
2 Structure

2.1 Coulomb interactions

While the information needed for reproduction of living systems is chiefly maintained in the
sequence of macromolecules, any practical use of this information must rely on the physical
forces that shape the molecules into functioning, sequence-dependent, structures. These
forces and the resulting structures are the topic of the second segment of this course.

Since neither gravity, nor nuclear interactions, are particularly relevant to most organ-
isms, the forces that shape the molecules of life are various manifestations of the electro-
magnetic interactions between electrons and nuclei. These include the strong covalent bonds
(maintaining the primary connectivity of a molecule), the weaker hydrogen bonds (sensitive
to orientations of the participating moieties), and the even weaker (and roughly direction in-
dependent) van der Waals forces. However, for these molecules to properly fold and function
in the cell environment, their functionally relevant energy scales should be compared to the
thermal energy kBT at room temperature. Much higher energies freeze the corresponding
degrees of freedom, while lower energies are irrelevant and ignored in comparison to the
ubiquitous thermal fluctuations. Since entropic contributions to the free energy are also of
the order of kBT , entropic considerations play a major role at molecular and cellular levels.
The following two sections emphasize the role of entropy in the context of ionic interactions
and polymer conformations.

2.1.1 Charge dissociation in solution

Entropy is indeed the reason why many molecules (electrolytes) dissociate and ionize in
solution. The opposing charges making up an ion clearly minimize the Coulomb energy by
being in close proximity in a bound (molecular) state. The loss of this electrostatic energy
in the dissociated (ionized) state is balanced by the gain in configurational entropy. We can
quantify this by an approximate evaluation of the change in free energy upon dissociation,
as

∆F = ∆E − T∆S = −Eb + kBT log

(

V

Nv0

)

. (2.1)

Here, Eb is the binding energy, T is the temperature, kB is the Boltzmann constant, and v0 is
some characteristic volume. The gain in entropy is estimated from the number of positions
available for each of N particles in the volume V . (A systematic evaluation of the partition
function reproduces the above result with v0 = λ3, where λ is the “thermal wavelength.”)
Setting the free energy change to zero, gives the equilibrium concentration

c =
N

V
=

1

λ3
e−βEb . (2.2)

The electrostaic contribution to the binding energy of opposite charges, Ec, can be esti-
mated from Coulomb’s law, as

Ec =
q1q2
ǫr

= −e2z2

ǫr
, (2.3)

31



where ǫ is the dielectric constant of medium- water in cases of interest to us, z is the valence,
and e is the electron charge. The physically significant quantity is the ratio of this energy
to the thermal energy kBT , which can be expressed as

−βEc =
βe2z2

ǫr
= z2

lB
r
, (2.4)

where we have defined the Bjerrum length

lB =
e2

ǫkBT
. (2.5)

For water, ǫ ≈ 81, and the Bjerrum length is about 7.1 Å at room temperature. Very roughly,
we may surmise that at separations larger than lB, the Coulomb interaction between unit
charges in water is insignificant compared to the thermal energy.

Figure 1: The charge environment of a cell.

We can also think of dissociation as the chemical reaction

CA ⇋ C+ + A− . (2.6)

(The dissociated positive charge is called a cation, the negative one an anion.) The equi-

librium constant of the reaction, expressed in terms of the concentrations of the different
components as

Keq. ≡
[C+][A−]

[CA]
∝ e−βEb , (2.7)
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is a measure of the ease with which ionization occurs. For strong electrolytes, such as Na+Cl−

(salt), Na+OH− (base) and H+Cl− (acid), which dissociate almost totally, the net binding
energy is small. Weaker electrolytes are more strongly bound and dissociate less readily.
Water itself can dissociate into H+ and OH− ions, but at room temperature this process
only produces about 10−7 hydrogen ions per mole.

Biological molecules also dissociate, and the ‘charge environment’ of a cell is quite compli-
cated. The lipids forming the cell membrane become negatively charged upon dissociation,
as does DNA. The latter is an acid that releases H+ ions, leaving behind a negatively charged
backbone. Proteins can also release H+ ions, but some of the amino-acid side groups are actu-
ally basic, releasing OH−. A molecule of this sort, which can develop regions both of positive
and of negative charge upon dissociation, is called a polyampholyte. Molecules like the DNA
backbone, which carry a uniform charge, are known as polyelectrolytes. Generically, both
types of macromolecules are referred to as macroions, and the small charged particles they
give up into the cytoplasm are called counterions. The electrostatic interactions between
the macromolecules are very important for their biological function– the repulsive forces
prevent aggregation, while attractions are important for docking and recognition. However,
calculating these interactions in the environment of the moving counterions is not an easy
task.

2.1.2 The Poisson–Boltzmann Equation

We know that proteins bind to one another, and that some proteins bind to DNA. In prin-
ciple, an effective Coulomb interaction between such macroions can be obtained by holding
them at fixed separation (and orientation); a constrained partition function is then evalu-
ated by integrating over all the other degrees of freedom, e.g. the positions of the mobile
counterions, as

e−βF (macroions) = Zres. =

∫

∏

i

d3ri e
−βHc . (2.8)

In addition to steric constraints (the excluded volume around each atom), the Hamiltonian
Hc includes the direct Coulomb interactions between the macroions, their interactions with
the counterions, as well as the interactions amongst counterions. The restricted partition
function is too hard to compute directly, and we shall instead resort to a “mean-field”
approximation in which each counterion is assumed to experience an effective potential φ(~r)
due to the macroion, as well as all the other counterions. The effective potential is then
computed self-consistently.

In this approximation, the position-dependent density of counterion species α (with va-
lence zα) adjusts to the potential through the Boltzmann weight, as

nα(~r) = n̄α exp [−βφ(~r)zαe] . (2.9)

Note that n̄α is in general not the particle density, but an overall parameter that needs to be
adjusted so that when the density is integrated over ~r the correct number of counterions is
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obtained. The potential φ(~r) is in turn determined by the charge distribution, and satisfies
the Poisson equation,

∇2φ = −4π

ǫ
ρ(~r). (2.10)

The charge density at each point has a contribution from the macroions, and from the
(fluctuation averaged) counterion density, and thus

ρ(~r) = ρmacroions(~r) +
∑

α

zαen̄αe
−βφzαe. (2.11)

Self-consistency then leads to the Poisson-Boltzmann Equation

∇2φ = −4π

ǫ

[

ρmacroions(~r) +
∑

α

zαen̄αe
−βφzαe

]

, (2.12)

This equation, while a drastic simplification of the original problem, is commonly used for
study of ionic solutions. It is a non-linear partial differential equation, and exact solutions
are available only for a few simple geometries. It does have the virtue of being at least
numerically solvable.

2.1.3 Debye screening by salt ions

We expect physically that counterions will accumulate near regions of opposite charge to
lower the electrostatic energy. As a result a charged macroion will be surrounded by a cloud
of counterions, shielding and reducing its net charge. This effect is easily captured in a
linearized version of Eq. (2.12). Expanding the Boltzmann weight in powers of φ is actually
a quite good strategy when the Coulomb interaction between macroions is screened by a high
concentration of salt ions. The first step is to linearize the exponential such that the local
counterion charge density is

ρc(~r) =
∑

α

ezαn̄αe
−βzαeφ ≈

∑

α

ezαn̄α [1− βzαeφ+ · · · ] . (2.13)

We note that at this order the local variations in counterion charge density and potential are
simply proportional. Integrating the linearized equation for nα(~r), we find the total number
Nα = n̄αV

[

1− βezαφ̄
]

. The value of the potential is in fact arbitrary up to a constant
(which then adjust n̄. Thus without loss of generality we can set φ̄ = 0, in which case we can
replace n̄α with the overall density nα = N/V . The mobile ions are a mixture of cations and
anions from the dissociation of salt molecules in the solution, and counterions (typical H+

and OH−1) from dissociation of the macroions. The contribution of salt ions to the first term
in Eq. (2.13) vanishes due to their overall charge neutrality, and neglecting the much smaller
contribution from counterions released by the macroions (at high salt concentrations), we
find

∇2φ = −4π

ǫ
ρmacroions(~r) +

φ

λ2
, (2.14)
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where

λ−2 =
∑

α

4π

ǫ
βe2z2αnα = 4πlB

∑

α

z2αnα. (2.15)

This is the Debye-Hückel equation, and the parameter λ is the Debye screening length. In a
typical biological environment λ is around 1nm.

For the case of a single point charge Q = ze, with

ρmacroion(~r) = zeδ3(r), (2.16)

the solution is the exponentially damped version of the Coulomb potential

φ(~r) = kBT
zlB
|~r| e

− |~r|
λ . (2.17)

Since Eq. (2.14) is linear, its solution for a general distribution of charges is obtained by
simple superposition, leading to the interaction energy

βEinteractions(macroions) = lB
∑

m<n

zmzn
|~rmn|

e−
|~rmn|

λ . (2.18)

2.1.4 Dissociation from a plate

The Debye-Hückel approximation is not applicable at low salt density. For example, consider
the simple geometry of a flat plate, reminiscent of a membrane, with no salt in the ambient
water solution. Upon dissociation the membrane is negatively charged; its charge density
denoted by σ = −e/d2 (i.e. the negative charges are on average a distance d apart, and
their discreteness is ignored). The neutralizing counterions, of charge +e are present in
the solution on both sides of the membrane. Due to translational symmetry, the average
charge density (and potential) only depend on the separation from the plate, indicated by
the coordinate y, and full Poisson–Boltzmann Eq. (2.12) now reads

d2φ

dy2
= −4π

ǫ
en̄e−βeφ(y). (2.19)

The following trick allows us to guess the solution to Eq. (2.19). We first make a trans-
formation to

W (y) = eβeφ/2 =⇒ φ =
2

βe
logW, (2.20)

such that

φ′ =
2

βe

W ′

W
, and φ′′ =

2

βe
· W

′′W −W ′2

W 2
.

Multiplying both sides by W 2, Eq. (2.19) can be recast as

2

βe

(

W ′′W −W ′2
)

= −4π

ǫ
en̄ . (2.21)
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Figure 2: Membrane with a uniform surface charge.

While still non-linear, it is easy to see that a linear function of y satisfies the above equation,
and we set

W (y) = 1 +
y

y0
, (2.22)

where, without loss of generality, we have set φ(y → 0) = 0, such that W (0) = 1, and
y−2
0 = 2πβe2n̄/ǫ. Note, however, that n̄ is simply a parameter that needs to be set by the
requirement of charge neutrality. It is easier to trade in this parameter for y0 and constrain
the latter. The electrostatic potential thus has the form

φ(y) =
2

βe
log

[

1 +
y

y0

]

. (2.23)

The undetermined length, y0, clearly sets the scale at which the counterion density changes
significantly. It can be determined by examining the limit y ≪ y0, for which Eq. (2.23)
becomes

φ(y) ≈ 2

βe

y

y0
. (2.24)

Indeed, at distances close enough to the surface that screening is unimportant, we expect
the electric field to be (e.g. by appealing to a Gaussian pillbox)

E =
2πσ

ǫ
,

and a corresponding potential

φ = −2πσ

ǫ
y . (2.25)

Comparing this result with Eq. (2.24) indicates that

y0 =
ǫ

eσπβ
=

ǫ

βe2
d2

π
=

d2

πlB
. (2.26)

This characteristic scale, known as the Guoy-Chapman length, determines the thickness of
the so-called“diffusive boundary layer” of ions that shields a charged membrane.
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Retracing the steps of algebra, it is easy to check that

n̄ =
π

2

lB
d4

,

and

n(y) =
n̄

W 2
=

π

2

lB
d4

(

1 +
y

y0

)−2

. (2.27)

At large separations, y ≫ y0, from the plate, the counterion density falls off as (2πlBy
2)

−1
.

The corresponding potential behaves as φ(y) ≈ 2 ln(y)/(βe), very different from the linear
potential in vacuum, and also quite distinct from an exponential decay that may have been
surmised based on Debye-Huckel screening. Clearly this type of screening will lead to a quite
different interaction between charged plates, a question that will be taken up in the next
problem set. In connection to that, we note that Eq. (2.21) also admits solutions of the form
cos(y/y1 + θ) with parameters y1 and θ that can be adjusted to conform to the boundary
conditions corresponding to parallel charged plates.

While the solutions to the Poisson-Boltzmann equation are interesting and informative,
they do not capture the entire physics of the problem. Fluctuations in charge density can
be important in lowering the free energy. Indeed at high temperatures the correlated fluc-
tuations around two similarly charged macroions further reduce the repulsion through a
dipole-dipole interaction reminiscent of the van der Waals force. If strong enough, these
fluctuations can entirely reverse the sign of the force, leading to an attractive interaction
between like-charged macroions. Such phenomena, not captured by the Poisson-Boltzmann
equation, have received considerable attention in recent years.

2.2 Fluctuating Polymers

The basic molecules of life (DNA, RNA, proteins, · · · ) are hetero-polymers, formed by the
covalent bonding of a sequence of elementary units (nucleic acids, amino-acids) in long chains.
A homo-polymer, as in many synthetic organic molecules, is constructed by joining N ≫ 1
copies of the same monomer. A simple example is polyethylene,

| − CH2 − |N ≡ · · · − CH2 − CH2 − CH2 − · · · .

The degree of polymerization, i.e. the the number of repeated units, can be quite large,
ranging from a few hundred for proteins, 104 − 105 for polyethelene, to as big as 109 for
some DNA. Typically the covalent bonds holding the polymer together are strong and can-
not be broken at room temperature. There can, however, be flexibility in aligning/bending
successive monomers, resulting in a large number of configurational degrees of freedom for
polymers, indicating that a statistical description of the problem is fruitful. Such a statis-
tical perspective is useful for describing general properties common to both synthetic and
natural polymers. For example, at very high (not necessarily physiological) temperatures all
polymers will be in a swollen (denatured) state to take maximum advantage of entropy. The
heterogeneity of the sequence is irrelevant in such a phase, and we shall thus initially focus
on the fluctuations of a homo-polymer.
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2.2.1 Rotational isomers

Successive carbon–carbon bonds in the chain can be in different relative orientations, called
rotational isomers. In polyethelene, the low energy trans conformation leads to a parallel
alignment of bonds. There are two higher energy gauche states which form an angle of 2π/3
between successive bonds. Assuming an energy difference ∆ between the trans and gauche
states, at a temperature T , the probabilities of these outcomes satisfy the Boltzmann weight

prob.(g)

prob.(t)
= 2e−β∆, with β =

1

kBT
.

Figure 3: Trans–gauche configurations of a polymeric bond.

For (CH2)
N , ∆ is quite small (roughly 500 cal/mole or 1/3kBT ), and the polymer is

very flexible at room temperature. For other polymers ∆ > kBT , and gauche states with
probability

p(g+) = p(g−) =
e−β∆

1 + 2e−β∆
,

are relatively rare. A typical configuration then consists of long straight segments with few
bends. The probability of a straight segment of nmonomers is pnt (1−pt), where pt = 1−2p(g)
is the probability of a trans bond. The average length of straight segments is thus 〈n〉a, where
a is the bond length (monomer size), and

〈n〉 = − 1

ln pt
=
(

ln
[

1 + 2e−β∆
])−1

. (2.28)

The typical size of these linear segments is proportional to the persistence of the polymer.
The persistence length characterizes the decay of orientational correlations along the chain.
In the above simplified model, let us denote the orientation of the bonds by the set of vectors
{~t1,~t2, · · · ,~tN}, with ~tj · ~tj = a2. Assuming that the (two) gauche states produce a relative
bond angle φ, we have

〈

~t1 · ~t2
〉

= a2
1 + 2 cosφe−β∆

1 + 2e−β∆
≈ a2 exp

[

−2(1 − cosφ)e−β∆
]

,
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where the last expression is valid in the limit of β∆ ≫ 1 where a gauche state is very unlikely.
In the same approximation, the correlation between bonds that are further apart is given by

〈

~t1 · ~tn+1

〉

≈ a2
1 + 2n cosφe−β∆ +O(e−2β∆)

1 + 2ne−β∆ +O(e−2β∆)
≈ a2 exp

[

−2n(1− cosφ)e−β∆
]

,

where we have included only configurations with one gauche bond. The orientation correla-
tions decay exponentially as e−ℓ/ξp , where ℓ = na is the counter-length along the polymer,
and the persistence length ξp is given by

ξp ≈
aeβ∆

2(1− cosφ)
. (2.29)

2.2.2 Worm-like chain

For a rigid polymer such as double-stranded DNA a kink causing a finite rotational angle is
energetically costly and does not occur. The loss of angular correlations at long distances
then occurs from the accumulation of small changes from one monomer to the next. If
we indicate as before a polymer configuration by the set of vectors {~ui ≡ ~ti/a}, we can
approximate the energy of a nearly straight configuration by

H = −J
N−1
∑

i=1

~ui · ~ui+1 . (2.30)

Since in a typical configuration ~t changes slowly, it is useful to go over to a continuum limit in

Figure 4: The wormlike chain.

which the discrete monomer index i is replaced by the continuous arc-length s ∈ [0, L = Na].

Using (~ui − ~ui+1)
2 = 2− 2~ui · ~ui+1, and replacing

∑N−1
i=1 with

∫ L

o
ds/a, we obtain

H ≈ −JN +
κ

2

∫ L

0

ds

(

d~t

ds

)2

, (2.31)

where κ = Ja is the coefficient of bending rigidity. (Note that |d~u/ds| = 1/R(s), where R(s)
is the local radius of curvature.)

Ignoring the initial energy of the “ground state” configuration, it is common to write the
energy in dimensionless form as

βH = −ξp
2

∫ L

0

ds

(

d~u

ds

)2

, (2.32)
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with βκ = ξp. We have anticipated that the bending rigidity is related to the persistence
length. In fact, it can be shown (e.g. by using transfer matrices) that for the discrete model
of Eq. (2.30)

〈~um · ~un〉 ≈
(

coth(βJ)− 1

βJ

)|m−n|

for |m− n| ≫ 1, (2.33)

and thus in the continuum limit

〈~t(s) · ~t(s+ ℓ)〉 ≈ a2e−ℓ/ξp, (2.34)

with ξp ≈ βκ for βJ ≫ 1. This, so called worm-like chain model is frequently invoked as a
description of double-stranded DNA, where ξp is in the range of 50-100nm.

2.2.3 Entropic elasticity

The flexibility of long polymers arises from the statistical fluctuations of segments larger than
the persistence length. The important parameter that governs the number of configurations
is thus not the degree of polymerization N , but the number of unconstrained degrees of
freedom, or the Kuhn length NK ≈ Na/(2ξp). To see this explicitly, let us consider the end

to end separation of the polymer, given by

~R = ~t1 + ~t2 + · · ·+ ~tN =
N
∑

i=1

~ti .

Because of rotational symmetry (there is no cost for rotating the entire polymer), 〈~R〉 = 0,
and its variance is given by

〈R2〉 =
N
∑

i,j=1

〈~ti · ~tj〉 = Na2 + 2
∑

i<j

〈~ti · ~tj〉 . (2.35)

We shall assume that the orientational correlations decay as a simple exponential (this is
only asymptotically correct), i.e.

〈~ti · ~tj〉 = a2e−a|i−j|/ξp . (2.36)

As the correlation function is the same for every pair of points separated by a distance k,
and as there are (N − k) such pairs along the chain

〈R2〉 = Na2 + 2a2
N
∑

k=1

(N − k)e−ak/ξp . (2.37)

The above geometric series are easily summed, and for N ≫ 1 (where only the term propor-
tional to N is significant), we obtain

〈R2〉 = Na2
(

1 +
2e−a/ξp

1− e−a/ξp

)

= Na2 coth

(

a

2ξp

)

(2.38)

≈ 2Naξp = (2ξp)
2

(

Na

2ξp

)

. (2.39)
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The approximations in the second line rely on ξp ≫ a. The very last expression indicates
that the behavior of the variance is the same as that of NK ≡ (Na/2ξp) independent rods
of length 2ξp, i.e. the same variance is obtained for a collection of NK freely–jointed rods,
each of length 2ξp. Indeed the correlations between these Kuhn segments is sufficiently small
that in the limit of NK ≫ 1, we expect the Central Limit Theorem to hold, leading to the
probability distribution function

p(~R) = exp

[

− 3R2

2〈R2〉

](

2π〈R2〉
3

)3/2

= exp

[

− 3R2

4Naξp

]

1

(4πNaξp/3)3/2
. (2.40)

The final probability distribution is identical to the Boltzmann weight of a Hookian spring
of strength Jpolymer connecting the end points of the polymer, and the result of entropic
fluctuations can be interpreted as conferring an elastic bond between the ends of the polymer
with spring coefficient

Jpolymer =
3kBT

〈R2〉 =
3kBT

2Naξp
. (2.41)

2.3 Interacting Polymers

The polymeric properties discussed so far arose from the flexibility of the covalent bonds
that join adjacent monomers. There are also interactions between any other pairs (triplets,
etc.) of monomers which depend on their spatial vicinity and that favor certain spatial
configurations. Indeed, it is such interactions, typically due to hydrogen bonds, that enable
proteins to fold and assume specific shapes. There are competing effects due to thermal
fluctuations and competition with solvent interactions.

Figure 5: A self-avoiding walk on the square lattice.

Some of the ingredients of polymer interactions in a solvent is present in the very simple
model of chain configurations on a (say square) lattice. The set of random walks on the
square lattice that do not step back to the previous site grows with the number of steps N
as 3N . One simple consequence of interactions is that it is physically impossible to visit a
previously occupied site. The steric constraint of excluded volume prunes the random walks
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to a smaller subset of so-called self-avoiding walks. The number of self-avoiding walks also
grows exponentially as gN with g < 3 (g ≈ 2.64).

A simple way to incorporate interactions on a lattice is to count the number of (non-
polymeric) nearest-neighbor pairs, and assign energy

E = ǫmmNmm + ǫmsNms + ǫssNss,

where mm, ms, and ss stand for monomer-monomer, monomer-solvent, and solvent-solvent
pairs respectively, with Npair and ǫpair indicating the corresponding number and bond-
energies. As two initially separate monomers are brought into contact, two ms bonds
are replaced by one mm bond and one ss bond, leading to a change in energy of δǫ =
ǫmm + ǫss − 2ǫms. The preference of the monomers to aggregate in solvent is thus captured
by the dimensionless “Flory–Huggins” parameter

χ ≡ −β

2
δǫ = β

(

ǫms −
ǫmm + ǫss

2

)

. (2.42)

A negative χ leads to separation of monomers, while a positive χ encourages their aggrega-
tion.

Figure 6: Effective interaction between monomers in a solvent.

In a more realistic model, the interactions between molecules vary continuously as a
function of their relative separation and orientation in space. The dependence on orientation
is particularly relevant to hydrogen bonding, while the van der Waals attraction mainly
depends on the separation. Just as in Eq. (2.8), an effective potential V(r) between monomers
is in principle obtained by integrating over all positions (and orientations) of the solvent
particles. In the usual case where the monomers are larger than the solvent molecules, the
effective potential is attractive at large distances and has a hard repulsive core at short
distances. For a good solvent the potential is weak, while a strong attractive potential favors
aggregation of monomers in a bad solvent. The quality of solvent also changes as a function
of temprature due to entropic contributions of its constituents. The larger entropy of solvent
molecules typically improves the quality of a solvent at higher temperatures.
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2.3.1 Mean-field estimate of the partition function

To calculate the properties of a polymer in solvent– e.g. to determine if it is in its native
form or a denatured state at some temperature– we need to compute the free energy of the
molecule and it environment. Computation of the partition function is a hard task, even
for the highly simplified models we have introduced so far. We shall instead rely upon an
approximate expression obtained in a mean-field/variational treatment. Let us assume that
the most likely configurations of an interacting homopolymer have a typical size R. The
partition of N monomers confined to a sphere of radius R is then estimated as

Z(N,R) ≈ gN ×
exp

(

− 3R2

4Naξp

)

(4πNaξp/3)3/2
(2.43)

×
{

1 ·
[

1−
( a

R

)3
]

·
[

1− 2
( a

R

)3
]

· · ·
[

1− (N − 1)
( a

R

)3
]}

× e−βEatt. .

The first line in Eq. (2.44) pertains to the entropy of the polymer, the first term encodes
the exponential growth in the number of configurations of an unconstrained polymer– the
precise value of g is in fact irrelevant to the considerations that follow. The second term
approximates the reduction in the number of configurations when the polymer is constrained
to a size R. The effect of this reduction is included as a Hookian spring, motivated by the
result in Eq. (2.40) for the end-to-end probability of a non-interacting polymer.

The second line in Eq. (2.44) approximates the effect of interactions and is broken into two
parts. The first part encodes the reduction in phase space due to excluded volume constraints:
the first monomer is unconstrained, the volume available to the second is reduced by the
fraction (a/R)3 due to the volume excluded by the first, and so on. The reductions due to
the excluded volume make a contribution to the free energy proportional to

δ lnZEV =

N−1
∑

i=1

ln

[

1− i
( a

R

)3
]

≈ −
( a

R

)3∑

i− 1

2

( a

R

)6∑

i2 + · · ·

≈ −N2

2

( a

R

)3

− N3

6

( a

R

)6

− · · · . (2.44)

The attractive part of the interaction, for homopolymers, is given by

Eatt. =
1

2

∑

i 6=j

V(~ri − ~rj) =
1

2

∫

d3~rd3~r′n(~r)n(~r′)V(~r − ~r′) . (2.45)

Assuming a uniform mean-density, n(~r) = n = N/V = N/(4πR3/3), leads to

Eatt. =
n2

2
V

∫

a

d3~rV(~r) , (2.46)

where we have integrated over the center of mass of the pair to get the volume V , and
ignored any contributions from the surface. In the spirit of Flory-Huggins, we introduce a
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dimensionless parameter χ, via

∫

a

d3~rV(~r) ≡
(

−4π

3
a3
)

kBT (2χ) , (2.47)

to capture of the net effect of attractions, and such that

−βEatt. = N2
( a

R

)3

χ . (2.48)

The resulting free energy, with R as a variational parameter,

lnZ(N,R) = N ln g − 3

2
ln

[

4πNaξp
3

]

− 3R2

4Naξp

− N2

2

( a

R

)3

− N3

6

( a

R

)6

− · · ·+ χN2
( a

R

)3

, (2.49)

will next be used to explore the phases of the interacting homopolymer.

2.3.2 Swollen (coil) polymers in good solvents

Most of the terms in the trial free energy of Eq. (2.49) have definite sign. The exception
is the term proportional to N2(a/R)3 which has opposing contributions from the repulsive
and attractive parts of the potential, and is proportional to (χ− 1/2). The sign of this term
determines whether attraction or repulsion is the dominant effect, leading to two different
phases. For χ < 1/2 repulsion is more important favoring large R and swollen polymers. This
tendency is opposed by the reduction of entropy at larger R. Indeed, one can self-consistently
check that all other terms are less important in this limit, such that

lnZ(N,R) = constant− 3R2

4Naξp
− 1− 2χ

2
N2
( a

R

)3

+ higher order terms. (2.50)

Extremizing the above expression leads to

∂ lnZ

∂R
= − 3R

2Naξp
+

3(1− 2χ)

2
N2

(

a3

R4

)

⇒ R
5
= (1− 2χ)a4ξpN

3 ,

R = (1− 2χ)1/5(a4ξp)
1/5N3/5 . (2.51)

In the absence of interactions, the typical size of the polymer grows as
√

aξpN , Eq. (2.39).
An interesting consequence of repulsion due to excluded volume is that the scaling of size
is changed to R ∝ Nν , with an exponent ν > 1/2. The variational treatment leading to
Eq. (2.51) thus predicts the so-called Flory exponent of ν = 3/5.

Going beyond the mean-field variational treatment is not trivial, and one of the triumphs
of renormalization group theory is to estimate the exact value of ν = 0.591 . . . , remarkably
close to the Flory approximation of 3/5. While not directly relevant to real polymers, it is
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Figure 7: Variational free energy for a swollen polymer.

possible to inquire about the exponent ν for self-avoding walks in d-spatial dimensions– e.g.,
for polymers confined to a d = 2 dimensional surface. Ignoring the attractive part of the
interaction, but incorporating the repulsive cores, generalizes Eq. (2.52) to

lnZ(N,R) = constant− dR2

4Naξp
− N2

2

( a

R

)d

. (2.52)

Extremization now gives

∂ lnZ

∂R
= − dR

2Naξp
+

d

2
N2

(

ad

Rd+1

)

⇒ R =
(

ad+1ξp
)

1

d+2 N
3

d+2 ,

i.e. a generalized Flory exponent of

νF (d) =
3

d+ 2
. (2.53)

The predicted values of ν = 1, 3/4, 1/2 in d = 1, 2, 4 are in fact exact. Above four
dimensions the excluded volume constraint is irrelevant and ν remains fixed at 1/2.

2.3.3 Compact (globular) polymers in bad solvents

On lowering temperature χ(T ) typically becomes larger, and the coefficient (1 − 2χ) in
Eq. (2.52) changes sign at the so-called θ-point (χ(θ) = 1/2). At temperatures T < θ the
attractive component of the interaction is more important, leading to compact (globular)
shapes with a finite number density ρ = N(a/R)3. The leading terms in the expansion of
the variational free energy can now be recast as

− lnZ(ρ)

N
= − ln g +

1− 2χ

2
ρ+

ρ2

6
+ higher order terms. (2.54)
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Figure 8: Variational free energy for a compact polymer.

The optimal density for T < θ is obtained by minimizing the above free energy,

− 1

N

d lnZ

dρ
=

(

1

2
− χ

)

+
ρ

3
+ · · · ,

leading to

ρ = 3

(

χ− 1

2

)

+ · · · , (2.55)

i.e. a density that vanishes linearly on approaching the θ-temperature from below. The
higher order terms ensure that the density does not exceed the maximum value of unity in
a fully compact state.

Figure 9: Variation of density in a compact polymer.

From Eq. (2.48) we note that the energy gain per particle from the attractive interactions
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satisfies
Eatt.

N
= −ρχkBT . (2.56)

The entropy per particle is then given by

S

NkB
=

−F + E

NkBT
=

lnZ

N
− ρχ = ln g +

3

2

(

χ− 1

2

)2

+ · · · − ρχ ≈ ln g − ρ

2
+O(ρ2) . (2.57)

(The final expression includes only the leading linear term as χ → 1/2.) Thus close to the
θ-temperature the entropy is reduced, initially linearly in temperature, although it also will
eventually saturate as does the density. The above analysis is reminiscent of the mean-field
analysis of the transition between a gas (low density) and a liquid (high density). The liquid
state still encompasses many particle configurations, although fewer than in a gas. Further
cooling of liquids typically leads to frozen states with even lower entropy. We may thus
inquire if such a freezing transition also exists for polymers.

Figure 10: Variation of entropy in a compact polymer.
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