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Arguments based on symmetry and thermodynamics may suggest the existence of a ratchetlike lateral
Casimir force between two plates at different temperatures and with broken inversion symmetry. We find
that this is not sufficient, and at least one plate must be made of nonreciprocal material. This setup operates
as a heat engine by transforming heat radiation into mechanical force. Although the ratio of the lateral force
to heat transfer in the near field regime diverges inversely with the plates separation, d, an Onsager
symmetry, which we extend to nonreciprocal plates, limits the engine efficiency to the Carnot value ηc. The
optimal velocity of operation in the far field is of the order of cηc, where c is the speed of light. In the near
field regime, this velocity can be reduced to the order of ω̄dηc, where ω̄ is a typical material frequency.
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Fluctuations of electromagnetic fields lead to a variety of
phenomena, from Planck’s law of thermal radiation [1], to
the fluctuation-induced normal forces predicted by Casimir
in 1948 [2] and later generalized by Lifshitz [3]. In 1971,
Polder and van Hove discussed near field effects in
radiative heat transfer between closely spaced objects
[4], demonstrating a dramatic increase from the far field.
These effects where observed experimentally for normal
forces at the end of the last century [5,6], and roughly ten
years later for radiative heat transfer [7–9]. A variety of
related effects arise for Casimir forces in systems out of
equilibrium [10–17], such as torques [18,19] and propul-
sion forces [20], in both near and far field regimes.
Lateral Casimir forces, which can propel plates with

respect to each other, were also predicted between
corrugated plates in equilibrium [21,22], and observed
experimentally [23,24]. However, in these and several
other equilibrium and nonequilibrium settings [20,25–
27], either the shape or rotation of an object establishes
the direction of the propulsive force. In contrast, we
consider here a translationally invariant object, and dem-
onstrate that a lateral (potentially propulsive) force can arise
by taking advantage of radiative heat transfer involving
nonreciprocal materials. Nonreciprocal media have indeed
been shown to give rise to a variety of other interesting
phenomena [28–31].
In this Letter, we demonstrate that nonequilibrium

propulsive forces can be used to build a heat engine
without any contact between its parts and whose optimal
operation strongly depends on the type of radiation driving
its heat transfer. In the far field limit, the on-shell photon
energy-momentum relation bounds the ratio of propulsive
force to heat transfer, requiring operational velocities of the

order of the speed of light, limiting the usefulness of such
an engine. In the near field, the on-shell relation does not
hold, allowing the engine to operate at efficiencies close to
the Carnot bound at much lower velocities.
Consider the setup depicted in Fig. 1, with two objects

held at different temperatures, characterized by reciprocal
or nonreciprocal dielectric properties encoded in their
scattering operators T i, where i ¼ 1, 2. We are interested
in propulsive or motive forces (MF) acting on object 2 in
the y direction, along which it is translationally invariant.
Such forces that may be used to drive an engine are ruled
out for systems at thermal equilibrium, because we can then
define a Casimir free energy, which does not change under
a displacement of object 2 in the y direction.
For simplicity, let the temperatures of object 2 and of the

environment be zero (this restriction will be relaxed below).

FIG. 1. Two objects placed in vacuum. Object 1 is held at
temperature T1, while object 2 and the environment are held at
zero temperature, for simplicity. Object 2 is translationally
invariant in direction y, and we consider the force acting on it
in that direction.
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The y component of the force acting on object 2, Fy, can be
derived using the techniques of Ref. [15], adapted to
nonreciprocal media (see Supplemental Material [32]),
and since T 2 is not a function of y, we find

Fy¼
−2ℏ
π

Z
∞

0

dω
1

eðℏω=kBT1Þ−1
Trfi∂yR2WR1W†g: ð1Þ

Here we have introduced the radiation operators
R1 ¼ G0f½ðT1 − T †

1Þ=2i� − T 1Im½G0�T†
1gG�

0, R2 ¼ G�
0

f½ðT 2 − T†
2Þ=2i� − T †

2Im½G0�T2gG0 and the multiple scat-
tering operator W ¼ G−1

0 ð1 − G0T1G0T 2Þ−1, where G0 is
the free Green’s function. The trace in Eq. (1) is understood
to be taken over spatial coordinates as well as the indices
of the 3 × 3 matrix [15]. Because of the translational
invariance of object 2, R2ðy; y0Þ ¼ R2ðy − y0Þ ¼R ðdky=2πÞR̃2ðkyÞeikyðy−y0Þ ¼

R ðdky=2πÞR̂2 can be decom-
posed in Fourier modes, and the force is written

Fy¼
2ℏ
π

Z
∞

0

dω
1

eðℏω=kBT1Þ−1

Z
dky
2π

kySðkyÞ: ð2Þ

Importantly, SðkyÞ ¼ TrfR̂2WR1W†g is the heat flux
density per wave vector ky, and indeed the energy H
absorbed by object 2 per unit time is given by

H ¼ 2ℏ
π

Z
∞

0

dω
ω

eℏω=kBT1 − 1

Z
dky
2π

SðkyÞ: ð3Þ

The objects are made of materials described by dielectric
permittivity and magnetic permeability tensors ϵ and μ,
expressed in the potential V ¼ ðω2=c2Þðϵ − IÞ þ ∇×
ðI − 1=μÞ∇× [15]. For passive materials, ðV − V†Þ=i ≥ 0,
which are local, V2 ∼ δðy − y0Þ, one can prove that R̂2 is
positive semidefinite for any ky (see Supplemental Material
[32]), and

SðkyÞ ≥ 0: ð4Þ

Equation (4) implies that the heat flux is non-negative for
any ky (note that beyond passivity we have made no
assumptions regarding the shape or properties of object
1). It also tells us that the force in Eq. (2) is due to absorbed
photons, which contribute the y component of their
momentum to the force. This property of MF, displayed
in Eq. (2), tightly links MF and radiative energy transfer.
This link, which is not present for other Casimir forces, has
physical consequences: It leads, via Eq. (3), to a bound on
the force from heat transfer, and also places restrictions on
MF derived from thermodynamics, as discussed below.
In practice, the integral in Eq. (2) is often cut off

by a maximal value kmax
y (see below). With it, the spectral

densities for Fy and H, Fy ≡
R
∞
0 dωfðωÞ and H≡R∞

0 dωhðωÞ, obey

jfðωÞjc ≤ hðωÞ c
ω
kmax
y : ð5Þ

For on-shell modes, which are dominant in the far field,
kmax
y ¼ ω=c, so

jfðωÞjc ≤ hðωÞ; ð6Þ

illustrating that MF are bounded by the photon energy-
momentum relation in this limit.
To find a bound in the near field, we consider two

parallel, semi-infinite plates normal to z, separated by a
distance d, as shown in Fig. 2. The force Fy in Eq. (2) can
easily be extended to include nonzero T2,

Fy ¼
2ℏ
π

Z
∞

0

dωðn1 − n2Þ
Z

dky
2π

kySðkyÞ; ð7Þ

with ni ¼ ðeðℏω=kBTiÞ − 1Þ−1. Here, SðkyÞ is the heat flux
between the two plates of surface area A, given by [36]

SðkyÞ
A

¼
Z

dkx
8π

fTrp½ð1 − r †2r 2ÞDð1 − r 1r
†
1ÞD†�Θpr

þe−2jkzjdTrp½ðr †2 − r 2ÞDðr 1 − r †1ÞD†�Θevg; ð8Þ

where D ¼ ð1 − r 1r 2e2ikzdÞ−1 and r i is the Fresnel reflec-
tion tensor of plate i: a 2 × 2 matrix in the space of
polarizations [9] with the trace taken in that space. We have
introduced projectors Θpr and Θev for propagating and
evanescent modes, respectively. Equation (8) holds for
reciprocal or nonreciprocal plates, and in general r i has off-
diagonal elements that couple the polarizations.
The constraints for motion in asymmetric ratchet systems

out of equilibrium has been a subject of intense research in
recent years [37–43]. (The Feynman ratchet does not rotate
in equilibrium, but does when heated [44].) We may thus
expect that if the plates in Fig. 2 are not symmetric under
y → −y, e.g., for a tensorial dielectric response with tilted
axes, a nonequilibrium heat flux will be generically
accompanied by a ratchetlike MF. Surprisingly, this is
not the case for asymmetric, but reciprocal plates: As
shown in Ref. [45] by explicit manipulations of Eq. (8),
SðkyÞ is symmetric in ky if the two plates are made of

FIG. 2. Two parallel plates at a distance d, at different temper-
atures. At close proximity, these may mimic, e.g., inner and outer
parts of an engine axis (left). We consider the case where the
lower plate is nonreciprocal, which may, e.g., be due to a
magnetic field pointing in the direction as indicated in the figure.
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reciprocal materials. We extended this unexpected obser-
vation to arbitrary objects that are translationally invariant
in direction y (see Supplemental Material [32]), and
conclude that nonreciprocity is necessary for near field
MF. Furthermore, translational symmetry is an important
element: If object 1 is not translationally invariant, Eq. (2)
can yield a finite result for reciprocal media, as was found
for an ellipsoid near a planar surface [20].
Assuming that at least one of the plates is nonreciprocal,

we investigate the distance dependence of the force. For
small separations, the integral over kx and ky in Eq. (7) is
dominated by the evanescent sector for large values of

k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
∼ 1=d. We can thus expand the reflection

tensors for large k⊥. In particular, we consider a dielectric
tensor of the form

ϵ ¼

0
B@

ϵp 0 0

0 ϵd −iϵf
0 iϵf ϵd

1
CA; ð9Þ

which is realized in magneto-optical materials with a dc
magnetic field pointing along the x direction [46]. For
k2⊥ ≫ ðω2=c2Þjεijj, the reflection tensor becomes diagonal,
and is dominated by the entry for electric polarization, rNN .
Denoting, in this limit, rNN ≡ r∞, we find (using
ky ¼ k⊥ sin θ) (see Supplemental Material [32])

r∞ ¼ ðϵd − 1Þ þ sin θϵf
ðϵd þ 1Þ þ sin θϵf

: ð10Þ

By making k⊥ dimensionless, k̃⊥ ¼ k⊥d, in the limit where
d is small compared to all other length scales, such as the
thermal wavelength, and the material skin depth, we obtain

Fy

A
¼ 2ℏ

πd3

Z
∞

0

dωðn1 − n2Þ
Z

d2k̃⊥
ð2πÞ2 k̃y

e−2jk̃⊥jIm½r∞2 �Im½r∞1 �
j1 − r∞1 r

∞
2 e

−2jk̃⊥jj2 : ð11Þ

The force in Eq. (11) is of similar form as normal forces of
thermal origin [10], and we expect it to be of experimental
relevance, depending on materials used (see Supplemental
Material [32]); it diverges as d−3 for small separations d.
The well-known fact that heat transfer H diverges as d−2 in
the same limit, which can easily be confirmed here by using
the same rescaling with Eq. (10), implies that the ratio
between force and heat transfer is proportional to d−1. To
quantify this, we compute fðω; θÞ and hðω; θÞ, the force
and heat transfer per frequency and per angle θ in the kxky
plane. The integral over jk⊥j can then be performed to yield

fðω; θÞc ¼ hðω; θÞ c
ωd

sin θg½r∞1 ðθÞr∞2 ðθÞ�; ð12Þ

where gðxÞ is a well-behaved positive function, which
approaches unity for jxj → 0, which corresponds to dilute
materials [47].
Equation (12) may also be understood from Eq. (5): The

integral of k̃y is limited by the exponential terms, imply-
ing k̃max

y ≈ 1.
Using the mediant inequality yields, after integration

over θ, a bound valid for small distance d: in terms of the
maximum of j sin θjg as a function of θ,

jfðωÞjc
hðωÞmaxðj sin θjgÞ ≤

c
ωd

: ð13Þ

Equation (13) is a notable extension of Eq. (6). In the near
field, the force is also bounded by the heat transfer, but the
bound diverges as d → 0, since there is no longer
any energy–momentum relation constraining evanescent
waves.
As a particular example, we consider that plate 1 is

composed of the reciprocal material SiC (with dielectric
properties taken from Ref. [48]), and plate 2 made of n-
doped InSb under the influence of a magnetic field along
the x axis. The entries of ϵ in Eq. (9) are given by [28]
ϵd¼1−f½ω2

pð1þiωτ=ωÞ�=½ðωþiωτÞ2−ω2
b�g, ϵp ¼ 1 − ω2

p=
ωðωþ iωτÞ, and ϵf ¼ −f½ωbω

2
p�=½ωððωþ iωτÞ2 − ω2

bÞ�g.
Here, ωp is the plasma frequency and ωτ describes

relaxation effects in InSb; the nonreciprocity (ϵf ≠ 0) due
to the magnetic field is encoded via the cyclotron fre-
quency ωb.
Using material parameters tabulated in the Supplemental

Material [32], Fig. 3 depicts Fyc andH plotted as functions
of separation d. As required by Eq. (5), the magnitude of
Fyc is smaller than H in the far field. For distances below
∼100 nm, a steeper divergence of Fy is observed, so that
the two quantities cross at roughly 30 nm. For smaller
separations, the on-shell energy–momentum relation of
photons is noticeably broken. This crossing point depends
on the nonreciprocal properties of the materials, which in
turn depend on the strength of the magnetic field[49]. The
inset of Fig. 3 shows the left-hand side of Eq. (13) for the
given materials as a function of frequency. It confirms the
inequality of Eq. (13), and that it presents a realistic bound,
with some points reaching close to the bound.
Acting as a heat engine in a setup such as in Fig. 2, the

force Fy can be used to extract work from the heat H by
moving the plate at a velocity v along the y direction. The
extracted power is given by P ¼ FyvþOðv2Þ, yielding to
leading order in v, the efficiency

η ¼ Fy

H
vþOðv2Þ: ð14Þ

Prima facie, this expression suggests a Carnot efficiency,
ηc ¼ ΔT=T1 where T1−T2¼ΔT >0, at vc ¼ ðH=FyÞηc,
and exceeding it for larger velocities. However, as shown
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below, for v ∼ vc one cannot neglect Oðv2Þ terms.
Nonetheless, the first-order analysis provides an estimate
of the scale at which efficiency is maximal. In the far field,
Eq. (6) implies that vc is larger than ηcc, while in the near
field, Eq. (13) shows that it can be much smaller, going to
zero linearly with d.
When running at velocities v ∼ vc, both force and heat

exchange become functions of velocity, so that higher order
terms in Eq. (14) arise. While computing them poses no
problem in principle, we restrict our discussion here to the
limit of small ΔT ≪ T1, where Onsager symmetry rela-
tions allow for some insights. While these relations rely on
time-reversal symmetry in general, we find them to also be
valid for nonreciprocal plates, leading to a modification of
heat transfer between the plates, as

H ¼ H þ T1

ΔT
FyvþOðv2Þ ¼ H

�
1þ v

vc
þOðv2Þ

�
:

ð15Þ

The Onsager’s relation leading to Eq. (15) ensures that η
remains below the Carnot limit. Interestingly, Eq. (15)
indicates that the given setup can also act as a refrigerator
[50]: A backward velocity of order −vc can remove heat
from the cold plate.
There is also an OðvÞ reduction to MF from friction due

to fluctuations of the electromagnetic field, reducing the
engine power to P ¼ v½Fy − ΓvþOðv2Þ�, where we have
introduced the friction coefficient Γ, relating force and
velocity at ΔT ¼ 0. It is given by a generalization of the
result for reciprocal media [51,52] as

Γ
A
¼ −

2ℏ
π

Z
∞

0

dω
∂n1
∂ω

Z
dky
2π

k2ySðkyÞ ≥ 0; ð16Þ

with SðkyÞ given in Eq. (8), so that Γ ≥ 0. Expanding
Eq. (16) for small d as in Eq. (11), and using Eq. (10), leads
to a 1=d4 divergence. Comparing Γv to Fy, one may thus
expect the velocity scale vc to reappear.
As a simple illustration, let us consider two dilute

materials with r∞1 , r
∞
2 → 0, and assume that the response

of the nonreciprocal medium is focused at a single
frequency ω̄, such that [53]

Im½r∞2 �ðωÞ ¼ rnð1þ α sin θ þ � � �Þω̄ δ̃ðω − ω̄Þ: ð17Þ

The parameter α is a dimensionless measure of influence of
nonreciprocity on the reflection coefficient, and rn a
unitless prefactor; the requirement that the material be
passive implies Im½r∞2 � ≥ 0, and hence jαj ≤ 1 in absence
of higher-order terms. This form yields

Fy

A
¼ C

αηcℏω̄
d3

;
H
A
¼ 2C

ηcℏω̄2

d2
;

Γ
A
¼ 3

2
C

ℏ
d4

;

ð18Þ

where C ¼ −ðω̄=8π2Þð∂n1=∂ω̄ÞrnIm½r∞1 �. This leads to a
velocity scale vc ¼ ηcð2ω̄d=αÞ, and an efficiency

η ¼ ηc
v
vc

1 − 3v=ðα2vcÞ þ � � �
1þ v=vc þ � � � : ð19Þ

We expect higher-order terms in Eq. (15) to become
important for v ∼ ω̄d. However, the velocity scale vc carries
an additional factor of ηc, which allows us to ignore higher
order terms for ΔT ≪ T1. Equation (19) then gives that
velocity at maximum power as vMP ¼ α2vc=6 ¼ αηcω̄d=3,
at which point the efficiency is ηMP ¼ ηc½α2=2ð6þ α2Þ�.
In summary, we have shown that for the case of two

smooth plates at different temperatures, nonequilibrium
fluctuations will cause a motive force if at least one of the
plates is made of a nonreciprocal material. Although for
large plate separation the on-shell energy-momentum
photon relation limits the ratio between motive force and
heat transfer, at small separations, the heat transfer and
propulsion force are dominated by evanescent modes,
allowing this ratio to grow inversely with the distance
between the two plates. The velocity scale corresponding to
maximal efficiency and power is thus linear in that distance.
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FIG. 3. Scaled motive force Fyc (red diamonds), and heat
transfer H (gray circles) for a SiC plate and one of n-InSb subject
to a magnetic field along the x axis. The dots correspond to
numeric calculations and the continuous lines to the small d
asymptotes from Eq. (11) and its equivalent for H. Note that the
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at large separation. Inset: left-hand side of Eq. (13) in
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