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Asymmetric exclusion process and extremal statistics of random sequences

R. Bundschuh*
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

~Received 12 April 2001; revised manuscript received 15 August 2001; published 5 March 2002!

A mapping is established between sequence alignment, one of the most commonly used tools of computa-
tional biology, at a certain choice of scoring parameters and the asymmetric exclusion process, one of the few
exactly solvable models of nonequilibrium physics. The statistical significance of sequence alignments is
characterized through studying the total hopping current of the discrete time and space version of the asym-
metric exclusion process.
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I. INTRODUCTION

Sequence alignment is one of the most commonly u
computational tools of molecular biology. Its applicatio
range from the identification of the function of newly s
quenced genes to the construction of phylogenic trees@1,2#.
Beyond its practical importance, it is one of the simple
model systems for pattern matching. In computational b
ogy, sequences are routinely compared via a transfer m
algorithm to find the ‘‘optimal’’ alignment. Recently, it ha
been noted that this transfer matrix algorithm is the same
the one used to calculate the partition function or optim
energy of a directed polymer in a random medium@3#. This
problem is known to belong to the universality class of s
face growth as described by the Kardar-Parisi-Zhang~KPZ!
equation@4#. From the assignment of sequence alignmen
the KPZ universality class, variousscaling lawscharacteriz-
ing sequence alignment have been deduced. They have
used in order to answer questions of practical importanc
sequence alignment, e.g., the optimal choice of alignm
parameters@5–7#. But there are alsononuniversalfeatures
that are of great importance for practical applications. Th
cannot be extracted from the knowledge of the universa
class alone, but have to be evaluated by a microscopic s
taking into account all the details of the given sequen
alignment algorithm. In this paper, we will perform such
study for a certain choice of parameters for which seque
alignment maps onto the asymmetric exclusion process@8,9#,
which is the best studied nonequilibrium system of the K
universality class, equivalent also to the six vertex mo
@10,11#. The only approximation taken in this mapping
neglecting some subtle correlations in the hopping proba
ties of the asymmetric exclusion process. We confirm
merically that neglecting these correlations introduces o
minor deviations in the final results.

We will apply this mapping to address the central quest
in the biological application of sequence alignment, nam
the assessment of alignment significance: The problem is
an ‘‘optimal’’ alignment, i.e., the best possible alignment
two given sequences according to some scoring funct
does not necessarily reflect sequence homology. A sequ
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alignment algorithm will produce an ‘‘optimal’’ alignmen
for any pair of sequences, including the randomly chos
ones. The important question is whether the alignment p
duced reflects an underlying similarity of the two sequen
compared. A common way to address this question is
evaluate the probability of getting a certain alignment sc
by chance. This requires the knowledge of the distribution
alignment scores for random sequences. This distribu
turns out to obey a universal~Gumbel! form with two non-
universal parameters. In this paper, we will derive the Gu
bel distribution and characterize some of its properties
relating them to the corresponding asymmetric exclus
process. In particular, we show how the tail of this distrib
tion can be obtained from the generating function for t
total number of hopped particles. The latter is also the g
erating function of the average surface height in the equ
lent surface growth formulation of the asymmetric exclusi
process. This important quantity has been calculated for
case of continuous time and continuous space using the
lica trick @12# a long time ago. More recently, it has bee
obtained for the case of continuous time and discrete sp
in the scaling regime@13#. Here, we will calculate this quan
tity in discrete time and discrete space as necessary for
mapping to sequence alignment, in the asymptotic large
limit that is beyondthe scaling limit. Our calculation doe
not make use of the replica trick and leads to a very sim
closed form expression. It explicitly contains the anomalo
t1/3 scaling of the surface height fluctuations of KPZ surfa
growth in one dimension. We use this generating function
give an explicit expression for the significance of seque
alignments.

The paper is organized as follows: First, we will give
self-contained introduction to sequence alignment in Sec
This familiarizes the reader with the sequence alignment
gorithm and gives us a chance to develop the notations t
used later. In Sec. III, we will reduce the problem of asse
ing the statistical significance of the widely usedlocal align-
ment to a quantity defined in terms of the simplerglobal
alignment. Readers more interested in the properties of
discrete asymmetric exclusion process can skip these
sections and go directly to Sec. IV, which describes the s
plest version of the global alignment problem. Here, t
mapping to the asymmetric exclusion process in discr
time and space with sublattice-parallel updating is describ
Section V is devoted to the calculation of the generat

er-
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function of interest for the asymmetric exclusion process
Sec. VI, we discuss the result obtained, apply it to the ass
ment of alignment significance, and verify the analytical p
dictions numerically. In Sec. VII, we consider more gene
scoring systems and map them onto a generalized asym
ric exclusion processes. The final section gives a short s
mary of the paper and points towards several future dir
tions. A number of technical details are given in t
appendixes.

II. REVIEW OF SEQUENCE ALIGNMENT

A. Gapless alignment

Sequence alignment algorithms come in different levels
sophistication. The simplest alignment algorithm isgapless
alignment. It is not only extremely fast but also very we
understood theoretically. Thus, it has been very widely us
e.g., in its implementation of the programBLAST @14#.

Gapless alignment looks for similarities between two
quencesaW 5$a1a2•••aM%, andbW 5$b1b2•••bN% of lengthM
andN;M , respectively. The lettersai andbj are taken from
an alphabet of sizec. This may be the four-letter alphabe
$A,C,G,T% of DNA sequences or the 20-letter alphabet
protein sequences with the letters distributed according to
natural frequencies of the 20 amino acids. A local gapl
alignmentA of these two sequences consists of a subst
ai 2l 11•••ai 21ai of lengthl of sequenceaW and a substring
bj 2l 11•••bj 21bj of sequencebW of the same length. Eac
such alignment is assigned a score

S@A#5S~ i , j ,l !5 (
k50

l 21

sai 2k ,bj 2k
, ~1!

where sa,b is some given ‘‘scoring matrix’’ measuring th
mutual degree of similarity of the different letters of the a
phabet. A simple example of such a scoring matrix is
match-mismatch matrix

sa,b5H 1 a5b

2m a5” b,
~2!

which is used for DNA sequence comparisons@15#. For pro-
tein sequences, the more complicated 20320 percent ac-
cepted mutations~PAM! @16# or blocks substitution matrix
@17# matrices~BLOSUM! are used to account for the var
able degrees of similarity~e.g., hydrophobicity, size! among
the 20 amino acids. The computational task is to find thei, j,
and l that give thehighesttotal score

S[max
A

S@A# ~3!

for a given scoring matrixsa,b .
The optimization task called for in gapless alignment c

be easily accomplished by introducing an auxiliary quant
Si , j , which is the optimal score of the above consecut
subsequences ending at (i , j ) ~optimized overl .! It can be
conveniently calculated inO(N2) instead of the expecte
O(N3) steps using the transfer matrix algorithm
03191
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Si , j5max$Si 21,j 211sai ,bj
,0%, ~4!

with the initial conditionS0,k505Sk,0 . This recursion equa-
tion reflects that for a given (i , j ) the optimall is either zero
or larger than zero. If the optimall is zero the corresponding
score is zero as well. If the optimall is at least one, the pai
(ai ,bj ) certainly belongs to the optimal alignment togeth
with whatever has been chosen to be optimal up to the p
( i 21,j 21). Equation~4! is basically a random walk with
incrementssa,b which is cut off if it falls below zero. The
global optimal score is obtained as

S5 max
1< i<M , 1< j <N

Si , j . ~5!

In order to characterize the statistical significance of
alignment, it is necessary to know the distribution ofS for
gapless alignments of tworandom sequences, whose ele
mentsak’s are generated independently from the same
quenciespa as the query sequences, and scored with
same matrixsa,b . This distribution ofS has been worked
out rigorously@18,19#. For suitable scoring parameters, it is
Gumbel or extreme value distribution given by

Pr$S,S%5exp~2ke2lS!. ~6!

This distribution is characterized by the two parametersl
andk with l giving the tail of the distribution andl21ln k
describing the mode. For gapless alignment, these non
versal parameters can be explicitly calculated@18,19# from
the scoring matrixsa,b and the letter frequenciespa . For
example,l is the unique positive solution of the equation

^exp~ls!&[(
a,b

papb exp~lsa,b!51. ~7!

The other parameterk is given byk5KMN, whereK is a
more complicated function of the scoring matrix and the l
ter frequencies. Instead of reviewing the full derivation of t
distribution~6! and its parameters, below we give some he
ristic arguments that yield the known result. These can la
be generalized to the more relevant case of alignment w
gaps.

For random sequences, one can takej 5 i in Eq. ~4! with-
out loss of generality. Equation~4! then becomes a discret
Langevin equation, with

Si ,i[S~ i !5max$S~ i 21!1s~ i !,0%, ~8!

where the ‘‘noise’’s( i )[sa,b is uncorrelated and given b
the distribution

Pr$si.s%5 (
$a,busa,b.s%

papb . ~9!

The dynamics of the evolution equation~8! can be in two
distinct phases. The quantity that distinguishes these
phases is the expected local similarity score
1-2
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^s&[(
a,b

papbsa,b . ~10!

If it is positive, the scoreS( i ) will increase on average. Afte
a while, it becomes positive enough that the maximum in
~8! will never be given by the zero option. This option cou
thus be omitted, which corresponds toglobal gapless align-
ment. The dynamics is then a random walkS( i )5S( i 21)
1s( i ) with an average upward drift^s&. The maximal score
will be close to the end of the sequences and will be given
S'N^s&. Since it is linear in the length of the sequenc
this is called thelinear phaseof local alignment. It is obvi-
ously not suited to identify matches ofsubsequences, and the
distribution of the maximal scoreS is not an extreme value
distribution. ~It is just a sum of many independent loc
scoress( i ) and therefore obeys a Gaussian distribution
cording to the central limit theorem.!

The situation is dramatically different if^s& is negative. In
this case the dynamics is qualitatively as follows. The sc
S( i ) starts at zero. If the next local scores( i 11) is
negative—which is the more typical case in this regime
then S remains zero. But if the next local score is positiv
thenSwill increase by that amount. Once it is positive,S( i )
performs a random walk with independent incrementss( i ).
Since^s& is negative, there is anegative driftthat forcesS( i )
to eventually return to zero. After it is reset to zero, t
whole process starts over again. The qualitative ‘‘tempor
behavior of the scoreS( i ) is depicted in Fig. 1.

From the figure, it is clear that the score landscape can
divided into a series of ‘‘islands’’ of positive scores, sep
rated by ‘‘oceans’’ whereS50. Each such island originate
from a single jump out of the zero-score state and termin
when the zero-score state is reached again. Since eac
these islands depends on a different subset of indepen
random numberss( i ), the islands arestatistically indepen-
dent of each other. If we let the maximal score of thekth
island besk , then thesesk are independent random var
ables. Calculating the probability for the maximum scoresk
of an island of lengthL in a saddle point approximation an
optimizing over the lengthL of the islands, we asymptoti
cally obtain an exponential distribution

Pr~sk.s!'C* e2ls ~11!

for the maximal island scoressk ~see Appendix A!. The
parameterl, which gives the typical scale of the maxim
island score, is given by the drift-diffusion balance of t
underlying Brownian process. If the local scoress( i ) were
Gaussian variables with averagev,0 and varianceD, this
drift-diffusion balance would yield

FIG. 1. Sketch of the total score as a function of sequence
sition in gapless local alignment.
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For an arbitrary discrete or continuous distribution of t
local scoress( i ), it turns out to be given by the more gener
condition ~7!, which reduces to Eq.~12! in the limit ^s&
→02 where the central limit theorem takes hold.

Since the global optimal scoreS can be expressed by th
maximal island scores as

S5max
k

$sk%, ~13!

the distribution ofS can be calculated from the distributio
of the sk . The connection is covered by the theory of e
tremal statistics as developed by Gumbel@20# ~see, also, Ref.
@21#!. In the case of a large numberK* ;N of independent
island peak scores each of which asymptotically obeys
exponential distribution Eq.~11!, the connection is especiall
simple and we get

Pr$S,S%5Pr$max$s1 , . . . ,sK
*
%,S%

5Pr$s1,S%K
*

5~12C* e2lS!K
*

'@exp~2C* e2lS!#K
*

5exp~2ke2lS! ~14!

with k[C* K* , i.e., the parameterl of the island peak
score distribution Eq.~11! is the same as the parameterl in
the Gumbel distribution Eq.~6! of the maximal alignment
scores.

B. Alignment with gaps

In order to detect weak similarities between sequen
separated by a large evolutionary distance, ‘‘gaps’’ have to
allowed within an alignment to compensate for insertions
deletions occurred during the course of evolution@22#. Here,
we will specifically consider Smith-Waterman local alig
ment @23#. In this case, a possible alignmentA still consists
of two substrings of the two original sequencesaW andbW . But
now, these subsequences may have different lengths, s
gaps may be inserted in the alignment. For example, the
subsequencesGATGC and GCTC may be aligned as
GATGCandGCT-C using one gap. Each such alignmentA
is assigned a score according to

S@A#5 (
(a,b)PA

sa,b2dNg , ~15!

where the sum is taken over all pairs of aligned letters,Ng is
the total number of gaps in the alignment, andd is an addi-
tional scoring parameter, the ‘‘gap cost.’’ In practice mo
complicated gap scores may be used, but we will concent
on this version.

The task of local alignment is again to find the alignme
A with the highest score as in Eq.~3!, in this enlarged class

o-
1-3
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R. BUNDSCHUH PHYSICAL REVIEW E 65 031911
of possible alignments. This can be very efficiently done
a transfer matrix method that becomes obvious in the al
ment path representation@15#. In this representation, the tw
sequences to be compared are written on the edges
square lattice as the one shown in Fig. 2 where we chose
simplicity N5M . Each directed path on this lattice repr
sents one possible alignment. The score of this alignmen
the sum over the local scores of the traversed bonds. Dia
nal bonds correspond to gaps and carry the score2d. Hori-
zontal bonds are assigned the similarity scores

s~r ,t ![sai ,bj
, ~16!

whereai andbj are the letters of the two sequences belo
ing to the position (r ,t)5( i 2 j ,i 1 j 21) as shown in Fig. 2.

If we were interested in finding the highest scoringglobal

alignment of the two sequencesaW andbW , this corresponds to
finding the best scoring path connecting the beginning (0
with the end (0,2N) of the lattice. To find this path effec
tively, we define the auxiliary quantityh(r ,t) to be the score
of the best path ending in the lattice point (r ,t). This quan-
tity can be calculated by the Needleman-Wunsch tran
matrix algorithm@15#

h~r ,t11!5max$h~r ,t21!1s~r ,t !,h~r 11,t !

2d,h~r 21,t !2d%. ~17!

This is easily recognized@3# as the algorithm used to calcu
late the zero temperature configuration and energy of a
rected polymer in a random potential given by the lo
scoress(r ,t). The scoresh(r ,t) represent the~negative! en-
ergy of the optimally chosen polymer configuration ending
the point (r ,t). Alternatively, theh(r ,t) can also be inter-

FIG. 2. Local alignment of two sequencesCGATGCT and
TGCTCGArepresented as a directed path on the alignment lat
the diagonal bonds correspond to gaps in the alignment. The h
zontal bonds represent aligned pairs. Alignments of identical let
~matches! are shown as solid lines; alignments of different lette
~mismatches! are shown dashed. The highlighted alignment p
r (t) corresponds to one possible alignment of two subsequen
GATGC to GCT-C. This path contains one gap. Also shown
how the coordinatesr and t are used to identify the nodes of th
lattice.
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preted as the spatial height profile of a growing surfa
through the well-known relation between the directed po
mer and the KPZ equation.

If we are interested inlocal alignments, we can use th
same trick as in the gapless case~4!. Cutting off unfavorable
scores by adding the choice of zero to the maximum of
~17! leads to the Smith-Waterman algorithm@23#

S~r ,t11!5max5
S~r ,t21!1s~r ,t !

S~r 11,t !2d

S~r 21,t !2d

0
6 . ~18!

The score of the best local alignment is then given by

S5max
r ,t

S~r ,t !. ~19!

In the presence of gaps, we can still distinguish a linear
a logarithmic phase. If the global alignment score tends
grow, the zero option of the local alignment algorithm do
not play any role. We effectively revert to global alignme
and get a maximum score that is linear in the length of
sequences. Contrary to gapless alignment, it is not enoug
have a negative expectation value of the local scores^s& in
order to prevent this. This is due to the fact that the alig
ment algorithm uses gaps to connect random stretche
good matches to optimize the score. The average score g
by a gap dependent amountu($sa,b%,d) faster compared to
the expectation valuês&. The log-linear transition occurs
now atu($sa,b%,dc)1^s&50. For the simple scoring system
Eq. ~2! this corresponds to a linedc(m) in the two-
dimensional space of the parametersm andd shown in Fig.
3. Even for this simple scoring system, the loci of the pha
transition are only known approximately@24#; for more
complicated scoring systems, only numerical results
available.

If the parameters are chosen such thatu1^s&,0, i.e.,
such that the expected global alignment score drifts do
wards on average, then the average maximum score^S& is
proportional to the logarithm of the sequence length as in
logarithmic phase of gapless alignment. The reduced va
of ^S& in the logarithmic phase makes it the regime of cho
for the purpose of homology detection. Again, the distrib
tion of S must be known for local alignments of rando
sequences in order to characterize the statistical significa
of local alignment. There is no rigorous theory of this dist
bution in the presence of gaps. However, there is a lot
empirical evidence that the distribution is again of the Gu
bel form @25–31#. The values of the parametersk andl are
only known approximately for a few cases close to the g
less limit @32–34#. In practice, they are determined empir
cally by time consuming simulations. Below we will prese
an explicit calculation of the parameterl for a simple scor-
ing system.
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III. SIGNIFICANCE ESTIMATION BY USING
GLOBAL ALIGNMENT

As a first step, we want to show that the parameterl,
which describes the tail of the Gumbel distribution, can
derived solely from studying the much simplerglobal align-
ment governed by the recursion Eq.~17!. Later, we will see
that global alignment is in certain cases approximat
equivalent to the asymmetric exclusion process. We will
rive an explicit formula forl by studying the correspondin
asymmetric exclusion process.

A. An expression for l in terms of global alignment

Let us define the generating function

Z~l;L ![^exp@lh~r 50,L !#&, ~20!

where the bracketŝ•& denote the ensemble average over
possible realizations of the disorder, i.e., over all choices
random sequencesaW and bW and h(0,L) is the global align-
ment score at the end of a lattice of lengthL as shown in Fig.
4~a!. It can be obtained from the recursion relation~17! with
the initial condition h(2k,t50)5h(2k11,t51)50. We
claim that the parameterl of the Gumbel distribution is
obtained from

lim
L→`

Z~l;L !51. ~21!

Note, that this reduces simply to Eq.~7! in the case of gap-
less alignment, since for infinite gap costd, we have

FIG. 3. Loci of the log-linear phase transition for alignment w
the scoring system Eq.~2! for an alphabet ofc54 letters in terms of
the mismatch costm and the gap costd. Useful alignments can only
be obtained in the logarithmic phase above the phase transition
The diamonds are the numerically estimated points on the p
transition line; the solid line is the approximate locus calculated
Ref. @24#. Below the dashed line the alignments do not depend
the mismatch costm any more and the phase transition line
known to be strictly horizontal.
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^exp@lh~0,L !#&5K expFl(
k51

L/2

s~0,2k21!G L
5^exp@ls#&L/2. ~22!

While we are not able to rigorously prove the condition onl
put forward in Eqs.~20! and ~21!, we will in the following
give some heuristic arguments for its validity. One possi
derivation uses two assumptions and otherwise applies s
rigorous mathematical results. The second derivation is m
intuitive and gives some feeling where the score distribut
of local alignment comes from. In addition to these heuris
arguments we will verify in Sec. VI C that the equation f
the Gumbel parameterl that we will derive from Eqs.~20!
and~21! indeed yields the correct statistics of local sequen
alignment.

B. Derivation under the assumption of a Gumbel distribution

In this first derivation we will start from the assumptio
that the distribution of the local alignment scoreS(L) for
comparisons of two sequences of equal lengthL is of the
Gumbel form Eq.~6! with k5KL2. This has been estab
lished by many numerical studies@25–31#. Under this as-
sumption, a simple calculation shows that

lim
L→`

^S~L !&
ln L

5
2

l
. ~23!

Thus, we only have to calculate the asymptotic expecta
value on the left-hand side of Eq.~23! in order to determine
the value of the Gumbel parameterl.

The existence of this asymptotic expectation value
been rigorously established by Arratia and Waterman@35#.
Its numerical value has been studied by Zhang@36# and we
will reformulate Zhang’s result in our notation. To this en

e.
se
n
n

FIG. 4. Global alignment lattice used for significance estim
tion. ~a! shows the right half of the lattice from Fig. 2. It ca
represent all possible paths of lengthL, which end at the point
(r ,t)5(0,L) and start at (r ,0) for an arbitraryr. ~b! shows such a
path schematically. It represents the ‘‘rim’’ of an island with its hig
score denoted by the filled dot at the tip of the triangle. The op
dot at (r 0 ,t0) represents the corresponding island initiation even
1-5
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R. BUNDSCHUH PHYSICAL REVIEW E 65 031911
we will consider the global alignment scoreĥ(r ,t) calculated
through the recursion Eq.~17! on the diamond-shaped lattic
shown in Fig. 2, i.e., with the initial conditionsĥ(r 5t,t)
5ĥ(r 52t,t)52td. With this quantity we can definel̂L as
the unique solution of̂ exp@l̂Lĥ(r50,2L)#&51. Then, our
Eq. ~23! together with Theorem 1 and Eqs.~2.15! and~2.16!
of Ref. @36# imply that given«.0 and large enoughL andn
the inequality

S~Ln!

ln n
1«>

2

l̂L

>2S 1

l
2« D S 12

«

r ~0! D ~24!

holds wherer (0) is a positive constant independent of«, n,
andL. Thus, in the limitn→` we get almost surely

2

l
1«>

2

l̂L

>2S 1

l
2« D S 12

«

r ~0! D . ~25!

This implies that limL→` l̂L5l or, in other words,l is
given by the condition

lim
L→`

Ẑ~l;L !51 ~26!

on the generating function

Ẑ~l;L ![^exp@lĥ~r 50,L !#&. ~27!

To connect this to the conditions~20! and ~21! we have to
assume thath(r 50,L)'ĥ(r 50,L) in the limit of large L.
The difference between these two scores are the boun
conditions. While the optimal path corresponding toh(r
50,L) is allowed to start at anyr 0 as indicated in Fig. 4 the
optimal path corresponding toĥ(r 50,L) has to start atr 0
50. However, the optimal path forh(r 50,L) is expected to
start at a distanceur 0u that is sublinear inL. Thus, it is at least
plausible to useh(r 50,L) andĥ(r 50,L) interchangeably a
least as far as the growth behavior of a quantity l

^exp@lĥ(r50,L)#& for largeL is concerned. This transform
Eqs.~26! and ~27! into conditions~20! and ~21!.

C. Intuitive derivation

The key observation that allows us to understand the
sult equations~20! and~21! intuitively is the fact that similar
to the case of gapless alignment discussed in the last sec
the points on the alignment lattice can be grouped togethe
islands @31#. By the construction of the local alignment a
gorithm ~18!, many points on the alignment lattice have
score of zero in the logarithmic alignment regime. As f
gapless alignment, a positive score will be generated ou
this ‘‘sea’’ of zeros, if a good match occurs by chance. T
positive score can then imply further positive scores via
recursion relation~18!. For every point (r ,t) on the lattice
that has a positive score, we can define a restricted opt
pathr̂ r ,t* (t), which is the highest scoring path out of all pat

r̂ (t) with an end fixed atr̂ (t)5r ; see the example in Fig. 2
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This highest scoring path is uniquely defined for each po
(r ,t) if a convention of how to handle degeneracies in t
maximization procedure~18! is chosen. While the specific
choice of a convention should not matter,1 we can, e.g., de-
clare that the first option that maximizes the right-hand s
of Eq. ~18! locally defines the highest scoring path. Th
uniquely defined path must start at some point (r 0 ,t0) where
a positive score is created from a zero score by a g
match. An island is then defined to be the collection of poi
(r ,t) with positive score, i.e.,S(r ,t).0, and whose re-
stricted optimal pathr̂ r ,t* (t) originates at the same poin
(r 0 ,t0). A sketch of these islands is shown in Fig. 5. By th
definition, every lattice point with a positive score belongs
exactly one island. Each of these islands has a maxim
score that we denote bysk as we did in the gapless cas
Thus, the maximal scoreS on the total lattice is given by Eq
~13!.

Although the positively scoring sites of the lattice a
uniquely assigned to islands by this definition, islands do
necessarily have to be surrounded by zero scores. It is
sible for two neighboring lattice points to belong to two d

1The value of the Gumbel paramterl should depend continuousl
on the scoring parameterssa,b . Since a degeneracy in the maxim
zation procedure Eq.~18! usually can be resolved through slight
varying the scoring parameterssa,b the choice of a procedure to
handle these degeneracies cannot influence the final value o
Gumbel parameterl.

FIG. 5. Sketch of some islands on the local alignment latti
The lattice sites with a positive score are marked with dots. T
bonds that have been chosen in the maximization process~18! are
highlighted. Together they are the restricted optimal path associ
with each point with a positive score. Each of these paths goes b
to an island initiation event that is marked by an open dot. The la
filled dots mark the positions of the highest scoring point on e
island. As exemplified by the two islands close to the right tip of t
lattice islands do not have to be separated by lattice points with
scores.
1-6
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ferent islands, i.e., for two islands to ‘‘touch’’ each other~see
Fig. 5!. However, the higher the peak score of an island
less probable the configuration of thes(r ,t) that leads to
such a high scoring island. Thus, if we restrict our attent
only to islands the peak scoresk of which is larger than
some thresholds0, these islands will occur in areas of th
scoring lattice that are the further apart from each other~with
lower scoring islands interspersed! the larger the threshold
s0. Also, the probability of not being separated by ze
scores becomes small with increasing separation. Thus
island peak scoressk of those islands exceeding a thresho
s0 are expected to become statistically independent ran
variables, i.e., changes in the configuration of thes(r ,t) that
affect the peak score of one of these high scoring islands
not affect the peak score of another of these high sco
islands. While this is an assumption, it can be numerica
verified. The independence can be quantified by the corr
tion coefficient

R5
^ss8&2^s&2

^s2&2^s&2
, ~28!

where s and s8 are the peak scores of two neighborin
islands on the alignment lattice exceeding a threshold s
s0. In Ref. @31# this quantity has been studied by averagi
over 300 pairs of random sequences with an alphabet siz
20 and a gap costd52.9 using the PAM-250@16# scoring
matrix for sa,b . At s057.5 the correlation coefficient wa
estimated to beR'20.001 indicating the statistical indepen
dence of these large islands. It is not to be expected that
independence should break down for the simpler local s
ing matix Eq.~2!.

Thus, we will in the following assume that the islan
peak scoressk of sufficiently high scoring islands are stati
tically independent random variables. The islands w
smaller scores do not contribute to the maximum in Eq.~13!
and the fact that their island peak scores are not really
correlated only rescales the effective number of islan
Thus, we again observe a Gumbel distribution ofS via Eq.
~14! for very long sequences. The crossover sequence le
at which a Gumbel distribution is a good description of t
distribution ofS depends on the scoring system. Accordi
to the above considerations, it is only valid if sufficient
many of the large independent islands occur on the sco
lattice. If the typical size of a single island is comparable
the length of the sequence we will not expect any Gumb
like distribution. This can easily happen as the log-line
phase transition is approached since the typical island s
diverges at the transition. For a scoring system very clos
the transition, the Gumbel distribution may be observed o
for very long sequences. However, all practically useful sc
ing systems are far enough away from the phase transitio
ensure a sufficient number of large islands on a scoring
tice for two sequences of realistic lengths, i.e., a few hund
letters each.

Our task is thus to calculate the distribution of the isla
peak scoressk for very large islands in the presence of gap
This distribution of maximal island scores can be deriv
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analogously to the gapless case~Appendix A!. While a single
gapless island is described by a random walk of some o
mized lengthL, an island with gaps corresponds to aglobal
gapped alignmentof some optimized lengthL as the one
shown schematically in Fig. 4~b!. Using this replacement, th
maximal island distribution again has an asymptotically e
ponential form~11! with the decay constantl given by Eq.
~21!. An approximate interpretation for the result~21! is the
following: Due to the choice of scoring parameters in t
logarithmic phase of local alignment, the average sc
^h(0,L)& of global alignment with the same choice of param
eters decreases linearly with the lengthL of the alignment.
Thus, typical configurations of the disorder have a stron
negative scoreh(0,L) and hardly contribute toZ(l;L)
5^exp@lh(0,L)#&. Only on very rare occasions,h(0,L) is
positive for largeL and contributes significantly toZ(l;L).
The fact that there is a choice ofl with Z(l;L)51 for large
L implies that these configurations with positiveh(0,L) are
exponentially rare. It is thus necessary to weight these co
figurations with the exponential factor exp@lh(0,L)#, and
choosel to match the decay constant of the probability
finding such rare events.

D. Interpretation of Z

As already noted in the analogy between the direc
polymer and sequence alignment, the scoreh corresponds to
the ~negative of the! free energy. Thus the quantityZ(l;L)
5^exp@lh(0,L)#& can be interpreted as the disorder-averag
~zero temperature! partition function2 of l ‘‘replicas’’ of a
directed polymer of lengthL. Note that the replica numbe
given byl need not be integer. In the surface growth int
pretation,Z(l;L) is the generating function for the spac
averaged surface height. While many of the universal f
tures of global and local sequence alignment~e.g., its scaling
behavior in the logarithmic phase and upon approaching
phase transition line! can be understood merely from th
knowledge that sequence alignment belongs to the KPZ
versality class@3,5–7# or from the limit Z(l→0;L), a solu-
tion of Eq. ~21! for the nonuniversal quantityl requires the
knowledge of the largeL behavior of the entire function
Z(l;L) and hence a more detailed microscopic calculat
for the given model. This is what we will undertake in th
following sections.

IV. GLOBAL ALIGNMENT AS AN ASYMMETRIC
EXCLUSION PROCESS

A. A simple model of sequence alignment

From now on we will focus onglobal alignment as de-
scribed by Eq.~17!, and use Eq.~21! to infer the value of the
parameterl characterizing local alignment. We restrict ou
selves here to a very simple scoring system. In applicati
of sequence alignment this scoring system is not very us
since it allows more gaps than naturally related sequen

2However,Z(l;L) shouldnot be interpreted as the partition func
tion at temperaturel21.
1-7
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would show and since it is much too restrictive as far
taking different degrees of similarity between different lette
of the alphabet is concerned. However, as we will point
in Sec. VII, the mapping presented in this section betw
alignment with the simple scoring system and the asymm
ric exclusion process can be generalized to a mapping
tween alignment with more complicated scoring systems
generalizations of the asymmetric exclusion process. As
as this mapping is concerned, restricting ourselves to
simple scoring system is solely a matter of convenience s
it avoids lengthy expressions that would make the spirit
the mapping less accessible.

Although this mapping can be generalized to more rea
tic scoring systems, we will see in Sec. V that calculating
parameterl involves solving explicitly for the largest eigen
value of a generalized transfer matrix of the asymmetric
clusion process. This second step is only readily possible
this simple scoring system. Thus, our explicit expression
l is only valid for this simple scoring system that is n
practically used. However, being able to solve forl even for
unrealistic scoring parameters is still very valuable as a
bed for numerical estimation methods for the valuel.

Specifically, we will study the scoring system in whic
the local similarity scoressa,b can take on only two possibl
values,

sa,b5H 1 a5b

0 aÞb,
~29!

Moreover, we will choose the gap cost to bed50. With this
choice of the scoring parameters, the scoreh has the addi-
tional interpretation of being the length of thelongest com-

mon subsequenceof the two sequencesaW andbW . This longest
common subsequence problem has a long history as a
model for sequence comparisons@38–40#.

Additionally, we will neglect correlations between the l
cal scoress(r ,t), which arise from the fact that allM3N
local scores are generated by theM1N randomly drawn
letters. Instead of taking these correlations into account,
will assume thats(r ,t)5h(r ,t) with independent random
variablesh(r ,t) given by

h~r ,t !5H 1 with probabilityp

0 with probability 12p
~30!

with

Pr$; r ,th~r ,t !5h r ,t%5)
r ,t

Pr$h~r ,t !5h r ,t%. ~31!

To model sequences randomly drawn with equal probab
from an alphabet of sizec, we takep51/c. The approxima-
tion ~31! is known to change characteristic quantities of
quence alignment only slightly@5#. We will confirm numeri-
cally at the end of this paper, that this also holds for
values ofl that we are mainly interested in here. For o
choices of parameters, the global alignment algorithm~17!
reads
03191
s
s
t
n
t-
e-
d

ar
e

ce
f

-
e

-
or
r

st

oy

e

y

-

e
r

h~r ,t11!5max$h~r ,t21!1h~r ,t !,h~r 11,t !,h~r 21,t !%.

~32!

B. Choice of the alignment lattice geometry

In order to handle finite-size effects better, we will use
rectangular geometry~Fig. 6! for the alignment lattice, in-
stead of the triangular geometry shown in Fig. 4~a!. We will
further apply periodic boundary condition to the top and b
tom edges of the lattice, i.e.,h(0,t)5h(2W,t) for a rectan-
gular lattice of width 2W, and will start on the left edge with
the initial conditionsh(2k11,t50)5h(2k,t51)50. Note
that despite the different lattice geometries, the scoreh(r ,t)
for all points with t<W on the rectangular lattice will be
identical to the score at the same (r ,t) coordinate on the
triangular lattice;3 see Fig. 6.

C. The dynamics of sequence alignment as an asymmetric
exclusion process

In this section we will perform a change of variables
the sequence alignment algorithm~32! for the rectangular
lattice shown in Fig. 6. We will find that the resulting prob
lem is equivalent to an asymmetric exclusion process o
one-dimensional lattice of width 2W. As a guidance towards
the choice of suitable variables, we take the knowledge fr
the ~continuous! KPZ equation that the gradient of the su
face height is an especially simple quantity. At a fixed tim
the gradients at different positions become uncorrelated
Gaussian distributed@4,41#. Thus, we will look at their dis-
crete analogs in the alignment problem. They are the sc
differences between neighboring lattice points and thus
cated on the diagonal bonds of the lattice. We will para
etrize these score differences by the bond variablesn(r ,t).
They will later turn out to be the occupation numbers of t

3Since directed polymers in a random medium are known to h
a wandering exponentz52/3 this actually still holds fort,W3/2.

FIG. 6. Rectangular alignment lattice of width 2W with periodic
boundary conditions in the spatial~vertical! direction. We use this
lattice instead of the triangular lattice shown in Fig. 4~a! in order to
simplify the handling of finite-size effects. As indicated by the thi
gray lines, the score at a point witht<W as the one at the tip of the
triangle is identical with the corresponding score calculated o
triangular lattice as the one shown in Fig. 4~a!.
1-8
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FIG. 7. One building block of
the alignment lattice. By our num
bering scheme of the latticer and
t are either both even or both odd
~a! shows the scores at the lattic
points and the bond variable
n(r ,t). ~b! shows this building
block as a ‘‘device,’’ that takes
two incoming bond variablesn18
and n28 and transforms them with
the help of the transfer matrixT1

into the new bond variablesn1

andn2.
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sites of an asymmetric exclusion process. With the choic
coordinates as illustrated in Fig. 7~a!, we define them to be4

n~r ,t ![H h~r 11,t !2h~r ,t11!11 for r 1t even

h~r 11,t11!2h~r ,t ! for r 1t odd.
~33!

As explained in detail in Appendix B, rewriting the tim
evolution equation~32! in terms of the variablesn(r ,t) leads
to a time evolution equation ofn(r ,t) alone, without any
reference to the absolute scoresh(r ,t). Moreover, this time
evolution equation implies that the score differenc
take only the valuesn(r ,t)P$0,1%. By the structure of
the alignment lattice as a composition of elements
the one shown in Fig. 7~a!, the resulting time evolution for
the n(r ,t) transforms a pair @n(r 21,t21),n(r ,t21)#
P$u00&,u01&,u10&,u11&% into the new pair @n(r
21,t),n(r ,t)#P$u00&,u01&,u10&,u11&% independently from
all the othern(r 8,t21). This transformation only depend
on the single random variableh(r ,t) and can be expresse
by the transfer matrix

T1~0![S 1 0 0 0

0 1 12p 0

0 0 p 0

0 0 0 1

D ~34!

in the basisu00&,u01&,u10&,u11&. We can thus interpret the
action of the lattice element shown in Fig. 7~a! as a ‘‘device’’
like the one shown in Fig. 7~b! that takes a pair of variable
(n18 ,n28) as its inputs, applies the transfer matrixT1(0), and
generates a new pair of variables (n1 ,n2) as its outputs.

We recognize the action of the transfer matrixT1(0) as
the elementary time step of an asymmetric exclusion proc
if we interpret then(r ,t) as particle occupation numbers o
a one-dimensional lattice of 2W sites with periodic boundary

4Note, that then(r ,t) are not literally score differences but sui
ably chosen parameterizations of these score differences. This
plication is necessary in order to enable the interpretation as
particle occupation numbers in the asymmetric exclusion proce
03191
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conditions as the one shown in Fig. 8. Each of these sites
either be empty or occupied by a single particle. In each ti
step for each pair of neighboring sites, a particle hops to
right with some probability 12p, if the site to its right is
empty according to the nonvanishing entryu10&→u01& of the
transfer matrixT1(0). If there is no particle or if the site on
the right is already occupied, the configuration remains
changed.

In terms of the elementary devices shown in Fig. 7~b! the
lattice structure of Fig. 6 can be depicted schematically
shown in Fig. 9. Thus, the process of hopping a particle
the right is attempted for each even numbered site at
time steps and for each odd numbered site at even time s
This hopping dynamics is exactly the asymmetric exclus
process with sublattice-parallel updating with period
boundary conditions5 @10,42#.

In reducing the dynamics from a dynamics of scores i
a dynamics of the occupation numbersn(r ,t), one has to pay
attention to the boundary conditions. Periodic boundary c
ditions for then(r ,t) do not automatically lead to meaning
ful periodic boundary conditions for the scoresh(r ,t). We
thus have to impose the additional constraint that the t

m-
he
.

5If we had chosen the ‘‘hard wall’’ boundary conditionsh(21,t)
5h(2W,t)5` instead of the periodic boundary condition
h(2W,t)5h(0,t) for the score, we would have arrived at the asy
metric exclusion process with sublattice-parallel updating andopen
boundary conditions at a feeding and extinction rate ofa5b51
2p at the two ends of the lattice with 2W21 sites, respectively.

FIG. 8. Interpretation of the transfer matrixT1(0) as given in
Eq. ~34! as an asymmetric exclusion process. A configuration of
local score differences is represented by particles on a o
dimensional lattice of width 2W. At an odd time step for each eve
site r 21 a particle hop is attempted with probability 12p. In our
example, the particle at site 0 cannot hop, since site 1 is alre
occupied. The particle on site 2 can hop to site 3 as indicated by
dashed square.
1-9
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sum of the local score differences across the whole lat
vanishes. In terms of our bond variablesn(r ,t) this translates
into the condition

1

2W (
r 50

2W21

n~r ,t !5
1

2
, ~35!

i.e., the system of hopping particles is at half filling. Sin
the number of particles is conserved under the dynamics
scribed by the transfer matrixT1(0), the condition ~35! is
guaranteed to hold if we choose the initial conditio
( r 50

2W21n(r ,t50)/2W51/2. Particle densities different from
one half would correspond to a tilted ‘‘score profile’’h(r ,t)
at each fixed timet.

V. THE GENERATING FUNCTION

A. Expressing the generating function in terms
of the hopping process

We now want to apply the mapping between seque
alignment and the asymmetric exclusion process to the p
tical problem of assessing alignment significance. As no
in Sec. III, this amounts to calculating the generating fu
tion

Z0~l;N![^exp@lh~0,N!#&0 , ~36!

where^•••&0 denoted the average over the ensemble of
correlated disorder defined by Eqs.~30! and ~31!. Thus, we
first need to express the total scoreh(0,N) in terms of the
occupation numbersn(r ,t). As explained in more detail in
Appendix B,h(0,t) is on average incremented by 1/2W ev-
ery time the transfer matrixT1(0) is applied except for the
transitionu01&→u10&. Thus,Z0(l;N) can be expressed as

Z0~l;N!5exp@lN/2#^exp@2lJ#&0 ~37!

in terms of the total number of particle hops per lattice s

FIG. 9. Schematic representation of the alignment lattice of F
6 as an ‘‘electric circuit.’’ The boxes represent elements of the t
shown in Fig. 7~b!. They take two particle occupation numbers
their ‘‘inputs’’ and generate two new particle occupation numbers
their ‘‘outputs.’’ Their interconnection into a layered structure
shown here with a shifted pairing scheme in every time step lead
the nontrivial behavior of sequence alignment.
03191
e

e-

e
c-
d
-

-

J[
1

2W (
l 51

N/2

(
k50

W21

@ j ~2k11,2l 21!1 j ~2k,2l !#, ~38!

where j (r ,t)P$0,1% is the number of particle hops at lattic
site (r ,t). We thus need to determine the generating funct

Q~l;W,N![^exp@2lJ#&0 ~39!

for the asymmetric exclusion process. Note, that this is
ferent from the generating function of the local curre
j (r ,t): sinceJ/N is the time and space averagedcurrent,Q
contains information on spatial and temporalcorrelationsin
the number of hopping particles that the generating funct
for the local current does not.

B. The generating function as an eigenvalue problem

Now we will reformulate the calculation of the generatin
functionQ(l;W,N) for the asymmetric exclusion process
an eigenvalue problem. As already mentioned, exp@2lJ# is a
product of factors exp@2l/2W# for every particle that hops
Since the dynamics of the hopping process is described
the transfer matrixT1(0) defined in Eq.~34!, we can calcu-
late Q(l;W,N) by associating a weight exp@2l/2W# to the
element of the transfer matrixT1(0) that corresponds to a
hop. This can be derived more formally from a dynam
path integral representation ofZ0(l;N) as detailed in Appen-
dix C. We get the modified local transfer matrix

T1S l

WD[S 1 0 0 0

0 1 ~12p!e2l/2W 0

0 0 p 0

0 0 0 1

D ~40!

in the basisu00&,u01&,u10&,u11& of a pair of neighboring lat-
tice sites.

Next, we need to take into account the special latt
structure of Fig. 9. We note that at every even time step
lattice is decomposed intoW of the building blocks described
by T1. Thus, a single time step of the total system at ev
time is described by the matrix

Teven[TW~l![ ^

k51

W

T1S l

WD . ~41!

At odd times the dynamics is the same, but the pairing
neighboring sites is shifted. To generate the time evolution
odd time steps, we can thus shift all particles to the rig
apply the dynamics of even time steps and then shift
particles back to the left. LetC be the translation operato
such that

Cun0n1•••n2W21&[un1•••n2W21n0&, ~42!

which shifts all particles by one site to the left taking in
account the periodic boundary conditions. With this defi
tion we can writeTodd5CTW(l)C21.

The sublattice-parallel updating procedure~i.e., the struc-
ture of the lattice as depicted by Fig. 9! finally leads to

.
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Q~l;W,N!5^c1u~TevenTodd!
N/2uc0&

5^c1u„TW~l!CTW~l!C21
…

N/2uc0&, ~43!

whereuc0& is a 4W-dimensional state vector representing t
initial conditions, and^c1u is the 4W-dimensional vector
whose entries are all 1, used here to denote a summa
over all possible final configurations. In the limit of larg
N@W, this obviously becomes

Q~l;W,N!5rW
N ~l!, ~44!

whererW
2 (l) is the eigenvalue ofTW(l)CTW(l)C21 with

the largest real part. Since this matrix has no negative en
and is irreducible for nonpathological choices of the scor
matrix ~while restricted to the physical sector of half filling!,
the largest eigenvalue of this matrix is guaranteed by
Perron-Frobenius theorem to be nondegenerate and real
its eigenvector can be chosen without negative entries. W
l50, we haver(0)51 and its eigenvector is the stationa
distribution of the asymmetric exclusion process, which i
simple tensor product of independent occupation numb
This is no longer the case forlÞ0.

C. Calculating the largest eigenvalue

For a finiteW, it is in principle possible to solve for the
largest eigenvalue of the 4W-dimensional matrix
TW(l)CTW(l)C21 by directly diagonalizing the matrix. It is
convenient to reduce the size of this matrix by exploiti
some symmetries. Since the lattice is translationally invar
with respect to shifts inr by 2, we expect the same symmet
of the largest eigenvalue ofTW(l)CTW(l)C21. Thus, for
the purpose of computing the largest eigenvalue we can
strict ourselves to the subspaceC of translationally invariant
vectors

C[$uc&uC2uc&5uc&%. ~45!

This corresponds to a discrete Fourier transform of the
trix TW(l)CTW(l)C21 and choosing thek50 component.
On C, we haveC215C by definition. Thus, it is enough to
look for the largest eigenvaluerW(l) of the matrixTW(l)C
restricted toC. A further restriction that helps reducing th
size of the matrix is the mirror symmetry of the lattice th
has to be respected by the eigenvector as well. Additiona
TW(l)C has to be restricted onto the physical subspace
half filling.

After applying these simplifications, the largest eige
value can be calculated for small widthsW using computer
algebra. Although the matrixTW(l)C explicitly contains the
quantity exp@2l/2W#, it turns out that the characteristi
polynomial depends only on exp@2l/2#. This is a conse-
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quence of the translational invariance of the lattice.6 In order
to reveal the underlying structure of the largest eigenval
for differentW, it is very useful toexpandthe resulting larg-
est eigenvaluesrW(l) in powers of this quantitye2l/2. We
get

W51: r1~l!5Ap1O~e2l/2!

W52: r2~l!5Ap2~p21!e2l/21O„~e2l/2!2
…

W53: r3~l!5Ap2~p21!e2l/2

1~p21!Ap~e2l2!21O„„e2 l/2
…

3
…

W54: r4~l!5Ap2~p21!e2l/2

1~p21!Ap~e2l/2!22~p21!

3Ap2~e2l/2!31O„~e2l/2!4
…,

where theO„(e2l/2)k
… terms denote terms of the given ord

with prefactors which are different for differentW. We can
see that the coefficients up to order (e2l/2)W21 remain un-
changed upon increasingW and they constitute the beginnin
of a simple geometric series. Assuming that this patt
holds for arbitrary orders, we can resum the series for
fixedl.0 and get

r~l![ lim
W→`

rW~l!5
Ap1e2l/2

11Ape2l/2
. ~46!

Combined with Eqs.~37!, ~39!, and~44! this yields the gen-
erating function

Z0~l;N!5exp@lN/2#rN~l!

5@exp@l/2#r~l!#N

5S 11ApexpFl2G
11ApexpF2

l

2G expF2
l

2G D N

~47!

in the limit of largeN.
Equation ~47! can be easily generalized to the matc

mismatch scoring system given in Eq.~2! with a gap cost
d5m/2 for an arbitrary value ofm. If we denote the score in

6Instead of looking at the average scoreh̄(N)
5(1/2W)( rh(r ,N) as we do in the derivation of Eq.~43! in Ap-
pendix C, we could also have chosen a specific position, sayr 50

and r 51, and monitored the behavior of the scoreh̃(N)
[ 1

2 @h(1,N)1h(0,N21)#. Since the differences between scores
the same time are bounded, these two quantities must have the
generating function for largeN. The transfer matrix that calculate

the generating function forh̃(N) is T̃(l)[T1(l) ^ ^ k52
W T1(0) in-

stead ofTW(l). It has the technical disadvantage that it breaks
translational invariance, but it explicitly depends only o
exp@2l/2# instead of exp@2l/2W#.
1-11
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this scoring system byh8(r ,t), it is connected to the scor
h(r ,t) of the scoring system withm5d50 by the simple
global rescaling and shifting

h8~r ,t !5~11m!h~r ,t !2
m

2
t. ~48!

Thus the corresponding generating function is given by

Z~l,m;N![^elh8(0,N)&5e2mN^exp@l~11m!h~0,N!#&.
~49!

If we again neglect correlations and use uncorrelated ran
variables

h~r ,t !5H 1 with probabilityp

2m with probability 12p
~50!

the same rescaling and shifting leads to

Z0~l,m;N![^elh8(0,N)&0

5S 11ApexpFl2 ~11m!G
11ApexpF2

l

2
~11m!G expF2

l

2
mG D N

.

~51!

D. Connections to related work

The distribution of the height of a surface governed
KPZ dynamics has been of quite some recent interest. On
one hand, a generating function very closely related to
~51! has been calculated@13# in the context of an asymmetri
exclusion process. While Derrida and co-workers are abl
calculate the full dependence on the finite widthW, they
restrict themselves to the simpler case ofcontinuous time
that is not an option for our problem since we are given
discrete lattice.

On the other hand, an explicit distribution of the heig
distribution in specific growth models has been derived@37#
and shown to be connected to the eigenvalue distribution
random matrix ensembles. Pra¨hofer and Spohn use a map
ping between the surface height of a growth model and
length of thelongest increasing subsequenceof a random
permutation. The longest increasing subsequence prob
can be interpreted as the alignment problem of a permuta
of the numbers 1,2,3, . . . ,N to the sequence of the ordere
numbers 1,2,3, . . . ,N. Thus, there are onlyN matches on a
lattice of sizeN3N and no symbol of one sequence match
more than one symbol of the other sequence. Interpreting
N matches as nucleation events, a growing surface ca
constructed the height of which is precisely the length of
longest increasing subsequence. Applied to disorderh(r ,t)
that fulfills the constraints of the longest increasing sub
quence problem, i.e., exactly one match for every symbo
each of the sequences, the mapping presented in this p
essentially reduces to the mapping used by Pra¨hofer and
Spohn. In this case, the vanishing density of matches in
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limit N→` allows Prähofer and Spohn to use a continuu
limit that again simplifies the calculations. However, t
alignment problem deals with a finite alphabet and the or
of possible matches is proportional toN2. Moreover, each
letter in one sequence can~and will! match an extensive
number of letters in the other sequence. In this case,
detailed mapping presented in this paper has to be used

As far as results are concerned, the studies by Derrida
co-workers and by Pra¨hofer and Spohn both come to th
conclusion that the generating function or the distribution
surface heights respectively takes auniversal form in the
limit W→` that we are interested in. However, this form
much more complicated than our simple result Eq.~51!. This
is due to a different order of taking limits. Derrida and c
workers take the limitW→` of the generating function
while keepinglW1/2 constant in order to obtain their unive
sal distribution, i.e., they simultaneously take the limitsW
→` andl→0 in some controlled way. Pra¨hofer and Spohn
directly look at the distribution of the surface height that
defined by the properties of the generating function atl
50. However, the expansion ofrW(l) in terms ofe2l/2 that
we used isnot valid any morein the limit l→0. Since our
main interest is in solving Eq.~21! for l that results in a
finite result ofl, our expression~51! is appropriate. It is an
expression for the generating functionbeyondthe regime in
which it was found to be universal by Derrida and c
workers. Similarly, the universal infiniteW surface height
distribution found by Pra¨hofer and Spohn, corresponds to th
same scaling limit as Derrida and co-workers result a
exchanging the regularization through a finite widthW by a
regularization through a finite timet. It also contains all the
terms that vanish in the limitW→` at fixedl but come into
play if l vanishes simultaneously. There is no reason to
sume the result Eq.~51! to be universal. This is supported b
the explicit dependence of Eq.~51! on the parameterp.
Equation~51! has to be calculated taking the discreteness
the lattice into full account as shown in this publication.

VI. IMPLICATIONS ON DIRECTED POLYMERS
AND SEQUENCE ALIGNMENT

Now, we will study the consequences of our main res
Eq. ~51!. First, we will discuss the general properties of t
generating function and its implications on the physics
directed polymers in a random medium. Then, we will com
back to our original question of the assessment of seque
alignment significance. We find, that Eq.~51! is an explicit
expression for the significance assessment parameterl. It
reproduces known limiting cases and we will demonstr
that our result agrees well with numerical simulations.

A. Properties of the generating function

The most notable property of the generating function
the connected moments of the average score~or average
height!

ln^exp@lh8~0,N!#&05 ln Z0~l,m;N! ~52!
1-12
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is that it is anodd function of l. The first two terms of its
expansion are

ln Z0~l,m;N!

N
5v~m!l1

1

6
b~m!l31O~l5!, ~53!

where

v~m!5
d

dl U
l50

@Z0~l,m;N!#1/N52
m

2
1~11m!

Ap

11Ap

~54!

and

b~m!5S 11m

11Ap
D 3

~12Ap!Ap

4
.0.

As already mentioned, we can regard the generating func
Z0(l,m;N) as the ensemble averaged partition function ol
replicas of a directed polymer in a random medium. In t
sense, Eq.~53! is the free energy per length of thisl replica
system. It has the same form~with a vanishing quadratic
term! as the result of an earlier explicit replica calculation
continuous time and continuous space@12#. However, our
analysis is directly of the discrete model and is not offec
by the difficulty of taking the continuum limit in Ref.@12#.

The vanishing of the second-order term inl will not even
be affected by the universal contributions to our result
small l which have been found in Ref.@13# using the ex-
plicit dependence on the widthW, since its second orde
coefficient vanishes asW21/2 in the limit of large width. The
consequence of this vanishing second-order term inl is that
the second connected moment of the average height, i.e
height fluctuations, scales sublinear inN. Instead thethird
moment of the height fluctuations scales linearly withN.
This is a signature of the presence of the anomalousN1/3

fluctuations of the average surface height characteristic
the KPZ universality class.

B. Statistical significance and the log-linear transition

According to Eqs.~21! and ~51! the parameterl that
characterizes the statistical significance of local alignme
with the match-mismatch scoring scheme@Eq. ~2!# and gap
cost d5m/2 is given by the unique positive solution of th
equation

11ApexpFl2 ~11m!G
11ApexpF2

l

2
~11m!G expF2

l

2
mG51. ~55!

In the limit of largem, the solution of Eq.~55! converges to
l52 ln p. This is the value that we expect since this lim
corresponds to the case of gapless alignment~recall thatd
5m/2 here!, and l52 ln p is the solution of the largem
limit of Eq. ~7!. If the gap cost is decreased,l is reduced,
too. At some critical value ofm there will not be any positive
solution of Eq.~55! any more, i.e., islands of all sizes a
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equally probable. This indicates a phase transition betw
the logarithmic and the linear alignment phase. The appro
of this phase transition is especially interesting.

Close to the phase transition, we can use the expan
~53! and rewrite Eq.~55! as

v~m!l1
1

6
b~m!l31O~l5!50. ~56!

From this expansion the origin of the phase transition is v
clear: If v(m).0, the right-hand side of Eq.~56! is a mo-
notonously increasing function ofl. Thus,l50 is the only
solution of Eq.~56!. This corresponds to a flat distribution o
island sizes, i.e., the linear alignment phase. Ifv(m,0), the
shape of the right-hand side of Eq.~56! changes and there ar
three roots, one of which is the positive solution

l'S 26
v~m!

b~m! D
1/2

. ~57!

This indicates that we are in the logarithmic alignme
phase. Thus, the phase transition occurs at the critical m
match costmc that is defined by the condition

v~mc!50. ~58!

Using the explicit form~54! of v(m), we get the critical
mismatch cost

mc5
2Ap

12Ap
. ~59!

This reproduces the already known result@24# for the phase
transition point of this model. As the mismatch costm ap-
proaches this critical value from above,l vanishes as

l'S 6~12Ap!3

Ap~11Ap!
D 1/2

~m2mc!
1/2. ~60!

In the case of finite widthW, the above expression is vali
down tol;W21. This confirms the characteristic univers
power lawum2mcu1/2 proposed previously@7# by scaling ar-
guments.

C. Numerical verification

In order to test the approximation of uncorrelated loc
disorder~31! and the heuristic elements of the derivation
Eq. ~55!, we performed extensive numerical simulations
corroborate our result. We used the DNA alphabet of sizc
54 with identical frequencies for all four letters, i.e.,p
51/4. For different choices of the mismatch costm with
corresponding gap costd5m/2, we used the island metho
@31# to find the values ofl as a function ofm numerically.
For each value ofd several billion islands have been gene
ated using sequences ofN525 000 in order to achieve rela
tive errors of approximately 1%. We used completely unc
related local scores chosen as
1-13
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s~r ,t !5H 1 with probabilityp

2m with probability 12p
~61!

with p51/4. The resulting values ofl are shown in Fig. 10.
The solid line is the solution of Eq.~55! and the circles
represent the values ofl for uncorrelated local scores~31!.
As shown in Fig. 10 the observedl ’s follow the analytic
solution very closely, thereby confirming Eq.~55!. We also
included the values ofl that result from correlated loca
scores generated from aligning randomly chosen seque
according to Eq.~2!. As one can see, they deviate on
slightly from the analytical result for uncorrelated disord
This deviation is strongest close to the log-linear phase t
sition, which for uncorrelated disorder happens atmc52.
The difference of;2% in mc between the correlated and th
uncorrelated case rapidly becomes much smaller for la
alphabet sizesc @40#.

VII. MORE GENERAL SCORING SYSTEMS

While the approximation of the ensemble of random
quences by the ensemble of independent local scores ap
to have negligible effects, our treatment is so far limited
the special scoring system Eq.~30!. While the computation
of the generating function̂exp@2lJ#&0 seems feasible only
for this special scoring system, the mapping to an asymm
ric exclusion process and the reformulation as an eigenv
problem is still possible for more general scoring system

We consider here scoring systems satisfying the follow
two conditions: First, the differences between the poss
valuessa,b of the scoring matrix are multiples of some sco
unit D. Second, the gap costsd is such that 2d1s0 is also an
integer multiple ofD, with

s0[max
a,b

$sa,b% ~62!

FIG. 10. Dependence of the significance parameterl on the
scoring parameterm. The circles represent the numerically obtain
values ofl for uncorrelated local disorder~31! with match prob-
ability p51/4 for which Eq.~55! ~the solid line! has been derived
They agree well with the analytical result. The diamonds cor
spond to local disorder generated by comparing two randomly c
sen sequences over an alphabet of sizec54. The values ofl ob-
tained from the two ensembles differ from each other only v
close to the phase transition pointmc52.
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being the maximal entry of the scoring matrixsa,b . These
two conditions are easily satisfied~with D51! by the most
frequently used protein scoring systems@16,17# that use in-
teger scores and gap costs for performance reasons. Fo
match-mismatch scoring system~2!, the first condition is sat-
isfied with D511m, while the second condition applie
only to a discrete set ofd ’s. However, it is possible in prin-
ciple to interpolate to arbitrary gap costs@24#.

Mapping to an asymmetric exclusion process is poss
for scoring systems satisfying the above two conditions
will be convenient to express the gap costd in the following
way:

2d5nmaxD2s0 with nmaxPN. ~63!

As before, we shall ignore correlations between the lo
scoress(r ,t) and introduce uncorrelated random variab
h(r ,t)P$0,1, . . .% such that

s~r ,t ![s02h~r ,t !D, ~64!

i.e.,

Pr$; r ,t h~r ,t !5h r ,t%5)
r ,t

Pr$h~r ,t !5h r ,t% ~65!

with

Pr$h~r ,t !5h%5(
a,b

papbdsa,b ,s02hD . ~66!

Note, that these random variablesh(r ,t) only take on a finite
number of different positive integer values, since the scor
matrix sa,b itself has only a finite number of entries.

A derivation analogous to the one given above for t
longest common subsequence problem again maps the
namics of the alignment algorithm onto the dynamics of p
ticles on a one-dimensional lattice. The state of the system
still given by the number of particlesn(r ,t) at each lattice
site, but now these occupation numbers are defined as

n~r ,t ![H 1

D
@h~r 11,t !2h~r ,t11!1d1s0# r 1t even

1

D
@h~r 11,t11!2h~r ,t !1d# r 1t odd

~67!

and can take any integer value between 0 andnmax. The
dynamics is given by the relations

n~r 21,t !5n~r 21,t21!2 j ~r ,t ! ~68!

and

n~r ,t !5n~r ,t21!1 j ~r ,t ! ~69!

for evenr 1t, where

j ~r ,t ![min$h~r ,t !,nmax2n~r ,t21!,n~r 21,t21!%
~70!

-
o-

y
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and the total number of particles is fixed to be

1

2W (
r 50

2W21

n~r ,t !5
nmax

2
. ~71!

Equations~68!–~70! can be equally expressed as the follo
ing cellular automata: For each time step and for each pa
neighboring sites of the one-dimensional lattice the partic
lie in, ~1! choose an integer numberh>0 of particles to hop
from siter 21 to siter according to the distribution~66!; ~2!
if there are fewer particles thanh on siter 21, then reduceh
to the number of particles on siter 21; ~3! if there are fewer
free spaces thanh on siter, then reduceh to the number of
free spaces on siter; and ~4! move h particles from siter
21 to siter.

This updating rule is to be applied sublattice-parallel
for the simpler scoring system. The process is illustrated
Fig. 11.

The more complicated hopping process is reflected i
different matrixT1(l/W) without changing anything else i
the calculations. Thus, the significance assessment con
l is still given by the generating function of the space a
time averaged current as

exp@ls0/2#^exp@2lDJ#&0
1/N51 ~72!

but the calculation of this generating function for an arbitra
distribution~66! becomes much more difficult for the gene
alized asymmetric exclusion process than for the casenmax
51 of the original asymmetric exclusion process.

However, already the knowledge of the dependence of
average current on the scoring parameters would be
helpful to biologists, since this determines the position of
log-linear phase transition. As discussed in the case of
simpler scoring system, the phase transition occurs, if
first moment of the score distribution vanishes, i.e., for

FIG. 11. Interpretation of Eqs.~68!–~70! as a generalized asym
metric exclusion process. A configuration of the local score diff
ences is represented by particles on a one-dimensional lattic
width 2W. Each lattice site can accommodate up tonmax particles
~here nmax54.! At an odd time step for each even siter 21, a
number of particles is chosen to attempt hopping to the right
there are enough particles at siter 21 and enough space on siter,
the chosen number hops. In the example shown, the filled part
are the ones to hop and the dashed boxes show their positions
the time step. No particle that could hop is on site 6. The particle
site 0 cannot hop since its destination site is already fully occup
For site 2, one particle has been chosen. On site 4, at least
particles tried to hop. If the number chosen was larger, it wo
have been cut down to two since there are only two particles on
4 and since there are only two spaces left at site 5.
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exp@ls0/2#^exp@2lDJ#&0
1/N5s0/22

^J&0

N
D

5s0/22^ j &0D. ~73!

The average current is much easier to calculate, since
contrast to the generating function, it is independent of te
poral correlations. Thus, it can be calculated from the kno
edge of the stationary state alone. For the original asymm
ric exclusion process, the occupation numbers of
stationary state become independent random variables.
the generalized asymmetric exclusion process prese
here, this is not the case any more. If the number of partic
that hop in one move is at most one@as for the scoring
system~2! with arbitrary gap costs# approximating the sta-
tionary state as a product state still yields reasonable va
of ^ j &0 and hence the phase transition point (dc ,mc) @24#
~see Fig. 3.! Nevertheless, exact results or at least system
improvements taking into account the spatial correlations
the occupation numbers would be desirable. For the m
general case allowing for an arbitrary number of particles
hop at a given time, no analytical result is known.

VIII. CONCLUDING REMARKS

In this paper, we have shown how a question of gr
practical importance to molecular biologists, like the sign
cance assessment of local sequence alignment results, c
answered by studying the asymmetric exclusion process
exactly solvable model of the KPZ universality class. Co
versely, in trying to answer this question for biologists, w
derived an important physical quantity like the generat
function Z for the corresponding physical system in discre
time and discrete space. This complements the existing s
tions in continuous time and space@12# and in continuous
time and discrete space@13#. Our result is the first successfu
analytical approach to assessing the statistical significanc
sequence alignment with gaps.

Future work of practical importance includes solving t
generalizations of the asymmetric exclusion process
scribed in Sec. VII and studying the effect of the widely us
‘‘affine gap cost,’’ where a contiguous gap of lengthl is
assigned some gap costd1(l 21)e instead of simplydl . A
general expression that givesl as a function of an arbitrary
scoring system should finally give rise to a deeper und
standing of the role of the gap cost and lead to better cho
of scoring systems for alignments of biological sequence
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APPENDIX A: ISLAND HIGH SCORE DISTRIBUTION

In this appendix we derive heuristically the exponent
distribution of maximal island scores. We first treat the ga
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less case@43# and then generalize the derivation to alignme
with gaps. In the gapless case, the distribution of large
lands of lengthL measured from their beginning to the
peak point at heights is given by

p~s!5K dS s2(
i 51

L

s~ i !D L . ~A1!

Using the Fourier representation of thed function and the
statistical independence of thes( i ) this yields

p~s!5
1

2pE exp~2 iks!^exp~ iks!&Ldk. ~A2!

If we assume that the peak score of the island is proportio
to its length, i.e., that an island has on average a linear s
a, we get

p~s!5
1

2pE exp~2 ikaL !^exp~ iks!&Ldk, ~A3!

which can be evaluated in a saddle point approximation

p~s!;exp~2ls! ~A4!

with

l5 ik* 2 ln@^exp~ ik* s!&#/a. ~A5!

The saddle pointk* is given by the saddle point equation

^s exp~ ik* s!&

^exp~ ik* s!&a
51. ~A6!

This k* is itself a function of the so far unknown slopea. To
find the correct value ofa, we minimize Eq.~A5! with re-
spect toa and get together with Eq.~A6!,

^exp~ ik* s!&51. ~A7!

Inserting this into Eq.~A5! yields condition~7!. Additionally
we get from Eq.~A6! the typical slopea of an island as

a5^s exp~ls!&. ~A8!
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For alignment with gaps, the high score of an island
length L from its beginning to its peak point is not just th
sum of local scores any more. Instead, it is given by the fi
score h(0,L) of a global alignment of two sequences
length L taking into account all possible insertions of gap
We can still use the Fourier transformation to get

p~s!5^d„s2h~0,L !…&5
1

2pE exp~2 iks!

3^exp@ ikh~0,L !#&dk. ~A9!

In Sec. V B we will see, that̂exp@lh(0,L)#& is for largeL
the Lth power of the eigenvalue of some matrix. We th
definer(l) by

^exp@lh~0,L !#&[rL~l! ~A10!

and again assume a linear slopea of the islands that we
conveniently define bys5aL/2 in order to take into accoun
the fact that the lattice of lengthL actually only containsL/2
matches or mismatches in a row. We then get

p~s!5
1

2pE exp@$2 ika/21 ln r~ ik !%L#dk. ~A11!

Applying the above saddle point approximation and maxim
zation with respect to the slope of the islanda yields Eq.
~21!. Moreover, it gives the typical slope of an island as

a52
r8~l!

r~l!
5

2

L
^h~0,L !exp@lh~0,L !#&. ~A12!

APPENDIX B: EXPRESSION OF THE SCORE DYNAMICS
IN TERMS OF PARTICLE OCCUPATION NUMBERS

In this appendix we describe the mapping from the e
lution equation~32! of the sequence alignment scores on
the asymmetric exclusion process withn(r ,t) as the particle
occupation numbers in detail. To this end we apply Eq.~32!
to the definition Eq.~33! of n(r ,t), where we assume by
convention thatr 1t is even as in Fig. 7~a!. We get
n~r 21,t !5h~r ,t11!2h~r 21,t !

5max$h~r ,t21!1h~r ,t !,h~r 21,t !,h~r 11,t !%2h~r 21,t !%

5h~r ,t21!2h~r 21,t !111max$h~r ,t !21,h~r 21,t !2h~r ,t21!21,h~r 11,t !2h~r ,t21!21%

5n~r 21,t21!1max$h~r ,t !21,2n~r 21,t21!,n~r ,t21!21%

5n~r 21,t21!2min$12h~r ,t !,n~r 21,t21!,12n~r ,t21!%

and analogously

n~r ,t !5h~r 11,t !2h~r ,t11!11

5h~r 11,t !2max$h~r ,t21!1h~r ,t !,h~r 21,t !,h~r 11,t !%11
1-16
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5h~r 11,t !2h~r ,t21!2max$h~r ,t !21,h~r 21,t !2h~r ,t21!21,h~r 11,t !2h~r ,t21!21%

5n~r ,t21!2max$h~r ,t !21,2n~r 21,t21!,n~r ,t21!21%

5n~r ,t21!1min$12h~r ,t !,n~r 21,t21!,12n~r ,t21!%.
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This can be summarized in the form

n~r 21,t !5n~r 21,t21!2 j ~r ,t ! ~B1!

and

n~r ,t !5n~r ,t21!1 j ~r ,t !, ~B2!

where

j ~r ,t ![min$12h~r ,t !,12n~r ,t21!,n~r 21,t21!%.
~B3!

As we can see, there is no reference to the actual al
ment scoresh(r ,t) in these equations. As a first consequen
of these equations we note that they imply that the variab
n(r ,t) can only take on the values zero and one. This
obvious by induction, if it is fulfilled att50 as it is the case
for our choice of initial conditions.7 Thus, it is reasonable to
interpret then(r ,t) as particle occupation numbers.

Moreover, we note that a pair of neighboring occupat
numbers@n(r 21,t),n(r ,t)# at time t depends only on the
corresponding pair@n(r 21,t21),n(r ,t21)# at time t21
and the random variableh(r ,t). Thus, the elements as th
one shown in Fig. 7 perform these transformations of a p
of neighboring occupation numbers into a new pair of nei
boring occupation numbers completely independently
each other.

Looking at Eqs.~B1!–~B3! more closely, we see tha
j (r ,t)50 whenever @n(r 21,t21),n(r ,t21)#
P$u00&,u01&,u11&%. Thus, @n(r 21,t),n(r ,t)#5@n(r 21,t
21),n(r ,t21)# in these cases. Only if siter 21 is occupied
and siter is empty, the numberj (r ,t) of transferred particles
can be one with probability Pr$h(r ,t)50%512p. This
leads to the interpretation of the dynamics given by E
~B1!–~B3! as an asymmetric exclusion process described
the transfer matrixT1(0) defined in Eq.~34! of the main
text.

So far we transformed the dynamics of the seque
alignment algorithm as given by Eq.~32! into an asymmetric
exclusion process. We still have to expressZ0(l;N) in terms
of this asymmetric exclusion process. To achieve this,
first define for any ‘‘time’’ t the average score~or space-
averaged surface height!

7Even if the initial values of then(r ,t50) are not zero or one
they will under the dynamics of Eqs.~B1!–~B3! eventually try to
take on values less than zero or larger than 1. The minimum in
~B3! then resets them to zero or 1. Thus, after some startup ph
then(r ,t) will be integer even if their initial values are chosen to
noninteger.
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h̄~ t ![5
1

2W (
k50

W21

@h~2k,t21!1h~2k11,t !# t even

1

2W (
k50

W21

@h~2k,t !1h~2k11,t21!# t odd.

~B4!

Because of the translational invariance of the system in
spatial~r! direction, we get

Z0~l;N!5^exp@lh~0,N!#&05^exp@lh̄~N!#&0 . ~B5!

Thus, we can restrict ourselves to calculating the largeN
behavior of the latter quantity.

The change in the average scoreh̄(t) can be expressed in
terms of the occupation numbersn(r ,t) via Eqs. ~32! and
~33!. It is given by

h̄~ t11!2h̄~ t !

55
1

2W (
k50

W21

@h~2k,t11!2h~2k,t21!# t even

1

2W (
k50

W21

@h~2k11,t11!2h~2k11,t21!# t odd.

~B6!

The local score differences in this equation can for ever
1t be expressed as

h~r ,t11!2h~r ,t21!

5max$h~r ,t21!1h~r ,t !,h~r 11,t !,h~r 21,t !%

2h~r ,t21!

511max$h~r ,t !21,n~r ,t21!212n~r 21,t21!%

512min$12h~r ,t !,12n~r ,t21!,n~r 21,t21!%

512 j ~r ,t !.

Inserting this into Eq.~B6! yields

h̄~ t11!2h̄~ t !5
1

2
2

1

2W 5 (
k50

W21

j ~2k,t ! t even

(
k50

W21

j ~2k11,t ! t odd.

~B7!

Combining Eqs.~B5! and ~B7! finally yields

q.
se,
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Z0~l;N!5^exp@lh̄~N!#&0

5K expFl (
t50

N21

$h̄~ t11!2h̄~ t !%G L
0

5exp@lN#K expF2
l

2W (
l 51

N/2

(
k50

W21

$ j ~2k11,2l 21!

1 j ~2k,2l !%G L
0

5exp@lN#^exp@2lJ#&0 ,

~B8!

where

J[
1

2W (
l 51

N/2

(
k50

W21

$ j ~2k11,2l 21!1 j ~2k,2l !% ~B9!

is the total number of particles hopped divided by the nu
ber of sites. This is Eq.~39! of the main text.

APPENDIX C: DYNAMIC PATH INTEGRAL
REPRESENTATION

In this appendix we want to show that the generat
function Q(l;W,N) can be expressed as a product of so
03191
-

g
e

4W-dimensional matrices as stated in Eq.~43! in the main
text. This rewriting is crucial in transforming the calculatio
of the generating function into an eigenvalue problem.
start from the definition

Q~l;W,N!5^exp@2lJ#&0

5K )
l 51

N/2

)
k50

W21

expF2
l

2W
j ~2k11,2l 21!G

3expF2
l

2W
j ~2k,2l !G L

0

. ~C1!

Since, the number of particles in each bin must be either 0
1 at any time, we do not change the expectation value, if
introduce ones of the form

15 (
$nr ,t%P$0,1%2W

)
r 50

2W21

dn(r ,t),nr ,t
~C2!

at each fixed timet. This corresponds to a path integral fo
mulation of the quantityQ(l;W,N) and yields
arts that
^exp@2lJ#&05 (
$nr ,0%

. . . (
$nr ,N%

K )
r 50

2W21

dn(r ,0),nr ,0)l 51

N/2 S )
r 50

2W21

dn(r ,2l 21),nr ,2l 21D S )
k50

W21

expF2
l

2W
j ~2k11,2l 21!G D

3S )
r 50

2W21

dn(r ,2l ),nr ,2l D S )
k50

W21

expF2
l

2W
j ~2k,2l !G D L

0

. ~C3!

Once a configuration of the particles at each time step is fixed, the expectation value can be factorized into the p
contain only a single random variableh(r ,t)

K )
r 50

2W21

dn(r ,0),nr ,0)l 51

N/2 S )
r 50

2W21

dn(r ,2l 21),nr ,2z21D S )
k50

W21

expF2
l

2W
j ~2k11,2l 21!G D S )

r 50

2W21

dn(r ,2l ),nr ,2l D
3S )

l 50

W21

expF2
l

2W
j ~2k,2l !G D L

0

5 )
r 50

2W21

dn(r ,0),nr ,0
3)

l 51

N/2

)
k50

W21 K dn(2k,2l 22),n2k,2l 22
dn(2k11,2l 22),n2k11,2l 22

expF2
l

2W
j ~2k11,2l 21!G

3dn(2k,2l 21),n12k,2l 21dn(2k,2l 21),n2k11,2l 21L
0
)
k50

W21 K dn(2k21,2l 21),n2k21,2l 21
dn(2k,2l 21),n2k,2l 21

3expF2
l

2W
j ~2k,2l !Gdn(2k21,2l ),n2k21,2l

dn(2k,2l ),n2k11,2zL
0

31.
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Inserting this into Eq.~C3!, we can interpret the summation over the possible configurations of the particles at eac
step as the summation over inner indices in a matrix multiplication. In this language the first term) r 50

2W21dn(r ,0),nr ,0
is a vector

on the 4W-dimensional vector space indexed by all possible particle configurations. This vector has exactly one nonva
entry at the configuration that is chosen as the initial configuration att50. This nonvanishing entry is one and we call th
vectoruc0&. The factor of 1 that we added for the sake of clarity also plays the role of a vector the entries of which are
We call this vector̂ c1u. All the other factors represent matrices. There is one matrix for every time step and each o
matrices is a tensor product ofW identical matrices describing an elementary hopping process. Their matrix elements

FT1S l

WD G
(n1 ,n2),(n

18 ,n
28)

[ K dn(r 21,t21),n
18
dn(r ,t21),n

28
expF2

l

2W
j ~r ,t !Gdn(r 21,t),n1

dn(r ,t),n2L
0

. ~C4!

The disorder average here is over one single random variableh(r ,t). Performing this disorder average yields the mat
T1(l/W) as defined in Eq.~40!. The matrices for even time steps and the matrices for odd time steps are shifted again
other by one lattice unit that finally leads to the expression of Eq.~43!.
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