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Interplay between morphology and competition in two-dimensional colony expansion
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In growing populations, the fate of mutations depends on their competitive ability against the ancestor and
their ability to colonize new territory. Here we present a theory that integrates both aspects of mutant fitness by
coupling the classic description of one-dimensional competition (Fisher equation) to the minimal model of front
shape (Kardar-Parisi-Zhang equation). We solve these equations and find three regimes, which are controlled
solely by the expansion rates, solely by the competitive abilities, or by both. Collectively, our results provide a
simple framework to study spatial competition.
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Propagating fronts are a ubiquitous feature of spatially
extended systems. Examples include the spread of an invasive
species in an ecosystem [1], the spread of a ferromagnetic
phase across a magnet [2], the spread of a high fitness allele
through a population [3], and even the propagation of a flame
front [4]. These and other applications have stimulated a sus-
tained effort to construct and analyze coarse-grained models
of traveling reaction-diffusion waves [1,5–8]. By now, we
have a general understanding of one-dimensional waves, but
two and higher dimensions pose numerous challenges because
of the interplay between the dynamics along the wave front
and the shape of the wave front itself.

Growing microbial colonies provide an excellent experi-
mental system to study the two-way coupling between the
shape of the colony edge and the spatial distribution of dif-
ferent genotypes in the population [9–11]. At the same time,
microbial colonies also serve as useful model systems for tu-
mor growth and geographic expansions of plants and animals
[12]. Hence, the spatial competition between two different
genotypes has garnered much recent attention [13,14].

Although many approaches have been put forward to de-
scribe how microbes colonize surfaces, we are still lacking a
simple but general framework to describe competition during
colony growth. Most computational studies rely on numerical
simulations of complex microscopic models and therefore can
draw few general conclusions about possible outcomes of
spatial competition [15–17]. To a certain extent, this challenge
has been recently addressed by theoretical studies using either
field-theory [18] or geometric-optics [11,13,19] approaches
to describe morphologies of colonies with two competing
species. These theoretical models, however, are agnostic to
the mechanism of competition and assume the knowledge
of emergent properties, such as the invasion velocity of the
mutant. In consequence, their utility is rather limited because
they cannot, for example, predict the winner of the compe-
tition given the microscopic qualities of the mutant and the

ancestor. Thus, there is a need for a tractable model that can
integrate the microscopic dynamics with the changes in the
colony shape during spatial competition.

To construct such a model, we focus on growth on rich
solid media so that one can neglect nutrient diffusion [20] and
complex hydrodynamics [21,22]. Under these assumptions,
the state of the colony is well described by two quantities:
the spatial extent or “height” of the colony h(x, t ) and mu-
tant fraction f (x, t ), which change along the colony front (x
coordinate) and with time t [18]. For simplicity, we consider
only planar fronts, where h is simply the distance by which
the colony expanded from the inoculation site. Thus, we treat
the colony edge as a thin interface. This is a reasonable ap-
proximation because the growth region extends only a few
cell widths into the colony and any successful mutant has to
emerge near the colony edge; otherwise it is crowded out of
the growth zone and remains trapped in the colony bulk [23].

The dynamical equations for h(x, t ) and f (x, t ) emerge
naturally as generalizations of the well-studied limits of
the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equa-
tion [3,7] for one-dimensional competition (no variation in h)
and the Kardar-Parisi-Zhang (KPZ) equation [24] for interface
growth (no variation in f ). The KPZ equation is a continuum
limit of the classic Eden model of colony growth [25]. It
has been quite successful at describing both deterministic
and stochastic patterns in microbial colonies [26], including
those observed during two-species competition [23]. The KPZ
equation can also be viewed as a phenomenological model
based on gradient expansion similar to its justification for sur-
face growth phenomena [24,26]. The dynamical equation for
h(x, t ) reads

∂h

∂t
= v0 + v0

2

(
∂h

∂x

)2

+ Dh
∂2h

∂x2
+ α f , (1)

where the first two terms express the isotropic expansion of
the colony with velocity v0 along the local normal to the front,
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the third term encodes curvature relaxation, and the fourth
term accounts for the difference in the expansion velocities
of the mutant and the ancestor [18]. We used a linear interpo-
lation between the two velocities because most of our results
are obtained to the first order in the differences between the
two competitors. Higher-order terms [such as α f (∂h/∂x)2]
are similarly ignored.

Assuming that the mutant has a selective advantage s( f ),
the dynamics of the mutant fraction f is described a modified
FKPP equation [3,7]

∂ f

∂t
= s( f ) f (1 − f ) + D f

∂2 f

∂x2
+ v0

∂h

∂x

∂ f

∂x
, (2)

where the first term accounts for differences in local repro-
duction rates, the second accounts for spatial rearrangements
due to motility or population fluxes generated by the ex-
pansion dynamics, and the third is our addition to describe
passive changes in f due to the motion of a tilted interface
[18,27,28]. Indeed, a tilted front advances along its normal,
so it moves both vertically and horizontally. The horizontal
velocity −v0∂h/∂x advects f (t, x), which manifests in the
term proportional to ∂ f /∂x in the equation above [see Fig. 2
in the Supplemental Material (SM) [29] for an illustration].

Without the coupling to h, the FKPP equation is the classic
model of spatial competition between two genotypes in one
dimension. Its asymptotic solutions are known as traveling
waves because they have the form f (x, t ) = f (x − ut ), where
u is the invasion velocity of the mutant. In the following, we
determine how the coupling between h and f affects u by solv-
ing Eqs. (1) and (2) numerically using MATLAB’s pdepe (for
codes, see [30]). We then develop an analytical theory that not
only quantitatively matches the simulations, but also provides
deep insights into the existence of three distinct regimes of
spatial competition.

The solutions of the FKPP equation are broadly classified
into so-called pulled and pushed waves depending on how the
selective advantage s depends on mutant frequency f . Pulled
waves are dominated by the dynamics at leading edge and
the invasion velocity can be obtained by linearizing the FKPP
equation for small f ; the resulting Fisher velocity is given by
uF = 2

√
D f s(0) (see Refs. [1,3,7,8]). In contrast, the velocity

of pushed waves depends on the values of s at all f and cannot
in general be computed analytically except for some exactly
solvable models such as with s( f ) = s1( f − f0) [31,32]. For
this model, pushed waves occur for f0 ∈ (−0.5, 0.5) with
u = √

D f s1/2(1 − 2 f0); the waves are pulled for f0 < −0.5.
The behavior for f0 > 0.5 is analyzed by changing variables
from f to 1 − f .

We assume that the mutant has a local fitness advantage
s( f ) > 0 and first consider pulled waves with s( f ) = s0 > 0.
The emergence of a traveling wave of f (x, t ) is apparent in
Fig. 1(a). The corresponding h(x, t ), however, is not a simple
traveling wave [Fig. 1(b)]. The colony front is composed of
a curved portion dominated by the mutant and a flat front
dominated by the ancestor. While the transition point between
these two regimes advances with the same velocity u, the
overall shape of the curved portion depends on both time and
the comoving coordinate (x − ut) because the growth dynam-
ics encoded by α persists even after the mutant displaces the
ancestor.

FIG. 1. Sample simulation results generated by solving Eqs. (1)
and (2) numerically in the pulled wave regime s( f ) = s0. (a) Profiles
of mutant frequency f (x, t ) at five equally spaced time slices labeled
by color. (b) Height profiles h(x, t ) taken at the same five time points
as in (a) with the same color convention. Starting from a flat initial
condition, the height field develops a nontrivial morphology through
a dependence of the growth rate of h on the mutant frequency f .
(c) Spatial distribution of the two competitors visualized by plotting
successive solutions of the height field h and coloring each point
according to the value of f at the corresponding x and t .

To understand how the invasion velocity u is affected by
the coupling to height, we compute it numerically at different
values of α. For α = 0, the equations are effectively decou-
pled because genetic variation along the front does not create
any disturbances in the front shape, which remains h = v0t for
all x. The mutant is faster than the ancestor when α > 0 and
slower otherwise. While the latter case may seem paradoxical,
it has actually been observed experimentally [19].

Simulation results are shown in Fig. 2, with different mark-
ers denoting different values of s0. We immediately observe
that the data fall into two regimes. For small α, the invasion
velocity is a constant, which depends on s0. For large α, the
situation is reversed: The velocity depends on α, but not on s0.
Thus, there appears to be two distinct regimes: one mediated
by local competition described by the FKKP equation and one
mediated by the expansion rates in the KPZ equation.

We test this hypothesis by comparing solutions of the un-
coupled FKKP and KPZ equations to the results in Fig. 2.
For small α, there is perfect agreement between the observed
values of u and the expected Fisher velocity uF = 2

√
D f s0. In

hindsight, this may not be too surprising since pulled waves
are controlled by the dynamics at the leading edge, where h
is flat and the coupling term in the FKPP equation vanishes.
However, the influence of growth velocity differences man-
ifests dramatically in the shape of the front, which changes
from a V-shaped dent at negative α to a composite bulge for
positive α (see Fig. 2).

For large α, the simulations match

u =
√

2α(v0 + α) ≈
√

2αv0, (3)

which can be obtained from the KPZ equation by analogy
with the equal-time argument in Ref. [11] and the geometric
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FIG. 2. Invasion dynamics in pulled waves. Shown on top is the
invasion velocity showing two regimes with dependence on either α

or s. The horizontal dashed lines are the predicted Fisher velocities.
The curved dashed line is u = √

2αv0, as predicted by Eq. (3).
For each value of s0 the closed circle shows the location of the
transition point αc between the composite and circular arc morpholo-
gies. Shown on the bottom are three distinct colony morphologies,
depending on α. When α < 0 the front shape is a V-shaped dent.
When 0 < α < αc the morphology is a composite bulge consisting
of a central circular arc transitioning to a constant slope at the bulge
edges. When α > αc the front is entirely a circular arc. The red arrow
shows the invasion velocity u, which is the speed of the mutant–wild-
type boundary along the horizontal axis. The parameters are v0 = 10
and Df = Dh = 1.

theory in Ref. [19]. In this regime, the mutant forms a circular
bulge1 of radius (v0 + α)t , while the ancestor has a flat front
at height v0t . These two curves intersect at point whose x
coordinate moves with velocity u = √

2α(v0 + α) ≈ √
2αv0.

The transition between the s0-dependent and α-dependent in-
vasion velocities occurs at a critical value of αc = 2s0D f /v0

when the velocity of the circular bulge exceeds the Fisher
velocity. This agrees with the general observation that a faster
moving solution typically controls the behavior of a traveling
wave [8].

The above results for pulled waves are surprising from both
mathematical and biological perspectives. Mathematically, it
is surprising that the invasion velocity u is controlled by
only one of the equations, i.e., there is no two-way coupling.

1Since the KPZ equation approximates isotropic growth only to
first order, the height field actually has a parabolic shape: h(x, t ) =
(v0 + α)t − x2

2(v0+α)t .
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FIG. 3. Invasion dynamics in pushed waves. Symbols show the
measured invasion velocity from simulations as a function of the
expansion velocity difference α. The dashed curves show the result
of the perturbation theory discussed in the text and the horizontal
dash-dotted lines are the invasion velocity predicted from simple
linearization of Eq. (2). When α is large and positive, all invasion
velocities match the black solid line, the speed of the invading cir-
cular arc. The behavior for α sufficiently negative (corresponding
to a mutant growing much slower than the wild type) depends on
the sign of f0. When f0 < 0, the invasion speed approaches a value
predicted by the linearized equations u = 2

√−s1 f0Df . For f0 > 0,
the invasion velocity changes sign at large negative α, reversing
the competitive outcome. The negative invasion speed is that of a
leftward-moving circular arc (u = −√

2|α|v0), which is depicted by
the black solid line. The inset is a sample morphology which arises
when the mutant is invaded by the wild type (u < 0). The simulation
shown is initialized as a half space where the left half is occupied
by the mutant and the right by the wild type. The parameters are
v0 = 20, s1 = 4, and Df = Dh = 1.

Biologically, it seems counterintuitive that, no amount of dis-
advantage in the expansion velocity (α < 0) can overcome the
competitive advantage (s0). To see whether these conclusions
hold more generally, we carry out equivalent simulations for
pushed waves with s( f ) = s1( f − f0). The results are shown
in Fig. 3.

Compared to pulled waves, there are three regimes. One
regime occurs for large α and corresponds to a mutant assum-
ing a circular bulge morphology invading at u = √

2αv0. This
regime is completely analogous to what we described above
for pulled waves.

In addition, there are two new regimes at α near zero and at
large negative α. The dynamics in the latter regime depends on
whether Eq. (2) describes propagation into an unstable state
[s(0) < 0, the mutant has a competitive advantage at any f ]
or into a metastable state [s(0) > 0, the mutant needs a critical
density to outcompete the ancestor].

For s(0) < 0 ( f0 > 0 and f = 0, stable), the invasion speed
u changes sign when α becomes sufficiently negative. In this
case, the ancestor invades a more competitive mutant (s1 > 0)
because it has a much larger expansion velocity. The invasion
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proceeds with a circular bulge of the ancestor which must
advance with velocity u = −√

2|α|v0.
When s(0) > 0 ( f0 < 0 and f = 0, unstable), the invasion

velocity remains positive for all values of α and eventu-
ally becomes constant. The value of this limiting velocity
matches 2

√
D f s(0) = 2

√−D f s1 f0, which is the velocity that
one would obtain by linearizing Eq. (2). This behavior is
identical to what we found for pulled waves (in Fig. 2), so
in effect the slower expansion rate of the mutant converted its
invasion of the ancestor from pushed to pulled.

The other new regime occurs for α near zero. In contrast to
pulled waves, the invasion velocity u exhibits a dependence on
both s1 and α. We will now analyze this new dynamics using
perturbation theory.

To find how u depends on both s( f ) and α, we will
treat the coupling between the dynamics of f and h, i.e.,
the term v0∂xh∂x f in Eq. (2), using an approach detailed in
Refs. [33–36]. The scale of the perturbation is thus set by the
maximal front slope, which we denote by σ .

The perturbative scheme proceeds as follows. In the ab-
sence of coupling, the invasion profile of a mutant fraction
[ f (z = x − ut ) is f (0)(z)] is the solution of the standard one-
dimensional Fisher equation, which is known exactly for
certain s( f ). We can use the solution of the standard one-
dimensional invasion problem to obtain the correction to u due
to nontrivial morphological changes associated with mutant
sectors. Substituting f (0)(z) into Eq. (1) leads to a nonlinear
differential equation whose solution provides the first-order
profile h(1)(z = x − ut ). As described in the SM [29], the
nonlinear equation can be solved exactly via a Cole-Hopf
transformation, resulting in a complicated form for h(1)(z = x)
that depends on v0, Dh, and α. Qualitatively, this height profile
is a sigmoidal curve that changes from v0t in the region f → 0
(h′ → 0) to v0t + σ z as f → 1 (h′ → σ ). The limiting slope
can be obtained from Eq. (1) by setting f = 1 (see [29] for
details),

−uσ = α + v0σ
2/2. (4)

After substituting h′(1)(z) into Eq. (2), the methodology
described in Refs. [33–37] can be used to compute the
first-order correction to the invasion velocity, leading to the
correction

u = u0 − κv0σ + O
(
v2

0σ
2
)
, (5)

where u0 is the unperturbed velocity for α = 0. The coeffi-
cient κ in Eq. (5) is a ratio of integrals that depend on the
function h(1)(z) (see the SM [29]). In general, the solution is
complex, but it can be simplified in two limiting cases.

By setting Dh = 0, the equation for h(1)(z = x) becomes
first order and its solution simplifies the evaluation of all
downstream integrals. This limit corresponds to the geometric
description in which the profile simply advances along the lo-
cal normal without further relaxation, yielding κgeom = 1

4 (1 +
2 f0). The Dh = 0 case captures the qualitative changes in κ

including the transition to pulled waves at f0 = −0.5, where κ

must vanish. Thus, our theory recapitulates the finding that the
invasion speed becomes insensitive to the morphology when
the wave becomes pulled.

The insensitivity of pulled waves to morphology is a gen-
eral finding of our perturbative approach. To demonstrate this,
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FIG. 4. Numerical results showing the dependence of the coef-
ficient κ as defined in Eq. (5) on f0. The numerical values of κ

are obtained by fitting measured invasion velocities as functions of
α in the limit α → 0. The best-fit slope is then used to obtain κ

in Eq. (5). The red dashed line is the theoretical prediction of our
perturbative analysis for the value of Dh used in simulation at small
α. The yellow dashed line is the theoretical value of κ when Dh = 0.
The parameters are v0 = 10, Dh = Df = 1, and s1 = 2.

consider the dynamics of the tail of any pulled wave [with
arbitrary s( f )], which follows a linearized Eq. (2) about f = 0
in the comoving frame:

−u f ′ ≈ s(0) f + D f f ′′ + v0 f ′h′. (6)

The zeroth-order solution travels at a speed u0 = 2
√

s(0)D f

and the profile has a tail which is asymptotic to e−
√

s(0)/D f z

as z → ∞. The correction to the invasion velocity (see the
SM [29]) is a ratio of integrals, with the denominator being∫ ∞
−∞( f (0)′)2eu0z/D f dz. Substitution of the asymptotic profile

shape immediately shows that this integral diverges, and thus
the correction to the invasion speed vanishes for any pulled
wave.

Another useful approximation is obtained by neglecting
the nonlinear term in Eq. (1), which is justified for small
α because ∂h/∂x ∝ α. In this case, we have to evaluate the
downstream integrals numerically, but obtain perfect agree-
ment with the simulations at least when α is small (see Fig. 4).
Our perturbation theory, as well as the model described in this
work, rests on the assumption of small slopes in the height
field (σ 	 1) allowing a gradient expansion description of
the colony expansion. In terms of our three velocities, this
requires α 	 u0 	 v0.

We can use perturbation theory to estimate the location of
the transition from a right-moving wave (mutant taking over)
to the left-moving wave (ancestor taking over). This occurs
when u = 0, i.e., for α = −u2

0/2v0κ
2. Beyond this point, sim-

ulations show that u jumps discontinuously (when f0 > 0)
from u = 0 to the value corresponding to a left-moving cir-
cular arc as discussed above.

Although we have not studied stochastic versions of
Eqs. (1) and (2), we anticipate no major qualitative changes
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due to noise. Our focus is largely on sector morphologies
formed by selective forces between strains, which have char-
acteristic lengths scaling linearly with time, overshadowing
noise-induced, sublinearly scaling fluctuations. As such, long-
term ballistic sector motion should render noise corrections
irrelevant, though it may cause minor quantitative alterations
to invasion velocity values [37,38]. For pulled waves, noise
might also induce qualitative changes, such as a nonzero κ

reflecting noise strength.
Microbes, cancer cells, and invasive species often spread

across space forming a continuous two-dimensional popu-
lation. Here we couple a model of surface growth (KPZ
equation) to a model of competition (generalized FKPP
equation). The combined model faithfully describes recent
observations of nontrivial colony morphologies near emerging
mutants [11,19]. Moreover, it elucidates how the colonization
rate and local competitive strength affect the fate of the muta-
tion. We find that mutant takeover relies on whether the FKPP
equation allows for pulled waves, driven by growth dynamics
at low mutant densities, or pushed waves, influenced by the
growth dynamics across the entire mutant-ancestor interface.

For pulled invasions, we found that the mutant with a
positive selective advantage s(0) > 0 always wins regardless
of the value of α. For small α, the invasion velocity depends
only on s(0), while for large α, it is given by the geometric
theory and depends on α only. For pushed waves propagating

into an unstable state s(0) > 0, the mutant always wins as
well, but its invasion velocity could depend on both s( f ) and
α. The competitive outcome, however, could be different for
pushed waves propagating into a metastable state. If s(0) < 0,
the mutant that would invade in a strictly one-dimensional
population, i.e., without coupling to morphology, could lose
during colony expansion. Specifically, a large negative α re-
verses the direction of invasion. Simulations with a different
selection coefficient [s( f ) = s3( f 3 − f0)] further suggest that
invasion reversal is only possible when f = 0 is an unstable
fixed point (see the SM [29]).

The intricate interplay between local competition and
global expansion rates is supported by numerical simulations
and analytical perturbation theory. Taken together, our results
not only elucidate many subtleties associated with mutant
establishment, but also pave the way for a more parsimo-
nious and universal description of evolutionary and ecological
processes in growing populations that is also amenable to
theoretical analyses.
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