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Asymmetric exclusion process and extremal statistics of random sequences
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A mapping is established between sequence alignment, one of the most commonly used tools of computa-
tional biology, at a certain choice of scoring parameters and the asymmetric exclusion process, one of the few
exactly solvable models of nonequilibrium physics. The statistical significance of sequence alignments is
characterized through studying the total hopping current of the discrete time and space version of the asym-
metric exclusion process.
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[. INTRODUCTION alignment algorithm will produce an “optimal” alignment
for any pair of sequences, including the randomly chosen
Sequence alignment is one of the most commonly usednes. The important question is whether the alignment pro-
computational tools of molecular biology. Its applications duced reflects an underlying similarity of the two sequences
range from the identification of the function of newly se- compared. A common way to address this question is to
quenced genes to the construction of phylogenic tf&es. evaluate the probability of getting a certain alignment score
Beyond its practical importance, it is one of the simplestby chance. This requires the knowledge of the distribution of
model systems for pattern matching. In computational biol-alignment scores for random sequences. This distribution
ogy, sequences are routinely compared via a transfer matrixirns out to obey a universéGumbe) form with two non-
algorithm to find the “optimal” alignment. Recently, it has universal parameters. In this paper, we will derive the Gum-
been noted that this transfer matrix algorithm is the same alsel distribution and characterize some of its properties by
the one used to calculate the partition function or optimalrelating them to the corresponding asymmetric exclusion
energy of a directed polymer in a random medil8h This  process. In particular, we show how the tail of this distribu-
problem is known to belong to the universality class of sur-tion can be obtained from the generating function for the
face growth as described by the Kardar-Parisi-Zh@figZ)  total number of hopped particles. The latter is also the gen-
equation[4]. From the assignment of sequence alignment tcerating function of the average surface height in the equiva-
the KPZ universality class, variosgaling lawscharacteriz-  lent surface growth formulation of the asymmetric exclusion
ing sequence alignment have been deduced. They have beprocess. This important quantity has been calculated for the
used in order to answer questions of practical importance toase of continuous time and continuous space using the rep-
sequence alignment, e.g., the optimal choice of alignmeritca trick [12] a long time ago. More recently, it has been
parameterg5-7]. But there are alsmonuniversalfeatures obtained for the case of continuous time and discrete space
that are of great importance for practical applications. Theyin the scaling regimgl3]. Here, we will calculate this quan-
cannot be extracted from the knowledge of the universalitytity in discrete time and discrete space as necessary for the
class alone, but have to be evaluated by a microscopic studypapping to sequence alignment, in the asymptotic large size
taking into account all the details of the given sequencdimit that is beyondthe scaling limit. Our calculation does
alignment algorithm. In this paper, we will perform such anot make use of the replica trick and leads to a very simple
study for a certain choice of parameters for which sequencelosed form expression. It explicitly contains the anomalous
alignment maps onto the asymmetric exclusion prof@$s,  t° scaling of the surface height fluctuations of KPZ surface
which is the best studied nonequilibrium system of the KPZgrowth in one dimension. We use this generating function to
universality class, equivalent also to the six vertex modebive an explicit expression for the significance of sequence
[10,11]. The only approximation taken in this mapping is alignments.
neglecting some subtle correlations in the hopping probabili- The paper is organized as follows: First, we will give a
ties of the asymmetric exclusion process. We confirm nuself-contained introduction to sequence alignment in Sec. Il.
merically that neglecting these correlations introduces onlylhis familiarizes the reader with the sequence alignment al-
minor deviations in the final results. gorithm and gives us a chance to develop the notations to be
We will apply this mapping to address the central questiorused later. In Sec. Ill, we will reduce the problem of assess-
in the biological application of sequence alignment, namelyjng the statistical significance of the widely udedal align-
the assessment of alignment significance: The problem is thatent to a quantity defined in terms of the simptgobal
an “optimal” alignment, i.e., the best possible alignment of alignment. Readers more interested in the properties of the
two given sequences according to some scoring functiordiscrete asymmetric exclusion process can skip these two
does not necessarily reflect sequence homology. A sequensections and go directly to Sec. IV, which describes the sim-
plest version of the global alignment problem. Here, the
mapping to the asymmetric exclusion process in discrete
*Present address: Department of Physics, The Ohio State Univetime and space with sublattice-parallel updating is described.
sity, 174 West 18th Avenue, Columbus, OH 43210-1106. Section V is devoted to the calculation of the generating
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function of interest for the asymmetric exclusion process. In S =maxS_; _;+s o} (4)
. K . 1| -1 a ,bj! !

Sec. VI, we discuss the result obtained, apply it to the assess-

ment of alignment significance, and verify the analytical pre-

dicti call id IWith the initial conditionSy,=0= S, o. This recursion equa-
ictions numerically. In Sec. VII, we consider more general;,, refiects that for a giveri (j) the optimal/ is either zero

scoring systems and map them onto a generalized asymmeg; larger than zero. If the optimal is zero the corresponding

ric exclusion processes. The final section gives a short SUNcore is zero as well. If the optimal is at least one, the pair
{_nary O);the p%per afn(z p(r)]|r!ts Itogvatrqls several_ futur(_a dltrhec(ai ,bj) certainly belongs to the optimal alignment together
lons. di humber ot technical detalls are given N e i, whatever has been chosen to be optimal up to the point
appendixes. (i—1,j—1). Equation(4) is basically a random walk with
incrementss, , which is cut off if it falls below zero. The

Il. REVIEW OF SEQUENCE ALIGNMENT global optimal score is obtained as

A. Gapless alignment
. . . 3= max S (5)
Sequence alignment algorithms come in different levels of 1<i=M, 1<j<N

sophistication. The simplest alignment algorithmgespless

alignment. It is not only extremely fast but also very well |n order to characterize the statistical significance of the
understood theoretically. Thus, it has been very widely usedalignment, it is necessary to know the distributionSbffor
e.g., in its implementation of the prograsnAsT [14]. gapless alignments of tweandom sequences, whose ele-
Gapless alignment looks for similarities between two Sementsa,’s are generated independently from the same fre-
quencesi={a;a,- - -ay}, andb={b;b,- - -by} of lengthM  quenciesp, as the query sequences, and scored with the
andN~ M, respectively. The letters andb; are taken from  same matrixs, ,. This distribution of% has been worked
an alphabet of size. This may be the four-letter alphabet out rigorously{18,19. For suitable scoring parameters, it is a
{A,C,G, T} of DNA sequences or the 20-letter alphabet of Gumbel or extreme value distribution given by
protein sequences with the letters distributed according to the
natural frequencies of the 20 amino acids. A local gapless P <Sl=exp — ke *5). (6)
alignmentA of these two sequences consists of a substring
ai_,41--a;_;a of length/ of sequenca and a substring This distribution is characterized by the two parameters
bj_,:1---b;_1b; of sequenceb of the same length. Each @nd« with A giving the tail of the distribution ana n « _
such alignment is assigned a score describing the mode. For gapless alignment, these nonuni-
versal parameters can be explicitly calculafé8,19 from
the scoring matrixs, , and the letter frequencigs,. For
1) example\ is the unique positive solution of the equation

/=1

SAI=S(.j,/)= 2 Sa b

=0 i-K’

where s, ;, is some given “scoring matrix” measuring the — _
mutual degree of similarity of the different letters of the al- (exp(rs)) ;; PaPb €XPI\S5,5) = 1. @
phabet. A simple example of such a scoring matrix is the
match-mismatch matrix The other parametet is given by x=KMN, whereK is a
more complicated function of the scoring matrix and the let-
s . — 1 a=b @) ter frequencies. Instead of reviewing the full derivation of the
a,b —u  a#b, distribution(6) and its parameters, below we give some heu-
ristic arguments that yield the known result. These can later
which is used for DNA sequence comparis¢hS]. For pro-  be generalized to the more relevant case of alignment with
tein sequences, the more complicatedx20 percent ac- gaps.
cepted mutation§PAM) [16] or blocks substitution matrix For random sequences, one can take in Eq. (4) with-
[17] matrices(BLOSUM) are used to account for the vari- out loss of generality. Equatiof#) then becomes a discrete
able degrees of similaritge.g., hydrophobicity, sizeamong  Langevin equation, with
the 20 amino acids. The computational task is to findithe

and/ that give thehighesttotal score S i=S(i)=maX{S(i—1)+s(i),0}, 8
EEmeS[A] () where the “noise”s(i)=s, , is uncorrelated and given by

the distribution
for a given scoring matris, , .

The optimization task called for in gapless alignment can _ _
be easily accomplished by introducing an auxiliary quantity, PRSi>s) {a,b\§b>s} PaPo- ©
S,j, which is the optimal score of the above consecutive
subsequences ending atj( (optimized over/.) It can be The dynamics of the evolution equati@® can be in two
conveniently calculated ifD(N?) instead of the expected distinct phases. The quantity that distinguishes these two
O(N?) steps using the transfer matrix algorithm phases is the expected local similarity score

031911-2



ASYMMETRIC EXCLUSION PROCESS AND EXTREMA. .. PHYSICAL REVIEW E 65 031911
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For an arbitrary discrete or continuous distribution of the
FIG. 1. Sketch of the total score as a function of sequence polocal scoress(i), it turns out to be given by the more general
sition in gapless local alignment. condition (7), which reduces to Eq(12) in the limit (s)
— 0~ where the central limit theorem takes hold.
Since the global optimal sco® can be expressed by the
(s)zEb PaPpSab - (100  maximal island scores as
a,

S =maxX o}, (13
If it is positive, the scoré&(i) will increase on average. After k
a while, it becomes positive enough that the maximum in Eq
(8) will never be given by the zero option. This option could
thus be omitted, which correspondsgimbal gapless align-

the distribution of2 can be calculated from the distribution
of the o. The connection is covered by the theory of ex-
tremal statistics as developed by Gum[#4] (see, also, Ref.

ment. The dynamics is then a random w&)=S(i—1) :
P : : [21]). In the case of a large numbkr, ~N of independent
(i) with an average upward drifs). The maximal score land peak scores each of which asymptotically obeys the

will be close to the end of the sequences and will be given b>'/S ST o .
S ~N(s). Since it is linear in the length of the sequences,eXponent'al distribution E(11), the connection is especially

this is called thdinear phaseof local alignment. It is obvi- simple and we get

ously not suited to identify matches sfibsequenceand the PHS <S}=P{maxo, ... ,0x }<S!
distribution of the maximal scor® is not an extreme value T
distribution. (It is just a sum of many independent local =Pr{o,;<S}K«

scoress(i) and therefore obeys a Gaussian distribution ac-

cording to the central limit theorem. =(1-C,e "9

The situation is dramatically different{f) is negative. In ~[exp(—C, e )Tk
this case the dynamics is qualitatively as follows. The score *
S(i) starts at zero. If the next local scorgi+1) is =exp — ke M) (14)
negative—which is the more typical case in this regime—
then S remains zero. But if the next local score is positive,with k=C,K, , i.e., the parametek of the island peak
thenSwill increase by that amount. Once it is positivgf}) score distribution Eq(11) is the same as the parametem
performs a random walk with independent incremesfi3.  the Gumbel distribution Eq(6) of the maximal alignment
Since(s) is negative, there is megative driftthat forcesS(i) scores.
to eventually return to zero. After it is reset to zero, the
whole process starts over again. The qualitative “temporal” B. Alignment with gaps
behavior of the scor&(i) is depicted in Fig. 1.

From the figure, it is clear that the score landscape can be In order to detect Weak_ 5|m|Iar_|t|es bet}‘/veen "sequences
divided into a series of “islands” of positive scores, Sepa_separated by a large evolutionary distance, “gaps” have to be

rated by “oceans” where&s=0. Each such island originates allowed within an alignment to compensate for insertions or

from a single jump out of the zero-score state and terminategeleuons occurred during the course of evolufigal. Here,

when the zero-score state is reached again. Since each ol will specifically consider Smith-Waterman local align-

these islands depends on a different subset of independement[%]' In this case, a possible alignmeAtstill consists

random numbers(i), the islands arestatistically indepen- ©Of two substrings of the two original sequeneeandb. But
dentof each other. If we let the maximal score of tken ~ NOW, these subsequences may have different lengths, since
island becy, then theser, are independent random vari- 9aps may be inserted in the alignment. For example, the two
ables. Calculating the probability for the maximum scoge ~ SubsequencesSATGC and GCTC may be aligned as

of an island of length. in a saddle point approximation and GATGCandGCT-C using one gap. Each such alignmeht
optimizing over the length. of the islands, we asymptoti- IS assigned a score according to

cally obtain an exponential distribution

o S[A]:(%A Sab— ONg, (15)
Pr(oy>0)~C,e (12)

where the sum is taken over all pairs of aligned lettbisis
for the maximal island scores| (see Appendix A The the total number of gaps in the alignment, ahé an addi-
parameterk, which gives the typical scale of the maximal tional scoring parameter, the “gap cost.” In practice more
island score, is given by the drift-diffusion balance of thecomplicated gap scores may be used, but we will concentrate
underlying Brownian process. If the local scor$) were  on this version.
Gaussian variables with average<0 and varianceD, this The task of local alignment is again to find the alignment
drift-diffusion balance would yield A with the highest score as in EB), in this enlarged class
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@v=(7.7)

preted as the spatial height profile of a growing surface
through the well-known relation between the directed poly-
mer and the KPZ equation.

If we are interested iocal alignments, we can use the
same trick as in the gapless cddg Cutting off unfavorable
scores by adding the choice of zero to the maximum of Eq.

% (17) leads to the Smith-Waterman algoritH23]
t

(1,)=
0,14)

S(r,t—1)+s(r,t)
B S(r+1t)—6
S(r,t+1)=max Sr—11)-6 . (18
0

(r,t)=(-3,11)

FIG. 2. Local alignment of two sequenc€GATGCTand  The gcore of the best local alignment is then given by
TGCTCGArepresented as a directed path on the alignment lattice:

the diagonal bonds correspond to gaps in the alignment. The hori-

zontal bonds represent aligned pairs. Alignments of identical letters S =maxS(r,t). (19

(matcheg are shown as solid lines; alignments of different letters rt

(mismatcheps are shown dashed. The highlighted alignment path

r(t) corresponds to one possible alignment of two subsequences,

GATGCto GCT-C. This path contains one gap. Also shown is In the presence of gaps, we can still distinguish a linear and

how the coordinates andt are used to identify the nodes of the a logarithmic phase. If the global alignment score tends to

lattice. grow, the zero option of the local alignment algorithm does
not play any role. We effectively revert to global alignment

of possible alignments. This can be very efficiently done byand get a maximum score that is linear in the length of the

a transfer matrix method that becomes obvious in the alignsequences_ Contrary to gap|ess a”gnment, it is not enough to

ment path representati¢a5]. In this representation, the tWo have a negative expectation value of the local scésksn

sequences to be compared are written on the edges of ®der to prevent this. This is due to the fact that the align-

square lattice as the one shown in Fig. 2 where we chose fohent algorithm uses gaps to connect random stretches of

simplicity N=M. Each directed path on this lattice repre- good matches to optimize the score. The average score grows

sents one possible alignment. The score of this alignment igy a gap dependent amount{s, ,},8) faster compared to

nal bonds correspond to gaps and carry the seofeHori-  now atu({s, p}, 8¢ +(s)=0. For the simple scoring system
zontal bonds are assigned the similarity scores Eq. (2) this corresponds to a line(w) in the two-
s(r,t)zsai by (16) dimensional space of the parametar&and 6 shown in Fig.

3. Even for this simple scoring system, the loci of the phase

wherea; andb; are the letters of the two sequences beIong—tranSItlon are only known approximateh4]; for more

ing to the position (,t)=(i—j,i+j—1) as shown in Fig. 2. gsglglgzlzted scoring systems, only numerical results are
If we were interested in finding the highest scorgigbal '

) - 2F If the parameters are chosen such that({s)<0, i.e.,
alignment of the two sequencasandb, this corresponds t0  g,cy that the expected global alignment score drifts down-

finding the best scoring path c_onnecting the.beginning (0,0)vards on average, then the average maximum sgbjeis
with the end (O,R!) of the lattice. To find this path effec- ,ronortional to the logarithm of the sequence length as in the
tively, we define the auxiliary quantity(r,t) to be the score  |ogarithmic phase of gapless alignment. The reduced value
of the best path ending in the lattice poimtt). This quan-  of (s in the logarithmic phase makes it the regime of choice
tity can be calculated by the Needleman-Wunsch transfefor the purpose of homology detection. Again, the distribu-
matrix algorithm[15] tion of 3 must be known for local alignments of random
_ sequences in order to characterize the statistical significance
h(r,t+1)=maxh(r,t=1)+s(r,t),h(r+ 1) of local alignment. There is no rigorous theory of this distri-
—6,h(r—1t)— 6. (17) bution in the presence of gaps. However, there is a lot of
empirical evidence that the distribution is again of the Gum-
This is easily recognizefB] as the algorithm used to calcu- bel form[25-31]. The values of the parametetsand\ are
late the zero temperature configuration and energy of a dienly known approximately for a few cases close to the gap-
rected polymer in a random potential given by the localless limit[32—34. In practice, they are determined empiri-
scoress(r,t). The scored(r,t) represent thénegative en-  cally by time consuming simulations. Below we will present
ergy of the optimally chosen polymer configuration ending inan explicit calculation of the parameterfor a simple scor-
the point ¢,t). Alternatively, theh(r,t) can also be inter- ing system.
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FIG. 4. Global alignment lattice used for significance estima-
tion. (a) shows the right half of the lattice from Fig. 2. It can

) ~ . represent all possible paths of lendth which end at the point
the scoring system E¢2) for an alphabet o =4 letters in terms of (r.t)=(0L) and start at«,0) for an arbitraryr. (b) shows such a

the mlsr_natct_w cost and _the 9ap cosi. Useful alignments can_(_)nly_ ath schematically. It represents the “rim” of an island with its high
be obtained in the logarithmic phase above the phase transition line, . . :

. . - . Score denoted by the filled dot at the tip of the triangle. The open
The diamonds are the numerically estimated points on the phas

transition line; the solid line is the approximate locus calculated in($ot at (o.to) represents the corresponding island initiation event.
Ref.[24]. Below the dashed line the alignments do not depend on >

/
the mismatch cosp. any more and the phase transition line is _ 2
known to be strictly horizontal. (exdAh(OL)])=1{ ex )\k§=:1 s(0,%—-1)

IIl. SIGNIFICANCE ESTIMATION BY USING =(exg As])"2. (22
GLOBAL ALIGNMENT

FIG. 3. Loci of the log-linear phase transition for alignment with

] While we are not able to rigorously prove the conditionxon
As a first step, we want to show that the parameter pt forward in Eqs(20) and (21), we will in the following

which describes the tail of the Gumbel distribution, can begiye some heuristic arguments for its validity. One possible
derived solely from studying the much simplglobal align-  gerivation uses two assumptions and otherwise applies some
ment governed by the recursion H4.). Later, we will see jgorous mathematical results. The second derivation is more
that global alignment is in certain cases approximatelyinyitive and gives some feeling where the score distribution
equivalent to the asymmetric exclusion process. We will dey |ocal alignment comes from. In addition to these heuristic
rive an explicit formula forn by studying the corresponding arguments we will verify in Sec. VI C that the equation for

asymmetric exclusion process. the Gumbel parametex that we will derive from Eqs(20)
and(21) indeed yields the correct statistics of local sequence
A. An expression for A in terms of global alignment alignment.

L fine th nerating function
et us define the generating functio B. Derivation under the assumption of a Gumbel distribution

Z(\;L)=(exdAh(r=0L)]), (20 In this first derivation we will start from the assumption
that the distribution of the local alignment sca¥€L) for
where the brackets ) denote the ensemble average over allcOmparsons of two sequences gf equal lengtfs of the
possible realizations of the disorder, i.e., over all choices Olﬁl;]mgetl) form Eq.(6) with |K:|§!_ - This hasdbeer;]_estab—
random sequences andb andh(0.L) is the global align- > co DY many humerica studig@5-31. Under this as-

ment score at the end of a lattice of lengiths shown in Fig. sumption, a simple calculation shows that

4(a). It can be obtained from the recursion relatidn) with (S(L)) 2
the initial condition h(2k,t=0)=h(2k+1t=1)=0. We lim nL % (23
claim that the parametex of the Gumbel distribution is Lo

obtained from
Thus, we only have to calculate the asymptotic expectation
value on the left-hand side of E(R3) in order to determine
the value of the Gumbel parameter

The existence of this asymptotic expectation value has
been rigorously established by Arratia and Waterrfi2&i.
Note, that this reduces simply to E() in the case of gap- Its numerical value has been studied by Zh&Bg] and we
less alignment, since for infinite gap ca%twe have will reformulate Zhang’s result in our notation. To this end,

lim Z(\;L)=1. (22)

Lo
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we will consider the global alignment scdier ,t) calculated

through the recursion Eq17) on the diamond-shaped lattice

shown in Fig. 2, i.e., with the initial conditions(r =t,t)
=h(r=—t,t) = —t4. With this quantity we can defing, as
the unique solution ofexdA h(r=0,2.)])=1. Then, our
Eq. (23) together with Theorem 1 and Eq2.15 and(2.16
of Ref.[36] imply that givene >0 and large enough andn
the inequality

1

(Ln) 2 (1
+e=—=2|——=¢
Inn

AL A

ol e

holds where (0) is a positive constant independentsgfn,
andL. Thus, in the limitn—o we get almost surely

Y N | . 25
—te=—=2l—— e

N e ¢ r(0) @9
This implies that lim ., A =\ or, in other words\ is
given by the condition

lim Z(\;L)=1 (26)
L—oo
on the generating function
Z(n;L)=(exdAh(r=0L)7]). (27)

To connect this to the condition20) and (21) we have to
assume thah(r=0,L)~h(r=0L) in the limit of largeL.

PHYSICAL REVIEW E 65031911
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FIG. 5. Sketch of some islands on the local alignment lattice.
The lattice sites with a positive score are marked with dots. The
bonds that have been chosen in the maximization prodé&ssare
highlighted. Together they are the restricted optimal path associated
with each point with a positive score. Each of these paths goes back
to an island initiation event that is marked by an open dot. The large
filled dots mark the positions of the highest scoring point on each
island. As exemplified by the two islands close to the right tip of the
lattice islands do not have to be separated by lattice points with zero
scores.

This highest scoring path is uniquely defined for each point

The difference between these two scores are the boundafj:t) if @ convention of how to handle degeneracies in the

conditions. While the optimal path corresponding rér
=0,L) is allowed to start at any, as indicated in Fig. 4 the
optimal path corresponding ﬂEb(r=0,L) has to start at
=0. However, the optimal path fdr(r=0,L) is expected to
start at a distanci| that is sublinear ir.. Thus, it is at least

plausible to usé(r=0,L) andh(r=0,L) interchangeably at

maximization procedurél8) is chosen. While the specific
choice of a convention should not mattere can, e.g., de-
clare that the first option that maximizes the right-hand side
of Eq. (18) locally defines the highest scoring path. This
uniquely defined path must start at some point,{;) where

a positive score is created from a zero score by a good
match. An island is then defined to be the collection of points

least as far as the growth behavior of a quantity like(r t) with positive score, i.e.S(r,t)>0, and whose re-
(exfAh(r=0L)]) for largeL is concerned. This transforms stricted optimal pathr* () originates at the same point

Egs.(26) and(27) into conditions(20) and(21).

C. Intuitive derivation

The key observation that allows us to understand the r

sult equationg20) and(21) intuitively is the fact that similar

€

(ro,tg). A sketch of these islands is shown in Fig. 5. By this
definition, every lattice point with a positive score belongs to
exactly one island. Each of these islands has a maximum
score that we denote by, as we did in the gapless case.
Thus, the maximal scor® on the total lattice is given by Eq.

to the case of gapless alignment discussed in the last sectio ,3 :

the points on the alignment lattice can be grouped together as Although the positively scoring sites of the lattice are
islands[31]. By the construction of the local alignment al- uniquely assigned to islands by this definition, islands do not

gorithm (18), many points on the alignment lattice have an_ecessarily hav_e to bg surrqundeq by zero scores. It is pos-
score of zero in the logarithmic alignment regime. As for Sible for two neighboring lattice points to belong to two dif-
gapless alignment, a positive score will be generated out of

this “sea” of zeros, if a good match occurs by chance. This | )

positive score can then imply further positive scores via the ~1he value of the Gumbel paramtershould depend continuously
recursion relation18). For every point £,t) on the lattice ~©n the scoring parametesg , . Since a degeneracy in the maximi-

that has a positive score, we can define a restricted optimafion procedure Eq18) usually can be resolved through slightly
' varying the scoring parametesg , the choice of a procedure to

A* . . . .
pathr?(7), which is the highest scoring path out of all pathS hangle these degeneracies cannot influence the final value of the
r(7) with an end fixed at (t) =r; see the example in Fig. 2. Gumbel parametex.
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ferent islands, i.e., for two islands to “touch” each otlisee = analogously to the gapless cdg@pendix A). While a single
Fig. 5. However, the higher the peak score of an island thegapless island is described by a random walk of some opti-
less probable the configuration of tisér,t) that leads to mized lengthL, an island with gaps corresponds tglabal
such a high scoring island. Thus, if we restrict our attentiongapped alignmenbf some optimized length. as the one
only to islands the peak scokg, of which is larger than shown schematically in Fig.(8). Using this replacement, the
some thresholdr,, these islands will occur in areas of the maximal island distribution again has an asymptotically ex-
scoring lattice that are the further apart from each othéth ponential form(11) with the decay constant given by Eq.
lower scoring islands interspergethe larger the threshold (21). An approximate interpretation for the res(tl) is the
oo. Also, the probability of not being separated by zerofollowing: Due to the choice of scoring parameters in the
scores becomes small with increasing separation. Thus, thegarithmic phase of local alignment, the average score
island peak scores, of those islands exceeding a threshold(h(0,L)) of global alignment with the same choice of param-
o, are expected to become statistically independent randomters decreases linearly with the lengttof the alignment.
variables, i.e., changes in the configuration of sfigt) that  Thus, typical configurations of the disorder have a strongly
affect the peak score of one of these high scoring islands doegative scoreh(O,L) and hardly contribute taZ(\;L)
not affect the peak score of another of these high scoring=(exd\h(0,L)]). Only on very rare occasion$(0L) is
islands. While this is an assumption, it can be numericallypositive for largelL. and contributes significantly td(\;L).
verified. The independence can be quantified by the correlaFhe fact that there is a choice pfwith Z(\;L)=1 for large
tion coefficient L implies that these configurations with positik€0,L) are
exponentially rarelt is thus necessary to weight these con-
(ga’y—(ad)? figurations with the exponential factor gxm(0,L)], and
- (0B —(o)? ' (28) choose\ to match the decay constant of the probability of
finding such rare events.

where o and ¢’ are the peak scores of two neighboring
islands on the alignment lattice exceeding a threshold score
o,. In Ref.[31] this quantity has been studied by averaging As already noted in the analogy between the directed
over 300 pairs of random sequences with an alphabet size golymer and sequence alignment, the sdoo®rresponds to
20 and a gap cosf=2.9 using the PAM-25(016] scoring  the (negative of thgfree energy. Thus the quantiB(\;L)
matrix for s,,. At op=7.5 the correlation coefficient was =(exd\h(0,L)]) can be interpreted as the disorder-averaged
estimated to &~ —0.001 indicating the statistical indepen- (zero temperatujepartition functiorf of X “replicas” of a
dence of these large islands. It is not to be expected that thidirected polymer of lengtt.. Note that the replica number
independence should break down for the simpler local scorgiven by need not be integer. In the surface growth inter-
ing matix Eq.(2). pretation,Z(\;L) is the generating function for the space

Thus, we will in the following assume that the islands averaged surface height. While many of the universal fea-
peak scores, of sufficiently high scoring islands are statis- tures of global and local sequence alignm@ng., its scaling
tically independent random variables. The islands withbehavior in the logarithmic phase and upon approaching the
smaller scores do not contribute to the maximum in@@)  phase transition linecan be understood merely from the
and the fact that their island peak scores are not really urknowledge that sequence alignment belongs to the KPZ uni-
correlated only rescales the effective number of islandsversality clas§3,5—7 or from the limitZ(A—0;L), a solu-
Thus, we again observe a Gumbel distributiorSofiia Eq.  tion of Eq.(21) for the nonuniversal quantity requires the
(14) for very long sequences. The crossover sequence lenghknowledge of the large. behavior of the entire function
at which a Gumbel distribution is a good description of theZ(\;L) and hence a more detailed microscopic calculation
distribution ofX, depends on the scoring system. Accordingfor the given model. This is what we will undertake in the
to the above considerations, it is only valid if sufficiently following sections.
many of the large independent islands occur on the scoring
lattice. If the typical size of a single island is comparable to IV. GLOBAL ALIGNMENT AS AN ASYMMETRIC
the length of the sequence we will not expect any Gumbel- EXCLUSION PROCESS
like distribution. This can easily happen as the log-linear
phase transition is approached since the typical island sizes
diverges at the transition. For a scoring system very close to From now on we will focus orglobal alignment as de-
the transition, the Gumbel distribution may be observed onlscribed by Eq(17), and use Eq(21) to infer the value of the
for very long sequences. However, all practically useful scorparametein characterizing local alignment. We restrict our-
ing systems are far enough away from the phase transition teelves here to a very simple scoring system. In applications
ensure a sufficient number of large islands on a scoring latef sequence alignment this scoring system is not very useful
tice for two sequences of realistic lengths, i.e., a few hundredince it allows more gaps than naturally related sequences
letters each.

Our task is thus to calculate the distribution of the island=——
peak scores for very large islands in the presence of gaps. 2However,Z(\;L) shouldnot be interpreted as the partition func-
This distribution of maximal island scores can be derivedton at temperatura ~ 2.

D. Interpretation of Z

A. A simple model of sequence alignment
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would show and since it is much too restrictive as far as T
taking different degrees of similarity between different letters  2w-1
of the alphabet is concerned. However, as we will point out
in Sec. VII, the mapping presented in this section between
alignment with the simple scoring system and the asymmet-
ric exclusion process can be generalized to a mapping be-
tween alignment with more complicated scoring systems and
generalizations of the asymmetric exclusion process. As far 2
as this mapping is concerned, restricting ourselves to the
simple scoring system is solely a matter of convenience since 0
it avoids lengthy expressions that would make the spirit of Y NN NN t
the mapping less accessible.

Although this mapping can be generalized to more realis- FIG. 6. Rectangular alignment lattice of widthM2with periodic
tic scoring systems, we will see in Sec. V that calculating theboundary conditions in the spatialertica) direction. We use this
parametei involves solving explicitly for the largest eigen- lattice instead of the triangular lattice shown in Figa)4n order to
value of a generalized transfer matrix of the asymmetric exsimplify the handling of finite-size effects. As indicated by the thick
clusion process. This second step is only readily possible fo#"ay lines, the score at a point witksW as the one at the tip of the
this simple scoring system. Thus, our explicit expression fo,tr!angle is |dgnt|cal with the corres_pon_dlng score calculated on a
\ is only valid for this simple scoring system that is not iangular lattice as the one shown in Figaj
practically used. However, being able to solve Xoeven for
unrealistic scoring parameters is still very valuable as a tesh(r,t+1)=maxh(r,t—1)+ 7(r,t),h(r +1t),h(r —1t)}.
bed for numerical estimation methods for the value

Specifically, we will study the scoring system in which (32
the local similarity scores, ;, can take on only two possible
values, B. Choice of the alignment lattice geometry
1 a=b In order to handle finite-size effects better, we will use a
Sab= 0 azb (29 rectangular geometryFig. 6) for the alignment lattice, in-

stead of the triangular geometry shown in Figg)dWe will
further apply periodic boundary condition to the top and bot-

) : .~ tom edges of the lattice, i.eh(0t)=h(2W,t) for a rectan-
choice of the scoring parameters, the sdorbas the addi- gular lattice of width 2V, and will start on the left edge with

tional interpretation of being the length of thengest com- 1 i) conditionsh(2k+1t=0)=h(2k,t=1)=0. Note

mon subsequena# the two sequencesandb. This longest  that despite the different lattice geometries, the stxgret)
common subsequence problem has a long history as a tqyy )| points with t<W on the rectangular lattice will be

model for sequence comparisoi&8—40. identical to the score at the same,{) coordinate on the
Additionally, we will neglect correlations between the lo- triangular lattice® see Fig. 6.

cal scoress(r,t), which arise from the fact that aM XN
local scores are generated by the+N randomly drawn
letters. Instead of taking these correlations into account, we
will assume thats(r,t)= »(r,t) with independent random

Moreover, we will choose the gap cost to & 0. With this

C. The dynamics of sequence alignment as an asymmetric
exclusion process

variablesz(r,t) given by In this section we will perform a change of variables on
the sequence alignment algorith(®2) for the rectangular
1 with probabilityp lattice shown in Fig. 6. We will find that the resulting prob-
n(r,t)= (30 lem is equivalent to an asymmetric exclusion process on a

0 with probability 1-p one-dimensional lattice of width\®. As a guidance towards

the choice of suitable variables, we take the knowledge from
the (continuoug KPZ equation that the gradient of the sur-
face height is an especially simple quantity. At a fixed time,
- — — the gradients at different positions become uncorrelated and
PAY (0= 770 H Pn(rO=mg. (31 Gaussian distributef4,41]. Thus, we will look at their dis-
crete analogs in the alignment problem. They are the score
To model sequences randomly drawn with equal probabilitydifferences between neighboring lattice points and thus lo-
from an alphabet of size, we takep=1/c. The approxima- cated on the diagonal bonds of the lattice. We will param-
tion (31) is known to change characteristic quantities of se-etrize these score differences by the bond variablest).
qguence alignment only slightys]. We will confirm numeri-  They will later turn out to be the occupation numbers of the
cally at the end of this paper, that this also holds for the
values of\ that we are mainly interested in here. For our
choices of parameters, the global alignment algori(im) 3Since directed polymers in a random medium are known to have
reads a wandering exponerit=2/3 this actually still holds fot<W®?,

with
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h(r+1,t)

FIG. 7. One building block of
n’, —— n the alignment lattice. By our num-
bering scheme of the lattiaceand

t are either both even or both odd.
h(r,t+1) T (a) shows the scores at the lattice
points and the bond variables
n(r,t). (b) shows this building
'n(t-1,0=h(r,t+1)-h(r-1,0) ) —— ny block as a “device,” that takes
two incoming bond variables
andn;, and transforms them with

n(rt-1)=h(r+1,t)-h(r,t-1) n(r,t)=h(r+1,t)-h(r,t+1)+1

..... L. ht-1)

n(r-1,t-1)=h(r,t-1)-h(r-1,6)+1

h(r-1,t) the help of the transfer matrix;
§ into the new bond variables,
it andn,.
(@) : (b)

sites of an asymmetric exclusion process. With the choice ofonditions as the one shown in Fig. 8. Each of these sites can
coordinates as illustrated in Fig(af, we define them to e  either be empty or occupied by a single particle. In each time
step for each pair of neighboring sites, a particle hops to the
h(r+1t)—h(r,t+1)+1 forr+teven right with some probability * p, if the site to its right is
h(r+1t+1)—h(r,t) forr +t odd. empty according to the nonvanishing enftt@)— |01) of the
(33)  transfer matrixT,(0). If there is no particle or if the site on
the right is already occupied, the configuration remains un-
As explained in detail in Appendix B, rewriting the time changed.
evolution equatiori32) in terms of the variables(r,t) leads In terms of the elementary devices shown in Figh) the
to a time evolution equation afi(r,t) alone, without any |attice structure of Fig. 6 can be depicted schematically as
reference to the absolute scoite@,t). Moreover, this time  shown in Fig. 9. Thus, the process of hopping a particle to
evolution equation implies that the score differencesthe right is attempted for each even numbered site at odd
take only the valuem(r,t)e{0,1}. By the structure of time steps and for each odd numbered site at even time steps.
the alignment lattice as a composition of elements ashis hopping dynamics is exactly the asymmetric exclusion
the one shown in Fig.(@), the resulting time evolution for process with sublattice-parallel updating with periodic
the n(r,t) transforms a pair[n(r—1t—1),n(r,t—1)] boundary conditions[10,42,.
€{|00),|01),|10),|11)} into the new pair [n(r In reducing the dynamics from a dynamics of scores into
—11t),n(r,t)1€{]00),|01),|10),|11)} independently from a dynamics of the occupation numbers ,t), one has to pay
all the othern(r’,t—1). This transformation only depends attention to the boundary conditions. Periodic boundary con-
on the single random variablg(r,t) and can be expressed ditions for then(r,t) do not automatically lead to meaning-
by the transfer matrix ful periodic boundary conditions for the scorbér,t). We
thus have to impose the additional constraint that the total

n(r,t)=

10 0 0
01 1-p O
T,(0)= 0 0 0 (34 5If we had chosen the “hard wall” boundary conditiohg— 1)
P =h(2W,t)=« instead of the periodic boundary conditions
0 0 0 1 h(2w,t) =h(0,t) for the score, we would have arrived at the asym-

metric exclusion process with sublattice-parallel updating @reh
in the basis|00),|01),/10),|11). We can thus interpret the boundary conditions at a feeding and extinction ratexef3=1
action of the lattice element shown in Figayas a “device”  —p at the two ends of the lattice withvE— 1 sites, respectively.
like the one shown in Fig.(B) that takes a pair of variables

(nj,n}) as its inputs, applies the transfer matfix0), and n N
generates a new pair of variables; (n,) as its outputs. hn.g": d
We recognize the action of the transfer matffiq0) as =

the elementary time step of an asymmetric exclusion process, 0 1 2 2wl T

if we interpret then(r,t) as particle occupation numbers on g g, Interpretation of the transfer matri(0) as given in

a one-dimensional lattice oV sites with periodic boundary gq. (34) as an asymmetric exclusion process. A configuration of the
local score differences is represented by particles on a one-
dimensional lattice of width @/. At an odd time step for each even

“Note, that then(r,t) are not literally score differences but suit- siter —1 a particle hop is attempted with probability-P. In our

ably chosen parameterizations of these score differences. This coraxample, the particle at site 0 cannot hop, since site 1 is already

plication is necessary in order to enable the interpretation as theccupied. The particle on site 2 can hop to site 3 as indicated by the

particle occupation numbers in the asymmetric exclusion processdashed square.
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1 N/2 W—1
ME > [i(2k+1,2-1)+j(2k,2)], (39
=1 k=0

n J=
T I ey TRy B oy P e B e o I wherej(r,t) €{0,1} is the number of particle hops at lattice
:D:_:D:_:D:_:D:_— site (r,t). We thus need to determine the generating function
L L~ L——1L Q(N;W,N)=(exd —\J])o (39

o e N e B o B ey B e B e e I for the asymmetric exclusion process. Note, that this is dif-
41+ 1 1 - - ferent from the generating function of the local current

' ' o o j(r,t): sinceJ/N is thetime and space averageuirrent,Q

. _ : i __contains information on spatial and tempocalrelationsin
FIG. 9. Schematic representation of the alignment lattice of Fig, P P

6 as an “electric circuit.” The boxes represent elements of the typ the number of hopping particles that the generating function

shown in Fig. Tb). They take two particle occupation numbers a:Tor the local current does not.

their “inputs” and generate two new particle occupation numbers as
their “outputs.” Their interconnection into a layered structure as B. The generating function as an eigenvalue problem
shown hgrg with a shifted pairing scheme in every time step leads to N ow we will reformulate the calculation of the generating
the nontrivial behavior of sequence alignment. function Q(\;W,N) for the asymmetric exclusion process as
an eigenvalue problem. As already mentioned[ex@] is a
sum of the local score differences across the whole Iattic%roduct of factors exp-\/2W] for every particle that hops.
yanishes. In t_e.rms of our bond variablgs ,t) this translates  gjnce the dynamics of the hopping process is described by
into the condition the transfer matrix;(0) defined in Eq(34), we can calcu-
late Q(\;W,N) by associating a weight ekpA/2W] to the
1 element of the transfer matriX;(0) that corresponds to a
W & n(r,t)= 2 (35 hop. This can be derived more formally from a dynamics
path integral representation Bf(\;N) as detailed in Appen-
dix C. We get the modified local transfer matrix

2w-1

i.e., the system of hopping particles is at half filling. Since
the number of particles is conserved under the dynamics de- 1 0 0 0
scribed by the transfer matrix,(0), the condition (35) is N 0 1 (1-ple MW
guaranteed to hold if we choose the initial conditions Tl(_)

>2W In(r,t=0)/2W=1/2. Particle densities different from W 0 0 P 0
one half would correspond to a tilted “score profilg(r,t) 0 0 0 1
at each fixed time.

(40)

in the basig00),|01),|10),|11) of a pair of neighboring lat-

tice sites.
V. THE GENERATING FUNCTION . . .
Next, we need to take into account the special lattice
A. Expressing the generating function in terms structure of Fig. 9. We note that at every even time step the
of the hopping process lattice is decomposed inM of the building blocks described

We now want to apply the mapping between sequeany Tl.' Thus, a single time step of the total system at even
alignment and the asymmetric exclusion process to the pra(],:'-me is described by the matrix

tical problem of assessing alignment significance. As noted w N
in Sec. llI, this amounts to calculating the generating func- Tever= TWN)= ® Tl(v_v)' (41)
tion k=1
Zo(N;N)Y=(exg Nh(O,N) 1)o, (36) At odd times the dynamics is the same, but the pairing of

neighboring sites is shifted. To generate the time evolution at
where(- - -), denoted the average over the ensemble of unodd time steps, we can thus shift all particles to the right,
correlated disorder defined by Eq80) and (31). Thus, we @pply the dynamics of even time steps and then shift all
first need to express the total scdréO,N) in terms of the ~Particles back to the left. Le€ be the translation operator
occupation numbera(r,t). As explained in more detail in Such that
Appendix B,h(0,t) is on average incremented by W2ev-
eg/ptime the tr(ang,fer matri‘x’l(g) is applied exce);/)t for the Clnony- - - Naw-1)=|N1-+ - Naw-1No), (42

transition|01)—|10). Thus,Zo(X;N) can be expressed as \ hich shifts all particles by one site to the left taking into

account the periodic boundary conditions. With this defini-
Zo(N;N) =exd AN/2](exd —NJ])o (37 tion we can writeT 4= CTy(\)C 1.
The sublattice-parallel updating procedure., the struc-
in terms of the total number of particle hops per lattice siteture of the lattice as depicted by Fig). fnally leads to
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QN W, N) = (1] (TeverT odd) N/2| o) quence of the translational invariance of the latfi¢e.order
to reveal the underlying structure of the largest eigenvalues
= (1| (TWNCTWMC DOV o), (43 for differentW, it is very useful toexpandthe resulting larg-
est eigenvaluep,,(\) in powers of this quantite 2. We
get
where| ) is a 4V-dimensional state vector representing the
initial conditions, and(;| is the 4"-dimensional vector W=1: p;(\)=1p+0(e M?)
whose entries are all 1, used here to denote a summation
over all possible final configurations. In the limit of large W=2: py(\)=+p—(p—1)e M+0((e ?)?)

N>W, this obviously becomes 2
W=3: ps(\)=\p—(p—1)e

+(p—1)Vp(e*?)2+0((e” M?)%)

W=4: ps(\)=\p—(p—1)e

where p3(\) is the eigenvalue oT\(A\)CTy(A\)C™* with +(p—1)Jp(e 32— (p-1)
the largest real part. Since this matrix has no negative entries o 23 ana
and is irreducible for nonpathological choices of the scoring X \/B (e77+0((e™9)%,

matrix (while restricted to the physical sector of half filling |, 1ore theO((e~M?)¥) terms denote terms of the given order

the largest eigenvalue of this matrix is guaranteed by thith prefactors which are different for differeltt. We can
Perron-Frobenius theorem to be nondegenerate and real, agda that the coefficients up to Ord@—(\IZ)W—l remain un-

its eigenvector can be chosen without negative entries. Wheghanged upon increasiiy and they constitute the beginning
A=0, we havep(0)=1 and its eigenvector is the stationary of a simple geometric series. Assuming that this pattern
distribution of the asymmetric exclusion process, which is aholds for arbitrary orders, we can resum the series for any
simple tensor product of independent occupation numbergixed\>0 and get

This is no longer the case far#0.

QN W,N)=ph(\), (44)

+ —\/2
o= fim )= 25

W— o 1+ \/Be_ N2 (46)

C. Calculating the largest eigenvalue

For a finiteW, it is in principle possible to solve for the Combined with Eqs(37), (39), and(44) this yields the gen-
largest eigenvalue of the “4dimensional matrix erating function
Tw(M)CTw(N)C 1 by directly diagonalizing the matrix. It is

. _ N
convenient to reduce the size of this matrix by exploiting Zo(N;N)=ex AN/2]p™(N)

some symmetries. Since the lattice is translationally invariant =[exd M2]p(\) N
with respect to shifts im by 2, we expect the same symmetry
of the largest eigenvalue 6Fy(\)CTy(N\)C L. Thus, for 1+ Jpex f N
the purpose of computing the largest eigenvalue we can re- PEXR 2 N
strict ourselves to the subspaCef translationally invariant - N exp{ N 5} (47)
vectors 1+ \/Bexp{ )
— 2 —
c={lwCy)=1u)}. 9 in the limit of largeN.

Equation (47) can be easily generalized to the match-

) ) i mismatch scoring system given in E@) with a gap cost
T_hls corresponds to_? discrete Fgurler transform of the maz_ /2 for an arbitrary value of.. If we denote the score in
trix Tw(N)CTw(N)C™* and choosing th&k=0 component.

On ¢, we haveC ™ 1=C by definition. Thus, it is enough to
look .for the largest e|genvalqg,\,.()\) of the matrleW(?\)C SInstead  of looking at the average scoreh(N)
restricted toC. A further restriction that helps reducing the _ 1/ h(r,N) as we do in the derivation of Eq43) in Ap-
S|Ze Of the matl’IX |S the mII'I’OI’ Symmetry Of the Iatt'ce that penc“x C’ we could also have chosen a Specmc pos|t|onr§@
has to be respected by the eigenvector as well. Additionallyang r=1, and monitored the behavior of the scofgN)
Tw(M\)C has to be restricted onto the physical subspace oL 111 N)+h(0,N-1)]. Since the differences between scores at
half filling. _ o . the same time are bounded, these two quantities must have the same
After applying these simplifications, the largest eigen-generating function for larghl. The transfer matrix that calculates
value can be calculated for small Wldtw_usmg computer the generating function fdi(N) is T(\)=T,;(\)@ @, T;(0) in-
algebra. Although the matriXy,(A)C explicitly contains the  stead ofT\,()). It has the technical disadvantage that it breaks the
quantity exp—N\/2W], it turns out that the characteristic translational invariance, but it explicity depends only on
polynomial depends only on ekpA/2]. This is a conse- exd—\/2] instead of exp—\/2W].
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this scoring system b’ (r,t), it is connected to the score limit N—o allows Préofer and Spohn to use a continuum
h(r,t) of the scoring system withu=5=0 by the simple limit that again simplifies the calculations. However, the

global rescaling and shifting alignment problem deals with a finite alphabet and the order
of possible matches is proportional M?. Moreover, each
h’(r,t):(1+,u)h(r,t)—ﬁt. (48) letter in one sequence cdiand will) match an e_xtensive

2 number of letters in the other sequence. In this case, the

detailed mapping presented in this paper has to be used.
As far as results are concerned, the studies by Derrida and
co-workers and by Phofer and Spohn both come to the
conclusion that the generating function or the distribution of
surface heights respectively takesumiversal form in the
If we again neglect correlations and use uncorrelated randofimit W— oo that we are interested in. However, this form is
variables much more complicated than our simple result &1). This
. - is due to a different order of taking limits. Derrida and co-
1 with probabilityp (50 workers take the limitW—« of the generating function
—u  with probability 1—p while keeping\ W2 constant in order to obtain their univer-
sal distribution, i.e., they simultaneously take the limits
the same rescaling and shifting leads to — o and\—0 in some controlled way. Phhafer and Spohn
N/ anh (ON) directly look at the distribution of the surface height that is
Zo(N,miN)=(e )o defined by the properties of the generating function\ at
N =0. However, the expansion pfy(\) in terms ofe M2 that
;{ N we used isnot valid any moren the limit \—0. Since our
ex _—/.L}

Thus the corresponding generating function is given by

Z(\, piN)=(M" ON) =~ #N(ex A(1+ u)h(ON)]).
(49)

n(r,t)=

1+ Jﬁexp[%(lﬂn
main interest is in solving Eq21) for A that results in a
finite result of A, our expressiori51) is appropriate. It is an
expression for the generating functibeyondthe regime in
(51) which it was found to be universal by Derrida and co-
workers. Similarly, the universal infinit®/ surface height
distribution found by Pilaofer and Spohn, corresponds to the
same scaling limit as Derrida and co-workers result after
The distribution of the height of a surface governed byexchanging the regularization through a finite witithby a
KPZ dynamics has been of quite some recent interest. On thegularization through a finite time It also contains all the
one hand, a generating function very closely related to Edterms that vanish in the limitv—c at fixed\ but come into
(51 has been calculatgd3] in the context of an asymmetric play if A vanishes simultaneously. There is no reason to as-
exclusion process. While Derrida and co-workers are able tgyme the result Eq51) to be universal. This is supported by
calculate the full dependence on the finite W|dM they the expncit dependence of Eq51) on the parametep_
restrict themselves to the simpler casecohtinuous time  Equation(51) has to be calculated taking the discreteness of

that is not an option for our problem since we are given thehe Jattice into full account as shown in this publication.
discrete lattice.

~On the o.ther ha_n_d, an explicit distribution of thg height VI. IMPLICATIONS ON DIRECTED POLYMERS
distribution in specific growth model§ has been 'de_n[/&?_j AND SEQUENCE ALIGNMENT
and shown to be connected to the eigenvalue distributions of
random matrix ensembles. Pfer and Spohn use a map-  Now, we will study the consequences of our main result,
ping between the surface height of a growth model and thé&q. (51). First, we will discuss the general properties of the
length of thelongest increasing subsequenoga random  generating function and its implications on the physics of
permutation The longest increasing subsequence problendirected polymers in a random medium. Then, we will come
can be interpreted as the alignment problem of a permutatiohack to our original question of the assessment of sequence
of the numbers 1,2,3.. N to the sequence of the ordered alignment significance. We find, that EG1) is an explicit
numbers 1,2,3... N. Thus, there are onlil matches on a expression for the significance assessment parametér
lattice of sizeNx N and no symbol of one sequence matchegeproduces known limiting cases and we will demonstrate
more than one symbol of the other sequence. Interpreting théat our result agrees well with numerical simulations.
N matches as nucleation events, a growing surface can be
constructed the height of which is precisely the length of the
longest increasing subsequence. Applied to disoug@rt) A. Properties of the generating function

each of the sequences, the mapping presented in this PapRgsight

essentially reduces to the mapping used byhBier and
Spohn. In this case, the vanishing density of matches in the In{exg Ah’(ON)])g=InZo(N\,;N) (52

1+ \/Eex;{— %(1+M)

D. Connections to related work
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is that it is anodd function of . The first two terms of its equally probable. This indicates a phase transition between
expansion are the logarithmic and the linear alignment phase. The approach
of this phase transition is especially interesting.

INZo(N, u;N) 1 3 5 Close to the phase transition, we can use the expansion
N =v(mht Eb(’u“))\ OO, (59 (53) and rewrite Eq(55) as
where 1
5 v(p)N+ gb(ﬂ))\3+0()\5)=0. (56)
d M p
v(p)=—— Zonu;NY W= — =+ (1+pu) ——
(r) dA }\:0[ ol piN)] 2 (1+4) 1+p From this expansion the origin of the phase transition is very

(54) clear: If v(uw)>0, the right-hand side of Eq56) is a mo-
notonously increasing function of. Thus,\ =0 is the only

and solution of Eq.(56). This corresponds to a flat distribution of
3 island sizes, i.e., the linear alignment phase.(lf.<0), the
b(u)= 1+p | (1=p) \/B>0 shape of the right-hand side of E§6) changes and there are
1+p 4 ' three roots, one of which is the positive solution
As already mentioned, we can regard the generating function v(w)\ Y2
Zo(\,u;N) as the ensemble averaged partition functioin of A~ _6b(,u) : (57)

replicas of a directed polymer in a random medium. In this

sense, Eq(53) is the free energy per length of thisreplica  This indicates that we are in the logarithmic alignment

system. It has the same forfwith a vanishing quadratic phase. Thus, the phase transition occurs at the critical mis-
term) as the result of an earlier explicit replica calculation in match costu, that is defined by the condition
continuous time and continuous spdde?]. However, our
analysis is directly of the discrete model and is not offected v(pe)=0. (58)
by the difficulty of taking the continuum limit in Ref12].
The vanishing of the second-order termhinwill not even  Using the explicit form(54) of v(u), we get the critical
be affected by the universal contributions to our result formismatch cost
small A which have been found in Ref13] using the ex-
plicit dependence on the widtlV, since its second order 2\/5
coefficient vanishes a#/~ *2in the limit of large width. The he=—=. (59)
consequence of this vanishing second-order terin i that 1- \/B

the second connected moment of the average height, i.e., th%,
height fluctuations, scales sublinear Nh Instead thethird | NiS reproduces the already known reg@4] for the phase

moment of the height fluctuations scales linearly wigh ~ transition point of this model. As the mismatch cgstap-
This is a signature of the presence of the anomahit( proaches this critical value from abowve,vanishes as

fluctuations of the average surface height characteristic for .
the KPZ universality class. ( 6(1-\p)

I | y Vp(1+p)
B. Statistical significance and the log-linear transition

According to Egs.(21) and (51) the parametei that In the case of finite widttW, the above expression is valid
’ _1 . . . . .
characterizes the statistical significance of local alignmentéiown tOA~W"+. I/E"S confirms the characteristic universal
with the match-mismatch scoring schefig. (2)] and gap ~ POWer law|u— u[ ™ proposed previously7] by scaling ar-

cost 5= u/2 is given by the unique positive solution of the guments.
equation

1/2
(n— o)™ (60)

C. Numerical verification

In order to test the approximation of uncorrelated local
exp{ _ _4 =1 (55) disorder(31) and the heuristic elements of the derivation of
2 Eqg. (55), we performed extensive numerical simulations to
corroborate our result. We used the DNA alphabet of size
=4 with identical frequencies for all four letters, i.e,
In the limit of largeu, the solution of Eq(55) converges to  =1/4. For different choices of the mismatch cgstwith
A= —Inp. This is the value that we expect since this limit corresponding gap cost= «/2, we used the island method
corresponds to the case of gapless alignniettall thaté  [31] to find the values ol as a function ofu numerically.
=u/2 herg, and A= —Inp is the solution of the large: For each value ob several billion islands have been gener-
limit of Eq. (7). If the gap cost is decreasen,is reduced, ated using sequences Nf=25000 in order to achieve rela-
too. At some critical value of there will not be any positive tive errors of approximately 1%. We used completely uncor-
solution of Eq.(55) any more, i.e., islands of all sizes are related local scores chosen as

1+ \/Bexp{%(nm

1+ \/Bexp{— %(1+M)
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1.5 L e being the maximal entry of the scoring matsy,. These

two conditions are easily satisfigdith A=1) by the most
frequently used protein scoring systefi$,17 that use in-

1 ] teger scores and gap costs for performance reasons. For the
match-mismatch scoring systdi®), the first condition is sat-
isfied with A=1+ u, while the second condition applies
only to a discrete set af's. However, it is possible in prin-
ciple to interpolate to arbitrary gap co$24].

Mapping to an asymmetric exclusion process is possible
for scoring systems satisfying the above two conditions. It
0 : — will be convenient to express the gap césn the following
way:

0.5

n=23

FIG. 10. Dependence of the significance paramatesn the 26=Nmad =Sp  With Nyace N. (63)

scoring parametes. The circles represent the numerically obtained . .
values of\ for uncorrelated local disordéB1) with match prob- As before, we shall ignore correlations between the local

ability p=1/4 for which Eq.(55) (the solid ling has been derived. scoress(r,t) and introduce uncorrelated random variables

They agree well with the analytical result. The diamonds corre-7(-t) €{0,1,.. .} such that
spond to local disorder generated by comparing two randomly cho-

sen sequences over an alphabet of sizel. The values ok ob- s(r,)=so—n(r,HA, (64)
tained from the two ensembles differ from each other only veryi
close to the phase transition pojat=2. €.
1 with probabilityp PRV, n(r,t) =1, = 11 Pln(r,t)y=m7..4 (69
r,

s(r,t)= —p  with probability 1-p ©

with
with p=1/4. The resulting values of are shown in Fig. 10.
The solid line is the solution of Eq55) and the circles p == s
represent the values a&f for uncorrelated local score81). R(r,t)=mnt= < PaPbOs, ; so—na -
As shown in Fig. 10 the observeds follow the analytic
solution very closely, thereby confirming E(5). We also  Note, that these random variablgér,t) only take on a finite
included the values of that result from correlated local number of different positive integer values, since the scoring
scores generated from aligning randomly chosen sequencesatrix s, ,, itself has only a finite number of entries.
according to Eq.(2). As one can see, they deviate only A derivation analogous to the one given above for the
slightly from the analytical result for uncorrelated disorder.longest common subsequence problem again maps the dy-
This deviation is strongest close to the log-linear phase tramamics of the alignment algorithm onto the dynamics of par-
sition, which for uncorrelated disorder happensgat=2. ticles on a one-dimensional lattice. The state of the system is
The difference of~2% in w. between the correlated and the still given by the number of particles(r,t) at each lattice
uncorrelated case rapidly becomes much smaller for largesite, but now these occupation numbers are defined as
alphabet sizes [40].

(66)

1
—[h(r+1t)—h(r,t+1)+6+s,] r+teven
VIl. MORE GENERAL SCORING SYSTEMS A

n(r,t)y=
While the approximation of the ensemble of random se- E[h(r+1,t+1)—h(r,t)+5] r+t odd
guences by the ensemble of independent local scores appears A
to have negligible effects, our treatment is so far limited to (67)

the special scoring system E@0). While the computation
of the generating functiofexd —\J]), seems feasible only
for this special scoring system, the mapping to an asymme
ric exclusion process and the reformulation as an eigenvalue

and can take any integer value between 0 apg,. The
f:_iynamics is given by the relations

problem is still possible for more general scoring systems. n(r=1H=n(r=1t=1)=jr.y (68)
We consider here scoring systems satisfying the following, 4
two conditions: First, the differences between the possible
valuess, j, of the scoring matrix are multiples of some score n(r,t)=n(r,t—1)+j(r,t) (69)
unit A. Second, the gap cos#sis such that 2+ sg is also an
integer multiple ofA, with for evenr +t, where
So=maxs, p} (62) j(r,y=min{ 5(r,t),npa— N(r,t—=1),n(r—1t-1)}
a,b (70)

031911-14



ASYMMETRIC EXCLUSION PROCESS AND EXTREMA. .. PHYSICAL REVIEW E 65 031911

J
exd Aso/2](exd —AAJ])IN=s/2— %A

0

0= —
d |, _

=S0/2—=(j)oA. (73

The average current is much easier to calculate, since in
0 1 2 owel T contrast to the generating function, it is independent of tem-
poral correlations. Thus, it can be calculated from the knowl-
FIG. 11. Interpretation of Eq$68)—(70) as a generalized asym- edge of the stationary state alone. For the original asymmet-
metric exclusion process. A configuration of the local score differ-ric exclusion process, the occupation numbers of the
ences is represented by particles on a one-dimensional lattice @fationary state become independent random variables. For
width 2W. Each lattice site can accommodate umig, particles  the generalized asymmetric exclusion process presented
(here np,=4.) At an odd time step for each even site-1, &  here, this is not the case any more. If the number of particles
number of particles is chosen to attempt hopping to the right. Ify,~+ hop in one move is at most ofias for the scoring
there are enough particles at site 1 and enough space on site system(2) with arbitrary gap cosfsapproximating the sta-
the chosen number hops. In the example shown, th? f'”eq partlcl onary state as a product state still yields reasonable values
?hre t_he ones to hop a_nd the dashed box_es shqw their posmqns aftgf (i% and hence the phase transition poidt () [24]
e time step. No particle that could hop is on site 6. The particle o see Fig. 3.Nevertheless, exact results or at least systematic
site 0 cannot hop since its destination site is already fully occupied. A Lo . .
provements taking into account the spatial correlations of

For site 2, one particle has been chosen. On site 4, at least th@? . b Id be desirabl h
particles tried to hop. If the number chosen was larger, it wouldtN€ occupation numbers wou e desirable. For the more

have been cut down to two since there are only two particles on sitg@neral case allowing for an arbitrary number of particles to
4 and since there are only two spaces left at site 5. hop at a given time, no analytical result is known.

and the total number of particles is fixed to be Vlil. CONCLUDING REMARKS

oW-1 In this paper, we have shown how a question of great
L n(r.t)= Nmax (71) practical importance to molecular biologists, like the signifi-
2W =0 ' 2 cance assessment of local sequence alignment results, can be

answered by studying the asymmetric exclusion process, an

Equations(68)—(70) can be equally expressed as the follow- exactly solvable model of the KPZ universality class. Con-
ing cellular automata: For each time step and for each pair ofersely, in trying to answer this question for biologists, we
neighboring sites of the one-dimensional lattice the particleglerived an important physical quantity like the generating
lie in, (1) choose an integer numbeE0 of particles to hop  function Z for the corresponding physical system in discrete
from siter — 1 to siter according to the distributiof66); (2)  time and discrete space. This complements the existing solu-
if there are fewer particles thamon siter — 1, then reduce;  tions in continuous time and spa#&2] and in continuous
to the number of particles on site- 1; (3) if there are fewer time and discrete spa¢&3]. Our result is the first successful
free spaces tham on siter, then reducey to the number of analytical approach to assessing the statistical significance of
free spaces on site and (4) move # particles from siter sequence alignment with gaps.
—1 to siter. Future work of practical importance includes solving the

This updating rule is to be applied sublattice-parallel asgeneralizations of the asymmetric exclusion process de-
for the simpler scoring system. The process is illustrated irscribed in Sec. VIl and studying the effect of the widely used
Fig. 11. “affine gap cost,” where a contiguous gap of lengthis

The more complicated hopping process is reflected in @ssigned some gap cast (/' — 1)e instead of simplys/. A
different matrixT,(\/W) without changing anything else in general expression that givasas a function of an arbitrary
the calculations. Thus, the significance assessment constasuoring system should finally give rise to a deeper under-
\ is still given by the generating function of the space andstanding of the role of the gap cost and lead to better choices
time averaged current as of scoring systems for alignments of biological sequences.

exg Aso/2](ex —NAJ])EN=1 (72) ACKNOWLEDGMENTS
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but the calculation of this generating function for an arbitrary
distribution (66) becomes much more difficult for the gener-
alized asymmetric exclusion process than for the cgsg
=1 of the original asymmetric exclusion process.

However, already the knowledge of the dependence of th
average current on the scoring parameters would be veliy
helpful to biologists, since this determines the position of the
log-linear phase transition. As discussed in the case of the
simpler scoring system, the phase transition occurs, if the In this appendix we derive heuristically the exponential
first moment of the score distribution vanishes, i.e., for distribution of maximal island scores. We first treat the gap-

APPENDIX A: ISLAND HIGH SCORE DISTRIBUTION
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less cas¢43] and then generalize the derivation to alignment  For alignment with gaps, the high score of an island of
with gaps. In the gapless case, the distribution of large istengthL from its beginning to its peak point is not just the
lands of lengthL measured from their beginning to their sum of local scores any more. Instead, it is given by the final

peak point at height- is given by score h(O,L) of a global alignment of two sequences of
. length L taking into account all possible insertions of gaps.
. We can still use the Fourier transformation to get
p(o)={ 6 a—i; s(i)] ). (A1)

1 .
Using the Fourier representation of tiéefunction and the P(o)=(d(c=h(0L)))= EJ exp(~iko)

statistical independence of tiséi) this yields )
x(exdikh(0,L)])dk. (A9)

1 . .
p(o)= EJ exp(—iko)(expiks))tdk.  (A2)  |n Sec. VB we will see, thatexfAh(0,L)]) is for largeL
the Lth power of the eigenvalue of some matrix. We thus
If we assume that the peak score of the island is proportionalefinep(\) by

to its length, i.e., that an island has on average a linear slope L
@, we get (exdAh(OL)T)=p"(\) (A10)

1 ) ) and again assume a linear slopeof the islands that we
p(o)= ﬂf exp(—ikal)(exp(iks))'dk,  (A3)  conveniently define by = aL/2 in order to take into account
the fact that the lattice of length actually only containg /2
which can be evaluated in a saddle point approximation asmatches or mismatches in a row. We then get

p(o)~exp(—\o) (A4) 1 : :
p(o)= —f exdg{—ika/2+Inp(ik)}L]dk. (All)
. 2
with
A=ik* —In[(expik*s))]/a. (A5)  Applying the above saddle point approximation and maximi-
zation with respect to the slope of the islaadyields Eq.
The saddle poink* is given by the saddle point equation (21). Moreover, it gives the typical slope of an island as

(sexp(ik*s))z B pf()\)_z
(explik ) 1. (A6) a—Zm—E(h(O,L)exp[)\h(O,L)]). (A12)

Thisk* is itself a function of the so far unknown slope To
find the correct value o&, we minimize Eq.(A5) with re-
spect toa and get together with EGA6),

APPENDIX B: EXPRESSION OF THE SCORE DYNAMICS
IN TERMS OF PARTICLE OCCUPATION NUMBERS

ey In this appendix we describe the mapping from the evo-
(exp(ik*s))=1. (A7) lution equation(32) of the sequence alignment scores onto
Inserting this into Eq(A5) yields condition(7). Additionally ~ the asymmetric exclusion process witfr ,t) as the particle

we get from Eq(A6) the typical slopex of an island as occupation numbers in detail. To this end we apply 6@
to the definition Eq.(33) of n(r,t), where we assume by

a=(sexp(\s)). (A8)  convention that +t is even as in Fig. (&). We get

n(r—1t)=h(r,t+1)—h(r—1t)
=maxXh(r,t—21)+ 5(r,t),h(r—=1t),h(r+1)}—h(r—1)}
=h(r,t—=1)—h(r—1t)+1+max7(r,t)—Lh(r—1t)—h(r,t—=1)—1h(r+1t)—h(r,t—1)—1}
=n(r—1t-1)+max{n(r,t)-1,—n(r—1t—1),n(r,t—1)—1}
=n(r—1t—1)-min{1—n(r,t),n(r—1t—1),1—n(r,t—1)}
and analogously
n(r,t)=h(r+1t)—h(r,t+1)+1
=h(r+1t)—maxh(r,t—1)+ 5(r,t),h(r—11),h(r+1)}+1
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=h(r+1t)—h(r,t—=1)—maxX»(r,t)—1h(r—=1t)—h(r,t—=1)—1h(r+1t)—h(r,t—1)—-1}
=n(r,t—1)—max»(r,t)—1,—n(r—1t—1),n(r,t—1)—1}

=n(r,t—=1)+min{1—n(r,t),n(r—1t—1),1-n(r,t—1)}.

This can be summarized in the form 1 WE_l

= [h(2k,t—1)+h(2k+1t)] teven
n(r—1t)=n(r—1t—1)—j(r,t) (B1) _ 2W o
h(t)= 1 W1

and S [h(2K,t)+h(2k+1t—1)] todd.
. 2W =0

n(r,t)=n(r,t—1)+j(r,t), (B2) (B4)
where Because of the translational invariance of the system in the

spatial(r) direction, we get
j(ryt)y=min{1—n(r,t),1—n(r,t—=21),n(r—1t—-1)}.

(B3) Zo(MN)=(exg Nh(ON)])o=(exgd Ah(N)])o. (B5)

As we can see, there is no reference to the actual alignrhys, we can restrict ourselves to calculating the laxge
ment scorefi(r,t) in these equations. As a first consequenceyenavior of the latter quantity.

of these equations we note that they imply that the variables

n(r,t) can only take on the values zero and one. This iﬁer
obvious by induction, if it is fulfilled at=0 as it is the case
for our choice of initial condition$.Thus, it is reasonable to

The change in the average sca(e) can be expressed in
ms of the occupation numbengr,t) via Egs.(32) and
(33). It is given by

interpret then(r,t) as particle occupation numbers. F(t+1)—F(t)
Moreover, we note that a pair of neighboring occupation

numbers[n(r —1t),n(r,t)] at timet depends only on the w-1

corresponding paifn(r—1t—1),n(r,t—1)] at timet—1 — > [h(2k,t+1)—h(2k,t—1)] t even

and the random variable(r,t). Thus, the elements as the 2W =0

one shown in Fig. 7 perform these transformations of a pair ~ w-1

of neighboring occupation numbers into a new pair of neigh- — 2 [h(2k+1t+1)—h(2k+1t—1)] t odd.

boring occupation numbers completely independently of 2W =0

each other. (B6)
Looking at Egs.(B1)—(B3) more closely, we see that ) . . .

i(r)=0 Whenever [n(r—1t—1),n(r.t—1)] ;I—Lhteblé)(;il ?gts);iddgfsrences in this equation can for ewven

€{00),|01),|12)}. Thus, [n(r—1t),n(r,t)]=[n(r—1t P

—1),n(r,t—1)] in these cases. Only if site-1 is occupied h(r,t+1)—h(r,t—1)

and siter is empty, the numbei(r,t) of transferred particles

can be one with probability Pr(r,t)=0}=1—p. This =maxh(r,t—1)+ 7(r,t),h(r+ 1),h(r— 1)}

leads to the interpretation of the dynamics given by Egs.

(B1)—(B3) as an asymmetric exclusion process described by —h(r,t—1)

:git'transfer matrixT,(0) defined in Eq.(34) of the main 1+ max n(r ) —1n(rt—1)—1—n(r— 11— 1)}
So far we transformed the dynamics of the sequence =1-min{1— 7(r,t),1-n(r,t—=1),n(r—1t—1)}

alignment algorithm as given by E(B2) into an asymmetric

exclusion process. We still have to expr&gé\;N) in terms =1-j(r,1).

of this asymmetric exclusion process. To achieve this, we ) o ]
first define for any “time”t the average scoréor space- Inserting this into Eq(B6) yields

averaged surface height W1

> j(2kt)  teven
k=0

"Even if the initial values of the(r,t=0) are not zero or one h(t+1)—h(t)= > W) W-1
they will under the dynamics of Eqé$B1)—(B3) eventually try to 2 j(2k+1p) t odd.
take on values less than zero or larger than 1. The minimum in Eqg. K=0 '
(B3) then resets them to zero or 1. Thus, after some startup phase, (B7)
then(r,t) will be integer even if their initial values are chosen to be
noninteger. Combining Egs(B5) and (B7) finally yields
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_ W . . . . .
Zo(M;N)=(exg Nh(N) ])o 4 -d|m¢n5|onz_al_ ma}trlces .as_stated in Ii’_q3) in the main
text. This rewriting is crucial in transforming the calculation
N _ of the generating function into an eigenvalue problem. We
={ ex )\IZO {h(t+1)—h(t)} start from the definition
- 0

\ N/2 W—-1 - B
:exm\N]<ex;{—W\/E > {j(2k+1,2-1) QN W,N)=(ex —\J])o
I=1 k=0 N/2 W—1
=(II II exp{—Lj(ZkJrlZI—l)}
> =1 k=0 2w '
0

+j(2k,2)}

A
xexp — = (2k,2! D . c1
= exg ANJ(ex] — \J])o. exp[ 2wl (2 0 v

(B8)

where Since, the number of particles in each bin must be either 0 or

N2 We1 1 at any time, we do not change the expectation value, if we
= 2 E ((2k+1,2-1)+j(2k,2)}  (BY) introduce ones of the form

is the total number of particles hopped divided by the num-

ber of sites. This is E¢(39) of the main text. 2w=1
1= 2 H 5n(r,t),nrt (CZ)
APPENDIX C: DYNAMIC PATH INTEGRAL i gefoy?¥ =0 '
REPRESENTATION

In this appendix we want to show that the generatingat each fixed time. This corresponds to a path integral for-
function Q(\;W,N) can be expressed as a product of somemulation of the quantityQ(A;W,N) and yields

2W—-1 N/2 /2W-1 w-1 A
<eXF[_)\J]>O:{nEO} . E < H 5n(r O)n ( r[[O 5n(r,2|—1),nrv2|l)( klZIO exl{_ﬁvj(ZK"'lyz_l)D

r, {nr N

2W-1

_ A
11 urayn, , [[ exp —s—j(2k2)||) . (C3
r=0 : k=0 2W
0

Once a configuration of the particles at each time step is fixed, the expectation value can be factorized into the parts that
contain only a single random variabigr,t)

2W-1 N/2 /2W-1 wW-1 A 2W—-1
< L[O 5n(r,0),nr’0|1:[l< rHo 5n(r,2|—1),nr’221)( kE[O exl{_mj(Zkﬁ"l,Z—l)D( rHo 5n(r,2|),nr’2|)

I

2w-1 N2 W \
= rHo On(r,0),n; o X |:H1 k[[o < On(2k,2—2) .y 42 On(2k+1,2-2) iy 1 5 exp{ ~op)(2k+1.2A- 1)}

w-1

X 5n(2k,2| —1),n+2k,2 15n(2k,21),n2k+12,1> kl_IO < 5n(2k7 1,2!71),n2k712,715n(2k,271),n2k d-1
ok= ) ,

N
X exl{ “ow! (2k,2l )} On(2k—1,2)ny_1 4 5”(2k‘2|)‘n2k+1'22> OXL
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Inserting this into Eq(C3), we can interpret the summation over the possible configurations of the particles at each time
step as the summation over inner indices in a matrix multiplication. In this language the firﬂié’grﬁ&n(r’o),nr . is a vector
on the 4'-dimensional vector space indexed by all possible particle configurations. This vector has exacﬂy one nonvanishing
entry at the configuration that is chosen as the initial configuratidr=&t This nonvanishing entry is one and we call this
vector| ). The factor of 1 that we added for the sake of clarity also plays the role of a vector the entries of which are all one.
We call this vector ¢4|. All the other factors represent matrices. There is one matrix for every time step and each of these
matrices is a tensor product @f identical matrices describing an elementary hopping process. Their matrix elements are

A
w
The disorder average here is over one single random varigflg). Performing this disorder average yields the matrix

T1(N/W) as defined in Eq(40). The matrices for even time steps and the matrices for odd time steps are shifted against each
other by one lattice unit that finally leads to the expression of(E§).

T

A
E< 5n(r71,t71),n15n(r,t71),né EXL{ - WVJ (r,t) 6n(rfl,t),nl5n(r,t),n2 . (CH
0

(nl,nz),(ni ,né)

[1] M.S. Waterman, Introduction to Computational Biology [21] J. GalambosThe Asymptotic Theory of Extreme Order Statis-

(Chapman & Hall, London, UK, 1994 tics (Wiley, New York, 1978.
[2] D.F. Feng and R.F. Doolittle, Methods Enzymolog§6, 368 [22] W.R. Pearson, Genomidd, 635 (1991).
(1996. [23] T.F. Smith and M.S. Waterman, Adv. Appl. Matl, 482
[3] T. Hwa and M. Lasig, Phys. Rev. LetZ6, 2591(1996. (1981).
[4] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L86.889  [24] R. Bundschuh and T. Hwa, Discrete Appl. Math04, 113
(1986. ) (2000.
[5] D. Drasdo, T. Hwa, and M. Issig, J. Comput. Biol7, 115 |55 T F. smith, M.S. Waterman, and C. Burks, Nucleic Acids Res.
(2000. 13, 645(1985.

[6] T. Hwa and M. Lasig, inProceedings of the Second Annual
International Conference on Computational Molecular Biol-
ogy, edited by S. Istraikt al. (ACM Press, New York, 1993
pp. 109-116.

[7] D. Drasdo, T. Hwa, and M. issig, inProceedings of the Sixth
International Conference on Intelligent Systems for Molecular
Biology, edited by J. Glasgowt al. (AAAI Press, Menlo Park,

[26] J.F. Collins, A.F.W. Coulson, and A. Lyall, CABIOS, Comput.
Appl. Biosci. 4, 67 (1988.

[27] R. Mott, Bull. Math. Biol.54, 59 (1992.

[28] M.S. Waterman and M. Vingron, Stat. S6i. 367 (1994).

[29] M.S. Waterman and M. Vingron, Proc. Natl. Acad. Sci. U.S.A.
91, 4625(1994).

CA, 1998, pp. 52—58. [30] S.F. Altschul and W. Gish, Methods Enzym®66, 460(1996.
[8] J. Krug, Phys. Rev. Let67, 1882(199)). [31] R. Olsen, R. Bundschuh, and T. Hwa, froceedings of the
[9] B. Derrida, Phys. Re[801, 65 (1998, and references therein. Seventh International Conference on Intelligent Systems for
[10] D. Kandel, E. Domany, and B. Nienhuis, J. Phys22 L755 Molecular Biology edited by T. Lengauest al. (AAAI Press,
(1990. Menlo Park, CA, 1999 pp. 211-222.
[11] L.H. Gwa and H. Spohn, Phys. Rev. Le@8, 725 (1992;  [32] R. Mott and R. Tribe, J. Comput. Bio§, 91 (1999.
Phys. Rev. A46, 844 (1992. [33] R. Mott, J. Mol. Biol. 300, 649 (2000.
[12] M. Kardar, Phys. Rev. Lett55, 2235(1985; Nucl. Phys. B [34] D. Siegmund and B. Yakir, Ann. Sta28, 657 (2000.

290, 582 (1987. [35] R. Arratia and M.S. Waterman, Ann. Appl. Probah. 200
[13] B. Derrida and J.L. Lebowitz, Phys. Rev. Le&0, 209(1998; (1994).

B. Derrida and C. Appert, J. Stat. Phygl, 1 (1999. [36] Y. Zhang, Ann. Appl. Probalb, 1236(1995.

[14] S.F. Altschulet al., J. Mol. Biol. 215, 403(1990. [37] M. Pranhofer and H. Spohn, Physica 279, 342 (2000; Phys.
[15] S.B. Needleman and C.D. Wunsch, J. Mol. Bidig, 443 Rev. Lett.84, 4882(2000.

(1970. [38] V. Chvaal and D. Sankoff, J. Appl. Probah2, 306 (1975.
[16] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt, Atlas Protein [39] V. Dandk, Ph.D. thesis, University of Warwick1994), and

Seq. Struct. Suppb, 345 (1978. references therein.

[17] S. Henikoff and J.G. Henikoff, Proc. Natl. Acad. Sci. U.S.A. [40] J. Boutet de Monvel, Eur. Phys. J.B 293(1999.

89, 10 915(1992. [41] J. Krug and H. Spohn, iBolids far from Equilibrium: Growth,
[18] S. Karlin and A. Dembo, Adv. Appl. ProbaB4, 113(1992. Morphology, and Defectedited by C. Godreché€ambridge
[19] S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. U.S9%, University Press, Cambridge, UK, 199D. 479.

5873(1993. [42] N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreck-
[20] E.J. Gumbel, Statistics of ExtremegColumbia University enberg, J. Stat. Phy92, 151 (1998.

Press, New York, 1958 [43] D. Fisher(private communication

031911-19



