (n + 1), say spanning sites i to j = i + n + 1 is obtained by
considering the following (n+ 2) possibilities: j is unpaired in the optimal configuration, or
j is paired to a site i ≤ k ≤ j − 1. In any one of the latter (n+ 1) cases the arch between j
and k creates two segments (from i to k− 1, and from k+1 to j− 1) which are independent
due to the planarity restriction. The best energy is thus given by

Ei,j = min [Ei,j−1, εkj + Ei,k−1 + Ek+1,j−1] for i ≤ k ≤ j − 1 . (2.96)

Starting from segments of length n = 1, where Ei,i+1 = εi i+1, the above equation can be
used to generate optimal energies for longer segments. The optimal configuration can then
be obtained by tracing back.

The above procedure is easily extended to finite temperatures where considerations of
entropy may be relevant. We can then assign free energies to segments of the RNA, obtained
from corresponding partition functions which may be computed recursively by appealing to
Eq. (2.96) as

Zi,j = Zi,j−1 +

j−1
∑

k=i

e−βεkjZi,k−1Zk+1,j−1 . (2.97)
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2.5.1 Free energy of molten RNA

Using variants of Eq. (2.97), it is possible to follow how the secondary structure denatures
as a function of temperature. Presumably at some temperature Tm the native structure
disappears in favor of a molten state resembling a branched polymer. The nature of the
melting process should depend strongly on the RNA sequence and its native structure. In
the next section we shall explore this melting for the simple case of an RNA hairpin. In its
molten phase, RNA can explore a variety of structures reflecting the competition between
energy gain of pairing and the resulting loss of entropy. To estimate the fraction of bound
pairs in the molten phase, we can neglect variations in binding energy, setting εij = ε and a
corresponding Boltzmann weight of q ≡ e−βε ≥ 1. Once sequence variations are removed, the
constrained partition function will depend only on segment length, i.e. Zi,j = Zm(|j− i|+1),
and Eq. (2.97) simplifies to

Zm(N + 1) = Zm(N) + q

N
∑

k=1

Zm(k − 1)Zm(N − k) , with Zm(0) = 1 . (2.98)

It is possible to solve the above recursion (by changing to an ensemble of variable length
N). However, a more informative solution is obtained by considering the “mountain” rep-
resentation of planar graphs. The correct weight for each graph is obtained by assigning
a factor of 1 for each horizontal step, and

√
q to a vertical step (up or down). Each con-

figuration can then be regarded as a Markovian random walk with these weights, and the
additional requirement that it never goes below the starting point. The constraint (for an
island/mountain landscape, or correct formulation of parentheses) is thus equivalent to a
barrier to the random walk at a position one step below the starting point. The problem of
a random walk with a so-called absorbing barrier can be solved in several ways– a quite ele-
gant solution is presented by Chandrasekhar in Rev. Mod. Phys. 15, 1 (1943). Let us first
ignore the constraint: The partition function for all paths of N steps starting at the origin is
simply (1 + 2

√
q)N , accounting for all three possibilities in each step. Similarly, adding the

uncorrelated fluctuations in each step leads to a variance of σ2 = N(2
√
q)/(1+2

√
q). In the

limit of large N , and appealing to the central limit theorem, the net weight of the subset of
walks ending at a height h after N steps is obtained as

W (N, h) = (1 + 2
√
q)N exp

[

−(1 + 2
√
q)h2

4
√
qN

]

×
√

1 + 2
√
q

4π
√
qN

. (2.99)

If we were to ask the question of what fraction of these random walks return to the origin
(h = 0), we would obtain the expected result of Ω(N) ∝ gN/N c with the ‘loop closure’
exponent of c = 1/2 for our one-dimensional random walks. Of course, for counting planar
graphs we need the smaller subset of walks that return to the origin without ever passing to
h < 0, and need to subtract all undesired walks from our sum.

Chandrasekhar’s solution to this problem is closely related to the method of images in
electrostatics. The image of the starting point (h = 0) with respect to the forbidden state
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Figure 21: Copied from S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

(h = −1) is located at h = −2. Consider all walks that start at this image point and end
at h = 0. Each such walk W ∗ must cross the ‘mirror’ plane at h = −1 at least once. We
can construct a related ensemble of walks W ′ which are the reflection of these walks in the
mirror-plane (thus starting at the original point h = 0) up to the point of first intersecting
the forbidden state at h = −1, and after which following they follow the path of W ∗. We
note that the ensemble W ′ consists of precisely the paths starting and ending at h = 0 which
violate the non-crossing condition. As these paths are in one to one correspondence to W ∗,
we simply need to subtract them from the sum in Eq. (2.99) to get the correct number of
non-crossing paths. Since W ∗ is the ensemble of walks with an end to end excursion of h = 2,
we obtain

Zm(N + 1) = W (N, 0)−W (N, 2) = (1 + 2
√
q)N

[

1− exp

(

−(1 + 2
√
q)

√
qN

)]

×
√

1 + 2
√
q

4π
√
qN

.

(2.100)
The Gaussian approximation is only valid for large N , and we should similarly expand the
difference in brackets above to get the final form

Zm(N + 1) = A(q)
g(q)N

N c
, with A(q) =

(

1 + 2
√
q

64π3√q

)3/2

, g(q) = (1 + 2
√
q) , and c =

3

2
.

(2.101)
The most important consequence of the constraint is the change of the exponent c from 1/2
to 3/2. The fraction of bound pairs is merely determined by the probability of going up or
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down at any step, and thus given by

〈NB〉
N

=
2
√
q

1 + 2
√
q
, (2.102)

which changes continuously from 1 at large q (low temperatures) to 2/3 as q → 1 at high
temperatures.

2.5.2 Melting of a hairpin

A particularly simple native RNA structure is a hairpin. For long hairpins the transition
from the native form to the molten state can be described analytically using a so-called Gõ
model4. In the native configuration monomers k and 2N−k+1 are paired together, while in

Figure 22: The native state of a hairpin

intermediate configurations partially melted segments alternate with segments that maintain
the original bonding.

Figure 23: The molten state of a hairpin

A partition function is obtained by summing over all partially melted configurations, and
ignoring any interaction between the segments, takes the form

Zn(N) =

′
∑

l1,l2,l3,...

R(l1)Zm(2l2 + 1)R(l3)Zm(2l4 + 1) · · · , (2.103)

with the constraint l1+l2+l3+· · · = N . The contribution of the molten segments comes from
Eq. (2.101). For the native segments, we should add the binding energies of the segments.

4R. Bundschuh and T. Hwa, Phys. Rev. Lett. 83, 1479 (1999).
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To make the problem analytically tractable, we assign to each native bond an energy ε < ε,
and a corresponding Boltzmann weight q = e−βε > q.

With these simplifications, the problem becomes identical to the Poland–Scheraga model
in Eq. (2.79) with w = q, g = 1 + 2

√
q and c = 3/2. It is thus possible to obtain a melting

transition at a finite temperature at which the native fraction goes to zero linearly (β = 1)
from Eq. (2.94)).
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