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When a biological population expands into new territory, genetic drift develops an enormous
influence on evolution at the propagating front. In such range expansion processes, fluctuations
in allele frequencies occur through stochastic spatial wandering of both genetic lineages and the
boundaries between genetically segregated sectors. Laboratory experiments on microbial range
expansions have shown that this stochastic wandering, transverse to the front, is superdiffusive due
to the front’s growing roughness, implying much faster loss of genetic diversity than predicted by
simple flat front diffusive models. We study the evolutionary consequences of this superdiffusive
wandering using two complementary numerical models of range expansions: the stepping stone
model, and a new interpretation of the model of directed paths in random media, in the context
of a roughening population front. Through these approaches we compute statistics for the times
since common ancestry for pairs of individuals with a given spatial separation at the front, and we
explore how environmental heterogeneities can locally suppress these superdiffusive fluctuations.

INTRODUCTION

In evolutionary biology, changes in an allele’s frequency
in a population are driven not only by Darwinian selec-
tion but also by random fluctuations, the phenomenon of
genetic drift. Selectively neutral or even deleterious alle-
les can rise to prominence purely by chance. In many sce-
narios an individual competes directly only with a small
subset of the population, e.g. due to spatial proximity,
and this small effective population size increases the in-
fluence of genetic drift [1].

Range expansions provide an important example:
When a population expands spatially into new territory,
as during species invasion or following environmental
changes, the new territory is dominated by the descen-
dants of a few ancestors at the expansion front. Genetic
drift is amplified by the small effective population size at
the front [1] – the founder effect – and by the related phe-
nomenon of gene “surfing”, in which alleles that happen
to be present at the front spread to high frequency in the
newly occupied space, despite being selectively neutral
or even deleterious [2, 3].

Genetic drift in range expansions strongly ties fluctua-
tions in allele frequencies to spatial fluctuations. In lab-
oratory experiments, Hallatschek et al. [2] have shown
that microbial range expansions develop, after a short
demixing time, genetic sectors containing almost exclu-
sively the descendants of a single individual. Thereafter,
genetic drift occurs through spatial fluctuations of the
sector boundaries, with a sector lost from the front each
time two sector boundaries intersect. Similarly, the gene-
ological ancestry tree traced backward in time from the
front becomes a tree of space curves that fluctuate trans-
versely to the front propagation direction and coalesce
upon intersection [4]. (See Fig. 2.)

The reverse-time coalescence of lineages is of central
importance in population genetics, particularly in the ap-
proach known as coalescent theory [5, 6]. One of the key
estimates of interest in coalescent theory is the expected
number of pairwise site differences Π between two sam-
pled genomes, which is proportional to the expected time
since common ancestry of the two sampled individuals,
T2, under the assumption that neutral mutations have ac-
cumulated in the (very long) genome at a constant rate
since the two lineages diverged. The relation Π ∝ T2 al-
lows inferences to be made about the population’s recent
evolutionary past from measured genomic differences in
the present, given reliable models of geneaology. The
structured coalescent, which extends coalescent theory to
populations with spatial structure (as opposed to well-
mixed populations) [7], typically assumes migration rules
that produce diffusive dynamics for gene flow. Theoreti-
cal studies of the genealogical structure of range expan-
sions have similarly assumed diffusive spatial fluctuations
of genetic boundaries (as would be appropriate to a flat
front range expansion model; see below) in the interests
of analytical tractability [1]. Flat front models are equiv-
alent to conventional stepping stone models [8] and many
exact results are available [9].

However, there is strong evidence that evolutionary dy-
namics in range expansions are often driven by superdiffu-
sive spatial wandering of both genetic sector boundaries
and lineages. Hallatschek et al. [2] measured the mean-
square transverse displacement of sector boundaries in E.
coli growing across hard agar Petri dishes, and found it
to scale with the expansion distance y as y2ζ with wan-
dering exponent ζ = 0.65 ± 0.05, greater than the value
of ζ = 1/2 characterizing diffusive wandering. In both
E. coli and the yeast species Saccharomyces cerevisiae,
genetic lineages similarly fluctuate with wandering ex-
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ponent ζ ≈ 2/3 [4]. The same superdiffusive wandering
exponent was found numerically for genetic lineages in
an off-lattice model of microbial colony growth [4] and
for sector boundaries in a two-species Eden model [1, 10].
Consequently, the number of distinct sectors decreases as
y−ζ , with ζ measured to be ≈ 0.67 [10], a dramatically
faster loss of genetic diversity than the y−1/2 scaling that
would result from diffusive dynamics [1]; see Fig. 2, where
genetically neutral strains are competing.

The underlying cause of this superdiffusive behavior
is that the population front profile has a characteristic
roughness that increases with time. Because the range
expansion causes the front to advance along its local nor-
mal direction, stochastically generated protrusions in the
front are self-amplifying, and the lineages and genetic sec-
tor boundaries moving with these protrusions experience
a faster-than-diffusive average lateral motion.

Such roughening fronts are characterized by the
Kardar-Parisi-Zhang (KPZ) equation [11, 12]

∂th(x, t) = ν∇2h+ λ(∇h)2/2 + η(x, t) , (1)

where h(x, t) is the height of the front at position x and
time t, subject to diffusion, growth in the front’s local
normal direction, and a stochastic noise η(x, t). The front
roughness ∆h ≡

√
〈h2〉 − 〈h〉2 initially grows with time

as tβ , before saturating for a strip of width L as Lβ/ζ .
The scaling exponents, β = 1/3 and ζ = 2/3 are known
analytically in d = 1+1 dimensions [13, 14]; this value of
the wandering exponent ζ nicely matches the measured
value from experiments and simulations of the microor-
ganism range expansions discussed above.

While there is a wealth of literature on the KPZ equa-
tion and its rich universality class [15–17], there does not
yet exist a similar understanding of the statistics of co-
alescing space curves – here, lineages and genetic sector
boundaries – whose superdiffusive wandering is driven
by such KPZ roughening. We term these curves “KPZ
walkers” in contrast to diffusive random walkers. In de-
veloping a quantitative understanding of neutral evolu-
tion in a biological range expansion, we are thus led to
new questions in statistical physics.

In this work, we numerically investigate the geneo-
logical structure of populations with superdiffusive mi-
gration of the KPZ walker type, driven by roughening
fronts. We are chiefly interested in how the expected
time since common ancestry T2 for a pair of individuals
depends on spatial separation ∆x0 at the front, as well
as in the probability per unit time J(τ |∆x0) of lineage
coalescence at time τ in the past, whose first moment∫∞

0
dτ τJ(τ |∆x0) equals T2(∆x0). As a first approach to

this problem, our work focuses on neutral evolution from
a linear inoculation, avoiding effects such as selection,
mutualism/antagonism, and geometrical inflation [18],
interesting topics of future study.

We employ a complementary pair of simulation ap-
proaches: The first, a lattice-based stepping stone model,

introduces front roughness through stochasticity in repli-
cation time. In our second approach, we reinterpret the
problem of directed paths in random media (DPRM) [19],
a simple and widely-used model from the KPZ unver-
sality class [20–22], as a model for range expansions
with stochastic variation in organism size. The DPRM
approach can be simulated at large scales with much
less computational expense than our stochastic stepping
stone model. We also apply analytical results from the
DPRM problem to rationalize the measured asymptotic
coalescence behaviors. Finally, we study numerically how
environmental heterogeneities temporarily suppress the
wandering of KPZ walkers, an effect observed recently in
experiment [23].

METHODS

The stepping stone model [8] imagines a biological pop-
ulation arranged on a spatial lattice of individually well-
mixed subpopulations called “demes”, each containing N
individuals, with exchange of individuals between neigh-
boring demes. We implement the stepping stone model
on a triangular lattice with N = 1 individual per deme,
which models cases in which local fixation of one allele
occurs rapidly compared to spatial diffusion [1].

As an initial condition, we take the lattice of demes
in two dimensions to be unpopulated except for a lin-
ear inoculation “homeland”. Once a deme is populated,
its allele remains unchanged thereafter, as in the micro-
bial experiments on agar plates, where cell divisions oc-
cur only near the frontier, so that the spatial pattern
of alleles is effectively frozen behind the front [2]. We
choose as our update rule that of the Eden model [24]
for two-dimensional growth processes: One site is cho-
sen at random from among all occupied sites with some
empty neighbor site, and the allele is copied from the cho-
sen occupied site into a randomly chosen empty neigh-
bor (Fig. 1a) [25]. By introducing stochasticity in the
replication time, this procedure generates an irregular
interface between the occupied and empty regions (see
Fig. 2a), simulating a rough front range expansion. By
contrast, the expansion front remains flat if the update
rule fills an entire row in parallel (Fig. 1b), with each
newly filled site inheriting the allele marker of one of its
two filled neigbhors below, chosen randomly with equal
probability. The dynamics in Fig. 1b is equivalent to
a one-dimensional stepping stone model in discrete time
with deme size N = 1.

The second model, DPRM [19], arises from the prob-
lem of finding a minimal-energy directed path through
a random energy landscape η(x, t). Directed paths must
propagate in the ‘time’ direction t, but can fluctuate in
the spatial direction x.

We can reinterpret DPRM as an alternative model of
range expansions with roughening fronts. In Fig. 1c, we
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FIG. 1: Illlustrations of the the update rules in our numerical
models of range expansions. (a,b) The stepping stone model
with deme size N = 1 on a triangular lattice, using (a) rough
front and (b) flat front update rules. We visualize each indi-
vidual on the initial line and its descendents with a distinct
color. (c) DPRM model of range expansion. At horizontal
position x, the height of the front in the y-direction, h(x, t),
is increased by a quantity that depends on the two adjacent
heights, namely max{h(x− t, t− 1) + η, h(x+ 1, t− 1) + η′},
where η, η′ are zero-mean stochastic noise terms that cause
front roughness. The nearest neighbor cell which maximizes
the above relation is chosen to reproduce, and passes on its
allele label (denoted by the color), as represented by white
arrows in the illustration.

illustrate that the accumulated “energy” of the directed
path, characterized by the KPZ equation, can be mapped
to the height of a range expansion front. In this mapping,
the stochastic noise η corresponds to fluctuations in the
lengths of individual microbes in the direction of average
propagation y, about a mean length `. An allele label is
added to each site, as in the stepping stone model. The
height of the front h(x, t) is updated according to

h(x, t) = ` + max{h(x− t, t−1) + η, h(x+ 1, t−1) + η′},
(2)

where η, η′ are zero-mean, independent and identically
distributed random variables. Each site at time t is then
filled by the offspring of one of its nearest neighbours
from time t − 1, and inherits the corresponding allele
label. The choice of competing mother cells is taken to
be the cell that optimizes the relation in Eq. 2.

Thus, while replication time is constant in this model,
front roughness is generated by stochasticity in cell size,
with larger size favored for propagation. While we as-
sume that the mean cell size at time of division for the
microbe in question has already evolved to a fitness max-

FIG. 2: Range expansions generated by the stepping stone
model, using the (a) rough front and (b) flat front update
rules, with periodic boundary conditions in the horizontal di-
rection. The colors represent allele labels, while the black
lines mark the genetic lineages. Time runs upward in both
cases. Note that there are fewer sectors at the top (genetic
coarsening), but fewer lineages at the bottom (lineage coales-
cence). Typical coalescence rates are much larger in (a) than
in (b).

imum, variance in the cell size leads to front roughness
and accelerated loss of genetic diversity (Fig. 3a).

Note that if we fix η to have zero variance, and instead
choose the mother cell at random between the left- and
right-neighbours, we recover a flat front range expansion
with diffusive dynamics associated with lineages and ge-
netic boundaries (Fig. 3b). Also, if we reduce the system
width to a single organism, the front height h(x, t) per-
forms a random walk about the determnistic value `t, the
variance growing linearly in t with slope given by the vari-
ance in η. A dramatic experimental realization of such
a scenario in E. coli was demonstrated by the “mother
machine” of Wang et al. [26]: Bacteria growing and di-
viding in narrow channels, quasi-one-dimensionally, show
a range of cell sizes, with the overall growth rate following
a Gaussian distribution.

In both the rough front stepping stone model and the
DPRM model, lineages and sector boundaries have su-
perdiffusive lateral fluctuations with wandering exponent
ζ = 2/3 [1, 10, 13, 14, 19]. For DPRM models, this
behavior is well-known as the transverse fluctuations of
the minimal-energy directed path. In contrast, for the
flat front stepping stone model and the zero-noise limit
of DPRM, the lateral fluctuations of lineages and sector
boundaries are merely diffusive, ζ = 1/2.

This superdiffusive behavior has stark consequences
for the genetic structure of the population. Comparing
the flat front and rough front realizations for the step-
ping stone model in Fig. 2 and for the DPRM model in
Fig. 3, we see striking differences in both the coalescing
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FIG. 3: Range expansions generated by the DPRM model,
with periodic boundary conditions in the horizontal direction,
as in Fig. 2. The colors represent allele labels, while the black
lines mark the genetic lineages. In contrast to the flat front
case (b), the rough front case (a) with the same number of
generations shows a significantly faster decrease in genetic
diversity, and much larger coalescence rates, similar to Fig. 2.

lineage trees and the decay in the number of surviving
monoclonal sectors. Genetic diversity is lost much more
rapidly in the rough front case, and nearby individuals at
the front are much more likely to have a common ances-
tor in the recent past, reflecting much larger coalescence
rates.

Further details about the numerical implementation of
these two methods are given in the Supporting Informa-
tion.

RESULTS AND DISCUSSION

Coalescence of lineages

Rate of coalescence J(τ |∆x0)

For two lineages separated by ∆x0 at the front,
J(τ |∆x0) is the probability per unit time for them to
coalesce in a common ancestor at reverse time τ . In the
diffusive case, on an infinite line, this is the well-known
coalescence rate for two diffusive random walkers with
diffusion constant D [27]:

Jdiff(τ |∆x0) =
1√

8πD

1

τ

(
∆x2

0

τ

)1/2

exp

[
− 1

8D

(
∆x2

0

τ

)]
.

(3)

Results such as Eq. 3, valid here for flat front models, will
serve as a useful guide to our investigations of more com-
plex coalescent phenomena at rough frontiers. In popu-
lation genetics, systems analogous to our flat front mod-
els also arise in the continuum limit of one-dimensional

Kimura-Weiss stepping stone models [8]. As reviewed in
Ref. [1], many exact results for quantities such as the
heterozygosity correlation function and coalescent times
are available [28–31]. The x-coordinate of stepping stone
models represents the horizontal axis of flat front simu-
lations such as those displayed in Fig. 2b and 3b, while
its time coordinate maps on to the y-axis. Nullmeier and
Hallatschek have used a stepping stone model to study
how coalescent times change in 1-dimensional popula-
tions when one boundary of a habitable domain moves
in a linear fashion due to, say, a changing climate [32].
Results from this later investigation could thus be rein-
terpreted as applicable to a two-dimensional range ex-
pansion in a trapezoidal domain, in the flat front ap-
proximation with diffusive genetic boundaries.

For superdiffusive lineages, however, the full expres-
sion for J(τ |∆x0) is not known. We focus instead on
its asymptotic behaviors using predictions from DPRM
and intuition gained from the diffusive case. For lattice
models like those in Fig. 1, it will be convenient to mea-
sure distances ∆x0 in units of the space-like direction x,
and τ in units of the fundamental step in the time-like
direction, which amounts to scaling out the analog of the
diffusion constant in Eq. 3. We expect on theoretical
grounds that J depends on ∆x0 only through the com-
bination ∆x0/τ

ζ , with exponent ζ = 2/3 as opposed to
ζ = 1/2 in the diffusive case.

First, we consider the regime τ/∆x
3/2
0 � 1, repre-

senting rare coalescence events where lineages located far
apart at the front can be traced back to a recent com-
mon ancestor. For the analogous regime of τ/∆x2

0 � 1
in the diffusive case, the coalescence rate behaves as
Jdiff(τ |∆x0) ∼ exp[−(∆x0/τ

1/2)2]. We hypothesize a
similar decay for the superdiffusive case, as

J(τ |∆x0) ∼ exp

(
−
(

∆x0

τ2/3

)γ′)
= exp

(
−

(
τ

∆x
3/2
0

)γ)
(4)

for some exponent γ = − 2
3γ
′. In Fig. 4, we plot

− ln[∆x
3/2
0 J(τ |∆x0)] vs. τ/∆x

3/2
0 for both the stepping

stone model and DPRM on a log-log scale, so that Eq. 4

predicts a linear plot with slope γ. At small τ/∆x
3/2
0 ,

both sets of data appear linear, confirming the above hy-
pothesized form. The slopes in the linear regime provide
estimates of γ = −1.96±0.03 for DPRM and −1.93±0.02
for the stepping stone model.

In fact, we can analytically derive this exponential
form, including the value of γ, using the known distri-
bution of directed path endpoints in DPRM [39]. The
calculation, given in the Supporting Information, shows
that

J(τ |∆x0) ∼ 1

τ

(
∆x0

τ2/3

)1/2

exp

(
− c

4

(
∆x0

τ2/3

)3
)
, (5)

where c is a constant of order unity. For τ/∆x
3/2
0 �
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FIG. 4: Log-log plot of − ln[∆x
3/2
0 J(τ |∆x0)] vs. the KPZ-

rescaled variable τ/∆x
3/2
0 for lineages in the stepping stone

model and for DPRM. Here, we focus on the regime ∆x0 � L,
to avoid finite size effects associated with periodic boundary

conditions. Asymptotically for τ/∆x
3/2
0 � 1, the relationship

is linear, indicating an exponential form for J(τ |x0). The
fitted slopes are −1.93± 0.02 for stepping stone, and −1.96±
0.03 for DPRM, providing measurements of γ as defined in
Eq. 4. (For comparison, the DPRM theory predicts a slope
of −2.)

1, the leading asymptotic behavior of J(τ |∆x0) ∼
exp(− 1

4c(∆x0/τ
2/3)3) thus corresponds to γ′ = 3, γ =

−2. From the numerical results in Fig. 4, we see from
DPRM that γ ≈ −1.96± 0.03, and from the rough front
stepping stone model we compute γ ≈ −1.93±0.02. Both
numerical results are in good agreement with the analyt-
ically derived prediction.

In the opposite regime of τ/∆x
3/2
0 � 1, we can

again hypothesize a form for J in analogy with the
diffusive case, for which Eq. 3 shows Jdiff(τ |∆x0) ∼
τ−1(∆x0/τ

1/2). For KPZ walkers, the analogous form
is

J(τ |∆x0) ∼ 1

τ

(
∆x0

τ2/3

)α′

=
1

∆x
3/2
0

(
τ

∆x
3/2
0

)α
, (6)

for some exponent α = −(1+ 2
3α
′). Although the expres-

sion in Eq. 5 is consistent with this form, that result is
obtained by assuming the two KPZ walkers to be inde-

pendent (valid at small τ/∆x
3/2
0 ), so there is no reason

to expect the apparent value of α′ = 1/2, α = −4/3 to

hold for τ/∆x
3/2
0 � 1.

The rate of coalescence for the two computational ap-
proaches in this regime is plotted in Fig. 5. The asymp-
totic behavior is consistent with the hypothesized power-
law decay. The exponent α is determined numerically to
be α = −1.64 ± 0.05 for the stepping stone model, and
α = −1.65± 0.01 for DPRM, giving good agreement be-
tween the two models. Furthermore, these values do not
rule out the possibility that α = −5/3, α′ = 1, which
would give the noteworthy conclusion that J(τ |∆x0) is

FIG. 5: Log-log plot of ∆x
3/2
0 J(τ |∆x0) vs. the KPZ-rescaled

variable τ/∆x
3/2
0 for lineages in the stepping stone model and

for DPRM. For τ/∆x
3/2
0 � 1, the exponent of the power-law

decay (Eq. 6) is extracted from a linear fit to the numeri-
cal data, yielding α = −1.64 ± 0.05 for stepping stone, and
α = −1.65 ± 0.01 for DPRM. As in Fig. 4, we work in the
limit ∆x0 � L to avoid effects due to periodic boundary con-
ditions.

linear in the separation ∆x0, just as in the diffusive case.

Expected time to coalescence T2

For a range expansion that has proceeded for a time
tmax after a linear inoculation, if two lineages separated
by ∆x0 share a common ancestor on the initial line, we
can calculate their expected time to coalescence (time
since common ancestry) as

T2(∆x0, tmax) ≡
∫ tmax

0
dτ τJ(τ |∆x0)∫ tmax

0
dτ J(τ |∆x0)

. (7)

Note that the denominator represents normalization by
the probability that the two lineages do indeed coalesce.

In the case of diffusive lineages, Eq. 3 leads to an an-
alytic expression for T2,

T2,diff(∆x0, tmax)

tmax
=

(
∆x2

0

8Dtmax

)
Γ
[
−1/2,∆x2

0/8Dtmax

]
Γ [1/2,∆x2

0/8Dtmax]
,

(8)
where Γ(x, y) is the incomplete gamma function. In
Fig. 6 we compare the numerical T2 data for KPZ walk-
ers in the rough front stepping stone model with the
analytical prediction from the diffusive case under the
same conditions. While for large ∆x0, T2 approaches
tmax, the behavior for small ∆x0 is controlled by the scal-
ing in Eq. 6: an approximately linear scaling leading to
T2 ∼ ∆x0t

1−ζ
max. We see that lineages with the same sep-

aration ∆x0 coalesce much faster on average when they
behave as KPZ walkers, and that this difference becomes
more pronounced for large tmax, as is evident qualita-
tively from Figs. 2 and 3. The scaling of T2 for KPZ
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FIG. 6: Average time T2 since common ancestry for pairs
of individuals with separation ∆x0 � L at the front and
some common ancestor in the past, for a range of system
expansion times tmax. Solid lines represent numerical data for
KPZ walkers in the stepping stone model, and dashed lines
represent analytical predictions for diffusive walkers with the
same parameters. The plateau values are simply tmax.

walkers can be written in a form analogous to Eq. 8, and
reflects the KPZ transverse scalings inherent in the sys-
tem (see Supporting Information).

In biological terms, common ancestry is expected to
be more recent under rough front dynamics than under
diffusive dynamics. As a result, assuming a constant rate
of neutral mutations, the number of differences Π(∆x0)
between pairs of two sampled genomes at the front is
expected to increase more slowly with separation ∆x0

along the front. This anomaly arises because we expect
the habitat to be populated by the offspring of a small
number of common ancestors, which decays as t−2/3 for
KPZ walkers, rather than the t−1/2 decay characterizing
diffusive random walkers, where t is the time since the
initial inoculation.

Environmental Heterogeneities

The presence of environmental heterogeneities in the
habitat can have a significant impact on a range ex-
pansion, including on the front shape and propagation
speed, and on the genetic diversity at the front. A pro-
totypical example of environmental heterogeneity is the
obstacle, a nutrient-depleted zone, that the population
must grow around rather than through. Range expan-
sions around an obstacle were studied experimentally and
via simple geometrical optics ideas by Möbius et al. [23]
(see also [33]). A notable feature of the experimental
(and numerical) results from Ref. [23] is that the sector
boundary which forms at the apex of the obstacle shows
suppressed transverse fluctuations compared to all other
sector boundaries. As the front propagates past the ob-

stacle, a component of its velocity is directed inward from
both sides. This in effect pins the sector boundary to the
middle, at a kink in the front, and suppresses this sector
boundary’s fluctuations.

Here, we study these suppressed fluctuations in greater
detail using the stepping stone model with a rough front.
A gap of width wgap of unoccupied sites is left in the ini-
tially populated line, providing a simplified representa-
tion of a range expansion past an obstacle of such width,
or the result of an environmental trauma (Fig. 7a). By
considering only two “alleles” (colors), we can track the
wandering of the single sector boundary that forms ap-
proximately above the center of the obstacle. As shown
in Fig. 8a, the effective wandering exponent ζ is sup-
pressed from the usual value of 2/3, to ζ ≈ 1/3 for times
vt . wgap, where v is the average front velocity. At later
times, as the kink in the front heals and the average front
normals return to the vertical, ζ recovers the expected
value of 2/3 for KPZ genetic boundaries. Notably, the
effective ζ appears to exceed 2/3 in an intermediate tran-
sitory regime when vt ≈ wgap.

To gain further insight into this changing wander-
ing exponent, we modify the numerical experiment to
a wedge geometry (Fig. 7b). This allows us to fix the
kink angle θ to be a constant value, as opposed to the
gap geometry where the kink heals from some initial θ0

toward π with increasing time. Now, the stepping stone
model with deme size of 1 is, in essence, identical to the
Eden model on a triangular lattice, with the added com-
plication of tracking different genotypes. The boundary
between two Eden clusters meeting at an angle θ has
previously been studied, [34]. The transverse fluctua-
tions scale as tζ , where t is the simulation time, and the
wandering exponent ζ was conjectured to be

ζ(θ) =

 1/3, θ < π,
2/3, θ = π,
1, θ > π.

(9)

The value θ = π corresponds to two Eden clusters grow-
ing side by side with flat initial conditions, in which case
one recovers the KPZ value of ζ = 2/3 as expected.

The regime θ < π is of relevance to range expansions
with obstacles. Heuristically, the sector boundary be-
comes pinned by the two Eden clusters growing into each
other, and the usual KPZ transverse fluctuations are sup-
pressed. Instead, the fluctuations which dominate are
those of the propagating fronts themselves, which scale
with the KPZ growth exponent β = 1/3 rather than the
wandering exponent ζ = 2/3.

The original simulations which led to the estimates in
Eq. 9 sampled only 3 points in the range θ < π, namely
θ = π/3, π/2, and 2π/3 [34]. We expand on this pre-
vious work by fitting to an an effective ζ(θ) for many
more values of θ. The results plotted in Fig. 8b indi-
cate a smooth crossover between ζ = 1/3 and ζ = 2/3
as θ increases from 0 to π. A heuristic explanation for
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(a) (b)

FIG. 7: Geometries of the sector boundary between two alleles
(labeled red and green). The initial inoculations are marked
by dashed lines. (a) Illustration of the gap geometry: A seg-
ment of width wgap is left unpopulated initially, separating
the two alleles which grow from an otherwise flat initial con-
dition. The width wgap could represent, say, the width of a
square obstacle that terminates at time t = 0, or the size of an
interval along the horizontal x-direction where all organisms
are removed by an environmental trauma. (b) Illustration of
the wedge geometry: The initial population occupies two tri-
angular regions whose growth fronts meet at a wedge angle θ.
In both systems, the two alleles meet at a single sector bound-
ary, along which fluctuations are suppressed. The front of the
range expansion is illustrated for a series of equally spaced
time values t, with lighter shades representing later times.

this change in ζ is given in the Supporting Information.
The results from the wedge geometry are qualitatively
consistent with the ζ values measured from the “gap ge-
ometry.” As the range expansion propagates around an
obstacle, the fronts from either side meet at some angle
θ0 < π, which can be predicted by a deterministic model
of constant-speed propagation for wavefronts in the same
geometry, inspired by geometrical optics [23]. The inci-
dent angle increases up to θ = π as the kink in the front
heals. Therefore, for the sector boundary formed after
the obstacle, we expect the wandering exponent to ini-
tially take some value ζ < 2/3, and then slowly recover
to ζ = 2/3. The kink has healed when the fluctuations of
the front (perpendicular to the direction of propagation)
are comparable to the size of the dip.

CONCLUSION AND OUTLOOK

The propagating front of a range expansion is expected
to roughen over time, and in this work we have connected
the population genetics of such range expansions with
new calculations in statistical physics models from the
KPZ universality class. We have shown, through both
DPRM calculations and a stepping stone model with
rough fronts, that the superdiffusive “KPZ walkers” de-
scribing genetic lineages have coalescence statistics whose

FIG. 8: (a) Log-log plot of fluctuations of the sector bound-

ary 〈∆x2〉1/2 vs. vertical distance along the sector boundary
vt in the gap geometry for a range of gap sizes wgap. Fits
to a power law scaling form 〈∆x2〉1/2 ∼ tζ yield exponents
varying from ζ ≈ 1/3 to ζ ≈ 2/3, with a crossover region
in between. Inset: Data collapse after rescaling with respect
to wgap. By geometrical arguments, vt/wgap, where v is the
average front speed, is a measure of the angle of incidence of
the fronts as determined by a constant speed or “geometri-
cal optics” model. We see a reasonably good collapse across
many different gap sizes, with ζ ≈ 1/3 for vt/wgap < 1, and
ζ ≈ 2/3 for vt/wgap > 1. (b) Wandering exponent ζ as a
function of the angle of incidence θ in the wedge geometry.
As θ increases from 0 to π, the wandering exponent increases
smoothly from approximately ζ = 1/3 (marked by the dashed
line) to the KPZ value of ζ = 2/3.

limiting behaviors are qualitatively, but not at all quan-
titatively, similar to those of coalescing diffusive random
walkers. In the limit of large separation or small time
in the past, the coalescence rate for KPZ walkers de-

cays as J ∼ exp[−(τ/∆x
3/2
0 )−2], in contrast to the scal-

ing Jdiff ∼ exp[−(τ/∆x2
0)−1] for the diffusive case in the

same limit.

In the opposite limit of small separation or large
time in the past, we find that J varies algebraically as
τ−1(∆x0/τ

2/3)α
′

with α′ ≈ 1, whereas diffusive ran-
dom walkers coalesce according to the form Jdiff ∼
τ−1(∆x0/τ

1/2).

From these numerically measured coalescence rates, we
have calculated the expected time T2 since common an-
cestry for pairs of individuals as a function of their spatial
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separation, an important quantity in population genet-
ics. The superdiffusive wandering of lineages suppresses
T2 significantly compared to estimates based on diffu-
sive dynamics. Our results go beyond the known scaling
difference between diffusive and KPZ lineages and ge-
netic boundaries, and provide quantitative information
about how front roughness leads to more recent, and
fewer, common ancestors for the “pioneers” comprising
the front.

We have also used the stepping stone model to ex-
plain how environmental heterogeneities can alter this
superdiffusive dynamics, even leading to time regimes
with subdiffusive dynamics. Our results explain the sup-
pressed fluctuations of genetic sector boundaries behind
an obstacle observed in recent experimental work, and
connect them with prior numerical work on Eden model
growth. The effect of obstacles can be viewed as a compe-
tition between the usual roughening of the front, which
favors the KPZ wandering exponent ζ = 2/3, and the
collision of two segments of the front propagating around
either side of the obstacle, which suppresses ζ toward the
value of the front roughness exponent β = 1/3.

Going forward, our calculations of J and T2 for KPZ
walkers in a totally uniform environment will be valu-
able as a standard against which deviations can be mea-
sured, to reveal the effects of various realistic complica-
tions. These complications include end effects from habi-
tat boundaries [9, 32], selectively advantageous or delete-
rious mutations, mutualism or antagonism between sub-
populations [35], geometrical inflationary effects in radial
expansions [18], and more complex heterogeneities in the
environment [23].

On the latter topic, we have made headway here by
studying a simplified representation of an obstacle as a
prototypical environmental heterogeneity, which already
illustrates the subtle issue of locally suppressed fluctu-
ations. It will be interesting to extend this analysis of
Eden model growth to situations with multiple obstacles,
and with other types of heterogeneities such as nutrient
“hotspots” [33] and uneven topography [36]. The dynam-
ics can also be made more sophisticated by increasing the
number of organisms per deme above N = 1, and rein-
troducing aspects of the original stepping stone model’s
migration dynamics between neighboring demes [8].

From the perspective of statistical physics, range ex-
pansions provide not only an experimental testing ground
for the predictions of KPZ scaling, but also an incen-
tive to introduce and explore variants of rough growth.
For example, the coalescing domain boundaries in Fig. 1
qualitatively resemble coarsening of domains in a multi-
component growth process [37], and should be quantita-
tively described by the coupling of directed percolation
(of genetic domains) to the rough interface [38].

Finally, our results have drawn upon connections be-
tween two quite different processes in the KPZ univer-
sality class, the rough front stepping stone model and

DPRM, to obtain quantitative insights about biological
experiments that can be realized in the laboratory. We
hope that this work will inspire future investigations to
seek other useful links between disparate model systems
that shed light on the evolutionary dynamics of rough
front range expansions, a problem with much fertile ter-
ritory.
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FIG. S.1: Schematic of DPRM on a square lattice with on-
site random “energies” η(x, t). As illustrated in Fig. 1c of
the main text, the η(x, t) variables represent fluctuations in
the cell size from generation to generation, and at different
points along the x-axis. The path x(t) propagates on average
in the t-direction, but is allowed to wander in the x-direction
in order to minimize the sum of random energies along the
path.

SUPPORTING INFORMATION

Details of numerical approaches

The stepping stone simulations (see, e.g., Fig. 1a) use
a system width of L = 2000 sites, and are evolved until
the front has advanced a height h = 1000 sites. Results
are taken from ensembles of 5000 realizations. Periodic
boundary conditions are used in the direction transverse
to the mean front propagation. However, in the gap and
wedge geometry simulations, hard-wall boundary condi-
tions are used, so that there is only one genetic sector
boundary (instead of two), where the red sector meets
the green sector.

We simulate the DPRM (directed polymers in random
media) problem on a square lattice rotated at 45◦ to the
x, t axes (see Fig. S.1), and optimize over paths from
the origin to any site (x, t) using the transfer matrix
method [19]. The simulated system has width along the
x-direction L = 216, is evolved over tmax = 104 time
steps, and is averaged over 210 realizations. We use pe-
riodic boundary conditions in the x-direction transverse
to the front propagation.

In order to avoid finite size effects, we keep the system
width L at least twice as large as the maximum time
tmax, so that no lineage or sector boundary can wind
completely across the system.

Analytical derivation of the coalescence rate for
DPRM

Here we derive the form of the lineage coalescence rate
in rough front range expansions/DPRM, Eq. 5, using the
DPRM endpoint distribution obtained in Ref. [39].

Consider two directed paths x1(τ) and x2(τ) starting
from x1(0) = 0 and x2(0) = ∆x0 > 0 at τ = 0. At a later

time τ , for τ/∆x
3/2
0 � 1, the spatial fluctuations for each

path are small compared to their initial separation ∆x0,
and we can consider the two paths to be independent.
More specifically, setting x̃ = x/τ2/3, we can take the

rescaled x̃1 and x̃2 to be i.i.d. random variables drawn
from the asymptotic DPRM endpoint distribution fend

obtained in [39]. The probability distribution f21 for the
random variable x̃ = x̃2 − x̃1 is then obtained from the
convolution of the individual endpoint distributions, as

f21(x̃) =

∫ ∞
−∞

fend(ỹ)fend(ỹ − (∆x̃0 − x̃)) dỹ. (S.1)

For ∆x̃0 � 1, we are interested in the tails of the
fend distribution, which are known to decay as fend(z) ∼
exp(−cz3) with c a system-specific constant [39]. This
allows us to estimate the integral in Eq. S.1 using the
saddle point method. The maximum of the exponent
g(ỹ) = c|ỹ|3+c|ỹ−(∆x̃0−x̃)|3 occurs at ỹ∗ = (∆x̃0−x̃)/2,
yielding

f21(x̃) ∼ exp(−g(ỹ∗))√
g′′(ỹ∗)

∼ 1√
x̃0 − x̃

exp
(
− c

4
(∆x̃0 − x̃)3

)
.

The coalescence events are represented by x̃ < 0, re-
sulting in the cumulative coalescence probability

C(∆x̃0) =

∫ 0

−∞
f21(x̃)dx̃ ∼ Γ

(
1

6
,
c∆x̃3

0

4

)
.

where Γ(x, y) is the incomplete gamma function. After
properly normalizing and differentiating with respect to
τ , we obtain the rate of coalescence displayed in Eq. 5,

J(τ |∆x0) ∼ 1

τ

(
∆x

3/2
0

τ

)1/3

exp

(
−c∆x

3
0

4τ2

)
.

Scaling of expected time to coalesce T2

Analogous to the diffusive case given by Eq. 8, the
expected time to coalesce T2 for KPZ walkers can be
written in the form

T2,KPZ(∆x0, tmax)

tmax
∝ f

(
∆x

3/2
0

tmax

)
, (S.2)

where f is some scaling function which depends only on

the combination ∆x
3/2
0 /t, thus reflecting the KPZ wan-

dering. To make this scaling relation evident, we plot a
high quality collapse of the data from Fig. 6 in Fig. S.2.

Boundary fluctuations in the wedge geometry
Here we present a heuristic justification of the smooth

increase in the wandering exponent ζ from 1/3 to 2/3 in
the wedge geometry, as the wedge angle θ is increased
from 0 to π.

Consider a wedge of opening angle θ, with two dis-
tinct genotypes inoculated at its edges. In the case of
flat front growth with velocity u, the advancing fronts
meet at a tip which zips away from the initial apex as
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FIG. S.2: Expected time to coalesce T2 for KPZ lineages with
initial separation ∆x0, collapsed with respect to the trans-

verse scaling ∆x0 ∼ t2/3max. The lineages are taken from rough
front stepping stone simulations of size tmax = 100 to 1000.

FIG. S.3: Illustration of fluctuations in the wedge geometry
with opening angle θ. The red (left) and green (right) sectors
meet at a sector boundary whose advancing tip, the intersec-
tion of the two dashed black lines, is pushed away from x = 0
by fluctuations in the front propagation heights hL, hR, which
grow as t1/3. The fainter blue dotted lines illustrate the zero-
noise case (flat front). Coordinates sL and sR are defined to
be orthogonal to hL and hR, respectively.

y(t) = ut/ sin(θ/2). With rough front growth the sec-
tor boundary is no longer straight but meanders as the
intersection of the advancing fronts is no longer deter-
ministic. At a time t, fluctuations of the front position
are governed by KPZ scaling, growing as t1/3. While on
average the time for the tip to move a distance y be-
haves as y sin(θ/2)/u, the fluctuations in this time scale
as [y sin(θ/2)/u]1/3.

The geometry is sketched in Fig. S.3. Height fluctu-
ations δhL, δhR push the advancing tip of the sector
boundary – the intersection of the black dashed lines lines
– away from x = 0, which is the zero-noise result illus-
trated by the intersection of the fainter blue dotted lines.
From Fig. S.3, we can solve for the intersection point
(x(t), y(t)) representing the advancing tip:

x(t) = −sL sin(θ/2) + hL cos(θ/2) = sR sin(θ/2)− hR cos(θ/2)

y(t) = sL cos(θ/2) + hL sin(θ/2) = sR cos(θ/2) + hR sin(θ/2)

The height fluctuations δhL, δhR can thus be expressed
in terms of the resulting displacements δx, δy of the tip,
as

δhL = δx cos(θ/2) + δy sin(θ/2),

δhR = −δx cos(θ/2) + δy sin(θ/2),

from which we obtain

δx =
δhL − δhR
2 cos(θ/2)

.

Both δhL and δhR scale as ut1/3, which at a given y value
is u[y sin(θ/2)/u]1/3. Therefore, the fluctuations in x(t)
for a given y-value of the tip vary as

δx ∝ u

cos(θ/2)

(
y sin(θ/2)

u

)1/3

.

While the meandering exponent remains as ζ = 1/3,
the overall amplitude increases with θ, diverging as the
wedge opens up to a single flat edge for θ → π. In that
limit, the transverse fluctuations δx scale as t2/3.
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