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1 Perturbative treatment of pushed waves

Here we explain in detail how to perform the perturbative treatment in the pushed wave case introduced in
the main text. The starting point is the coupled FKPP and KPZ equations
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We can remove the first term in Eq. (2) by shifting to a comoving frame and making the substitution
h → h+ v0t. In this comoving frame, we are interested in travelling wave solutions which are fully described
in a comoving coordinate z = x − ut which moves with a speed u to be determined. For travelling wave
solutions, Eqs. (1) and (2) take the form

−uf ′(z) = s1(f − f0)f(1− f) +Dff
′′(z) + v0f

′(z)h′(z) (3)

−uh′(z) = αf(z) +Dhh
′′(z) +

v0
2
h′(z)2 (4)

Further, we will consider the initial conditions h(x, t = 0) = 0 and f(x, t = 0) = θ(−x), corresponding to a
half-space where the region x < 0 is occupied by mutant and x > 0 is occupied by wildtype. We will also
analyze traveling waves for which the height field attains a constant slope σ as the mutant propagates into
the wildtype. This is justified because for small values of α > 0, the morphology is that of a composite
bulge (see bottom of Fig. 2 in the main text) consisting of a central circular arc, and linear segments near
the boundaries. This morphology is predicted by both the geometric theory and numerical solutions of the
KPZ-FKPP equations. When α < 0 the morphology is that of a v-shaped dent (Fig 2, main text) which
also attains a constant slope. Eq. (4) immediately implies

−uσ = α+
v0
2
σ2 , (5)

where we have used the fact f ≈ 1 in region occupied by mutant. Eq. (5) provides a key relation between u
and α and is exact.

We shall treat the nonlinear coupling v0f
′(z)h′(z) in Eq. (3) as as a perturbation. In the absence of this

term, the solution to Eq. (1) is f (0)(z).
Substituting this zeroth order result in Eq. (4) leads to

−uh(1)′(z) = αf (0)(z) +Dhh
(1)′′(z) +

v0
2
h(1)′(z)2 . (6)

Substituting the resulting h(1) into Eq. (3) leads to

−uf ′(z) = R(f(z)) +Dff
′′(z) + v0f

′(z)h(1)′(z) . (7)
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Here R(f) = s1(f − f0)f(1− f) is the local growth function, but we write it in this form to stress that this
calculation is generic. We now demonstrate how to solve Eqn. (7) perturbatively. Following the approach
discussed in [4, 6, 5, 7], we expand the terms in Eq. (7) as f = f (0) + δf and u = u0 + δu and neglect terms
of order O(δf2, δu2, δfδu). We then have

−δuf (0)′ − u0δf
′ ≈ R′(f (0))δf +Dfδf

′′ + v0h
(1)′f (0)′ , (8)

where the prime on the growth function R denotes a derivative with respect to its argument. We have
neglected the term h(1)′δf ′, which is second order in the perturbation in the small slope limit. We can
collect all the terms containing the correction to the profile shape δf to find

−δuf (0)′ − v0f
(0)′h(1)′ = u0δf

′ +R′(f (0))δf +Dfδf
′′ = Lδf. (9)

The RHS involves a linear operator L which quantifies the “restoring force” due to perturbations in the front
shape.

Note that our last equation has two unknowns, so we need an additional condition to solve it. This extra
condition delineates what changes in the dynamics are encoded in δu and what changes are encoded in δf .
Since δu is the change in the velocity, it should account for the changes in the translational motion of the
front, while δf should include only changes in front shape and not its motion. Thus, δf should be orthogonal
to the translation of the unperturbed front. This idea can be implemented mathematically as follows.

Recall that the unperturbed profile shape solves −u0f
(0)′ = R(f (0)) +Dff

(0)′′, then differentiation by z
immediately yields that Lf (0)′ = 0 demonstrating that L (and its adjoint L†) has a zero eigenvector. We
can find this zero eigenvector for the adjoint L(z) by solving

L†L = 0.

Using the ansatz L(z) = ν(z)f (0)′(z), we find the following relation for the unknown function ν(z).

(−2u0ν + 2Dfν
′) f (0)′′ + (−u0ν

′ +Dfν
′′) f (0)′ = 0 (10)

Which is solved for ν(z) = eu0z/Df . Multiplying both sides of our expanded Eq. (9) by L(z) and integrating
over all z, the RHS vanishes by the eigenvector property of L, and we find a closed form expression for the
correction to the invasion velocity

δu = −v0

∫∞
−∞(f (0)′)2eu0z/Dfh(1)′dz∫∞

−∞(f (0)′)2eu0z/Df dz
. (11)

We again stress that this correction was found without referencing the exact form of the growth function
R or the zeroth order solution f (0). Given a result for h(1), as discussed next, the ratio of integrals can be
evaluated numerically to give the numerical value of the velocity correction and κ in the main text.

2 The Cole-Hopf transformation

For the pushed waves considered in the main text with s(f) = s1(f − f0), the unperturbed profile shape is

f (0)(z) =
1

1 + ez/a
, (12)

where a =
√

2Df

s1
and the uncoupled velocity is u0 =

√
s1Df

2 (1−2f0).With this profile shape f (0)(z), Eq. (6)

can be solved exactly with the use of a Cole-Hopf transformation, w ≡ exp [(v0h/(2Dh)], where we substitute
h(1)′(z) = 2Dh

v0
w′(z)/w(z). Equation (6) then simplifies to
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u

Dh
w′ +

1
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h
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This simplified equation has two solutions w1 and w2 given by
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where 2F1 is a hypergeometric function. The general solution to Eq. (13) is then a linear combination of w1

and w2. When mapping these solutions back onto the height field h, only w2 satisfies the essential boundary
condition that h(1)′ → 0 as α → 0. This is most immediately seen using the fact that the 2F1 function is
unity when its first argument vanishes. For this reason we throw out w1. The slope of the height field is
then
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. (14)

The expression for h(1)′ is formally exact, and can be substituted into Eq. (11) to give a nonlinear equation
for u which can then be solved numerically. This is a complex numerical task which can be circumvented in
the limit α → 0 which is identified with a small slope expansion.

2.1 Linear approximation for small α

For small α, a direct expansion of Eq. (14) yields a simplified form of h(1)′,

h(1)′(z) = −α

u
2F1

(
1,
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Dh
, 1 +
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Dh
,−ez/a

)
+O(α2). (15)

This expression is also obtainable by solving Eq. (6) while ignoring the quadratic term, which is anticipated
to be O(α2). Following the methodology of the expansion of Eq. (7), we decompose u = u0 + δu. As the
original equations are decoupled for α = 0, δu must be O(α) and thus can be neglected in Eq. (15). The
approximate form of h(1)′ is then further simplified with the use of Eq. (5) to replace α with σ (to leading
order). The final expression for h(1)′ is

h(1)′(z) ≈ σ 2F1

(
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au0

Dh
, 1 +

au0

Dh
,−ez/a

)
. (16)

This can now be immediately substituted into Eq. (11)

δu ≈ −v0σ

∫∞
−∞(f (0)′)2eu0z/Df

2F1

(
1, au0

Dh
, 1 + au0

Dh
,−ez/a

)
dz∫∞

−∞(f (0)′)2eu0z/Df dz︸ ︷︷ ︸
κ

(17)

and the integrals can be calculated numerically to give a closed-form solution for the correction to the
invasion veloctiy δu. The underlined piece is the response coefficient κ reported in Figs. (3) and (4) in the
main text.

2.2 The geometric limit

A further limit can be taken, which provides the advantage of simplifying the result of integrating Eq. (11).
We call this limit the “geometric limit” which is achieved by setting Dh = 0. Physically, the geometric limit
corresponds to the case where the height field h no longer relaxes due to surface rearrangement and instead
only advances along the direction of the unit normal. The geometric limit also corresponds to the “equal
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Figure 1: Sample showing the solution to the travelling wave problem in the geometric limit. (Top Left)
Plot showing the zeroth order mutant frequency wave form (12) as a function of the co-moving co-ordinate
z = x − ut. (Bottom Left) The solid line is the solution to Eq. (6) in the geometric limit and for small α
from Eq. (19). The dashed line is the solution with surface relaxation, again in the small α limit, as given
by Eq. (15). The right plot is the perturbative solution for the morphology in the geometric limit. The
height field is found by integrating Eq. (19) with the zeroth order frequency profile described by Eq. (12).
This surface expands along its unit normal, and the speed of invasion is given by Eq. (20). The parameters
are α = 0.1, v0 = 10, u0 = 1, κ = 0.25 (f0 = 0). The dashed lines in the lower-left and right panels are for
Dh = 2. We note that even though a different value of Dh will change the prediction for the invasion speed
u, the first order morphology is independent of this difference as it only depends on the bare speed u0 so
these morphologies can be directly compared.
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time” approach discussed in previous works [3, 2]. Such a limit allows for the case of cusps and sharp corners,
in the height field. It is simplest to proceed from Eq. (6), with Dh = 0. The resulting quadratic equation is
readily solved to give

h(1)′(z) =
−u±

√
u2 − 2αv0f (0)(z)

v0
. (18)

Upon substitution into Eq. (11), we again encountered a nonlinear equation for u. We further simplify it
again expanding in small α, where the height profile is now

h(1)′(z) ≈ σf (0)(z). (19)

We have again used Eq. (5) to remove α. Eq. (11) can now be integrated exactly, and we find

δu = −v0

(1
4
+

f0
2

)
σ, (20)

a rather simple expression for the correction to the invasion velocity. In the context of Eq. (17) and Fig. 4
in the main text, the geometric limit has κ = 1

4 + f0
2 .

The Dh = 0 limit is singular, and leads to jagged profiles that are smoothed for Dh > 0. However this
form of κ makes explicitly clear that the correction to the wave-speed should vanish as f0 → −1/2. This
value of f0 is known to correspond with the onset of pulled waves [1, 8]. This feature is general, the Dh > 0
correction also vanishes for f0 → −1/2 which can be verified by showing the denominator of Eq. (11) diverges
while the numerator remains finite.

3 Transition from composite bulge to circular arc

In our numerical simulations, the invasion velocity u switches from being described by our perturbative
analysis (Eq. (17)) to the speed of a circular arc. This transition occurs at a critical value of the expansion
speed difference αc, and suggests that the assumption of a constant slope σ near the mutant-wildtype
boundary made in our perturbative calculation are no longer valid for α > αc. In this section, we show that
the composite bulge morphology is unstable for large α and must become a circular arc morphology in the
long time limit. This observation explains why we see the invasion speed collapse onto that of a circular arc
in both the pulled and pushed wave dynamics (see Figs. 3 and 4 as well as Figs. 2 and 3 in the main text).

The composite bulge morphology is shown in Fig. 5, and consists of a central circular arc with sloped
edges of slope σ. The boundary between the circular arc and composite bulge section advances with speed
uboundary, and this morphology will persist only if the speed of invasion u exceeds the speed of the boundary,
that is u > uboundary is required for the composite bulge to be stable to morphological invasion. The
location of the circle-slope boundary can be found by demanding that ∂h/∂x be continuous, to first order
one immediately finds

−xboundary

(v0 + α)t
= σ → uboundary = −v0σ +O(α2). (21)

We have explicitly neglected terms like ασ as σ is anticipated to be of order α. The speed of advance of the
mutant is the solution to the system of equations

u = u0 − κv0σ (22)

−uσ = α+
v0
2
σ2. (23)

We can find the transition point where uboundary exceeds the invasion speed u by substituting u = uboundary =
−v0σ into the above. Solving this system, one immediately finds that the boundary and invasion velocity
are equal when

α =
u2
0

2v0(1− κ)2
≡ αc. (24)

When α > u2
0/2v0(1− κ)2, the composite bulge cannot be the long term solution of our equations as it will

eventually be subsumed by its central circular arc. To check that this value of the growth rate difference α
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(a) (b)

(c)

Figure 2: Cartoon demonstrating the origin of the advective term in Eq. (1). In (a), a simple geometric
calculation shows that an individual on the front of a population will have children displaced by an amount
∆x ≈ v0∂h/∂x∆t, which defines the advection velocity due to growing on a tilted surface. In (b) and (c),
we sketch how this advection manifests at the level of sector growth. In (b), the leading surface is flat and
as such the sector stays centered as it grows. By tilting the leading surface as in (c) the region occupied by
the green species translates horizontally.

does indeed correspond to the transition to a circular arc, we can plug α = u2
0/2v0(1 − κ)2 in to Eqs. (22)

and (23) and solving for u we find

u =
u0

1− κ
=

√
2αv0 (25)

matching the speed of a circular arc as expected. This demonstrates that the transition between the com-
posite bulge and circular arc occurs when the velocities predicted by each morphology are equal, and this
transition point coincides with the parameter values where the composite bulge morphology is an unstable
solution of our equations.
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Figure 3: Numerical results measuring the invasion velocity u as a function of the expansion speed difference
α for a range of values of f0. The dots are the result of numerical simulation, while the dashed lines are the
analytic predictions from our perturbative calculation. The dash-dotted lines show the asymptotic velocity
2
√
−f0s1Df , consistent with a linearized Eq. (1) when f0 < 0. While all the data are well described by

the perturbative calculation for small |α|, it appears that when f0 < 0, the invasion velocity approaches
some constant as α becomes increasingly negative. All data for f0 > 0 indeed collapse onto the velocity of a
leftbound circular arc. Both circular arc velocities shown by the solid blue line for comparison. Parameters
are s1 = 4, Df = Dh = 1, v0 = 20.

7



-0.2 -0.1 0 0.1 0.2
-3

-2

-1

0

1

2

Figure 4: Numerical results measuring the invasion velocity u as a function of the expansion speed difference
α for a different selection coefficient function s(f) = s3(f

3 − f0). The red solid red line shows the two way
circular arc velocity u = sign(α)

√
2|α|v0. The dash-dotted lines show the asymptotic velocity 2

√
−f0s1Df ,

consistent with a linearized Eq. (1) when f0 < 0. We see that even with a different fitness function from that
treated in the main text, the invasion velocity still varies nontrivially with the expansion speed difference
α and the main qualitative features of this variation are reproduced. When α is large and positive all the
data collapse onto the speed of a rightward moving circular arc. When α is sufficiently negative the data are
either consistent with that of the linearized equations for f0 < 0 or a leftward moving circular arc for f0 > 0.
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Circular Arc
Sloped Front

Figure 5: Sketch of a comosite bulge morphology, which has a central circular arc and sloped edges with
slope σ. The boundary between the circular and sloped sections advances with speed uboundary, and the
composite bulge morphology can only persist as t → ∞ when uboundary is less than the mutant invasion
speed u.
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