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Near field radiative heat transfer and vacuum friction are just two instances of topics of technological
and fundamental interest studied via the formalism of fluctuational electrodynamics. From the perspective of
experiment and simulations, it is hard to precisely control and probe such nonequilibrium situations. Fluctuations
in equilibrium are easier to measure, and typically can be related to nonequilibrium response functions by
Green-Kubo relations. We consider a collection of arbitrary objects in vacuum, perturbed by changing the
temperature or velocity of one object. Developing a method for computation of higher order correlation functions
in fluctuational electrodynamics, we explicitly compare linear response and equilibrium fluctuations. We obtain a
Green-Kubo relation for the radiative heat transfer, as well as a closed formula for the vacuum friction in arbitrary
geometries in the framework of scattering theory. We comment on the signature of the radiative heat conductivity
in equilibrium fluctuations.
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I. INTRODUCTION

The theoretical analysis, simulation, or experimental mea-
surement of out of equilibrium quantities is important and
challenging. The inability to employ fundamental concepts of
equilibrium statistical physics, such as free energy or entropy,
can make theoretical analysis laborious. Experimentally, it
can be tedious to maintain the system in a well controlled
nonequilibrium state. Equilibrium quantities are often easier
to access. For example, the mean square displacement of
a Brownian particle in equilibrium is well amenable to
measurements, whereas the direct evaluation of the Brownian
particle’s mobility is generally more difficult.1 The two
quantities are linked by the well known Einstein linear
response relation. More generally, linear response relations
are helpful in understanding and quantifying nonequilibrium
properties in terms of equilibrium fluctuations. The Green-
Kubo (GK) relation2,3 allows us to obtain, e.g., thermal4

and electric5 transport coefficients or the sheer viscosity,6 by
connecting the linear transport coefficients to time integrals
of equilibrium correlation functions of the fluxes associated
with conserved densities, and has found applications in the
context of molecular dynamics simulations. For example,
the heat conduction coefficient κ can be expressed in terms
of the heat flux7 as

κ = lim
t ′→∞

lim
V →∞

1

kBT 2V

∫ t ′

0
dt〈J (t)J (0)〉eq, (1)

where V and T are the volume and temperature of the system,
respectively, and J (t) is the total heat flux in the direction of
the temperature gradient. We denote averages in equilibrium
by 〈· · · 〉eq, while nonequilibrium averages are indicated as
〈· · · 〉. Note that 〈J (t)〉eq = 0.

Another example that has proven useful in simulation
analysis8 is the so-called Kirkwood formula, expressing the
friction γ of a particle9–11 (quoting the result in one dimension)
as

γ = 1

kBT

∫ ∞

0
dt〈δF (t)δF (0)〉eq, (2)

where δF (t) = F (t) − 〈F (t)〉eq is the fluctuating part of the
instantaneous total force F (t) acting on the particle (this
notation is used for all observables in the following).

In this paper we study linear response relations for the
quantum thermal fluctuations of the electromagnetic field,
which are related to radiative heat transfer H 12 and the Casimir
force F.13 By explicitly computing correlation functions of
these quantities for a collection of arbitrary objects in vacuum,
we identify them with previously found nonequilibrium
expressions for radiative heat transfer and nonequilibrium
Casimir force in Sec. II, thereby obtaining a GK matrix
for the heat conductivities. The nonequilibrium force is in
turn related to the equilibrium correlation of F and H . We
also explicitly confirm the validity of the Kirkwood relation
in Sec. III A, thereby providing a closed form expression
for the vacuum friction for a collection of arbitrary objects.
We finally give a relation for the change in heat absorption
upon changes in velocities, explicitly confirming the Onsager
theorem. We close with a discussion of experimental relevance
and summary of our findings in Sec. IV.

While Eq. (2) is an example of the fluctuation dissipation
theorem14 (position and force are conjugate variables in the
Hamiltonian), Eq. (1) is obtained from taking the limit of
small spacial variation of thermodynamic driving forces (e.g.,
temperatures gradients).7 The case of radiative heat transfer is
hence different as we consider disjoint objects. Our methods
allow for an explicit computation of the analog of Eq. (1),
which is a useful check of linear response and provides
additional insight into radiative transfer.

II. PERTURBING TEMPERATURE

A. Radiative heat transfer

Consider an arrangement of N arbitrary objects such that
n of them are held at one set of conditions (temperature T1

and velocity v1), while the remaining N − n objects are at
slightly different conditions (T2, v2 = 0). In the following
we will denote the two groups by {α,β} = 1,2, keeping in
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FIG. 1. (Color online) The system under consideration consists
of two (possibly multicomponent) entities (blue and green). In
equilibrium with T1 = T2 = Tenv, the average heat absorbed by
object 1 (illustrated by the blue arrows) is zero, and the net force
on it is the equilibrium Casimir force. If T1 or T2 slightly deviate
from equilibrium, the finite heat absorption and the nonequilibrium
Casimir force are given by Eqs. (10) and (11), respectively.

mind that each entity can be made up of disconnected pieces.
This collection is immersed in a vacuum at temperature Tenv.
Starting from the equilibrium situation with T = {Tα} = Tenv

and v1 = v2 = 0, we first introduce a small perturbation in
the temperature of one of the objects (see Fig. 1), aiming
to connect the corresponding linear heat transfer coefficient
to the fluctuations of the heat flux in equilibrium, in analogy
to Eq. (1). While the former has been derived in Ref. 15, the
latter will be found below.

The total radiation energy H (β) absorbed by object(s) β can
be written as an integral over the volume(s) Vβ of the local
work which is the product of the electric field E and current
J16 at point r and time t , leading to

H (β)(t) =
∫

r∈Vβ

d3r{Ei(r,t),Ji(r,t)}S. (3)

This expression can be recast as the surface integral of the
Poynting vector through the Poynting theorem.15,16We use
the Einstein summation convention throughout, which implies
summation over the vector index i in Eq. (3), and {A,B}S ≡
(AB + BA)/2 is the symmetrized product of the generally
noncommuting quantum operators. Note that 〈H (β)(t)〉eq = 0.

The correlations between fluctuations of H (α)(t)
in equilibrium can be formally written [note that∫ ∞

0 dt〈{A(t),B(0)}S〉eq = ∫ ∞
0 dt〈A(t)B(0)〉eq, making sym-

metrization needless on the left-hand side] as∫ ∞

0
dt〈H (α)(t)H (β)(0)〉eq

=
∫ ∞

0
dt

∫∫
r∈Vα

r′∈Vβ

d3rd3r′〈{Ei(r,t),Ji(r,t)}S

×{Ej (r′,0),Jj (r′,0)}S〉eq. (4)

The spacial integrals are restricted to the corresponding
volumes according to Eq. (3). Equation (4) contains a four-
point correlation function of the electric field [noting the

linear relation between E and J in Eq. (9) below]. Given
the Gaussian distribution of the electric field, Eq. (4) can
be rewritten in terms of time-ordered two-point correlation
functions via Wick’s theorem,∫ ∞

0
dt〈H (α)(t)H (β)(0)〉eq

=
∫ ∞

0
dt

∫∫
r∈Vα

r′∈Vβ

d3rd3r′

× [〈Ei(r,t)Ej (r′,0)〉eq〈Ji(r,t)Jj (r′,0)〉eq

+〈Ei(r,t)Jj (r′,0)〉eq〈Ji(r,t)Ej (r′,0)〉eq], (5)

where the term
∫ ∞

0 dt〈H (α)(t)〉eq〈H (β)(0)〉eq vanishes.
After Fourier transforming in time and using the definition
〈Ei(r,t)Ej (r′,0)〉eq = ∫

dω
2π

e−iωt 〈Ei(r)E∗
j (r′)〉eq

ω , the first inte-
grand in Eq. (5) reads (the other one is treated analogously)

∫ ∞

0
dt〈Ei(r,t)Ej (r′,0)〉eq〈Ji(r,t)Jj (r′,0)〉eq

=
∫ ∞

0

dω

2π
〈Ei(r)E∗

j (r′)〉eq
ω 〈Ji(r)J ∗

j (r′)〉eq
−ω. (6)

The equilibrium spectral density 〈Ei(r)E∗
j (r′)〉eq

ω of the electric
field is well known and can be expressed via the dyadic
retarded Green’s function Gij of the system (a form of the
fluctuation-dissipation theorem7,10,17)

〈Ei(r)E∗
j (r′)〉eq

ω = 8πh̄

1 − e−h̄ω/kBT

ω2

c2
ImGij(r,r′; ω). (7)

This Green’s function is straightforwardly found for a two
component system15 [where we employ operator notation
G =̂ Gij (r,r′)] as

G = (1 + G0T2)
1

1 − G0T1G0T2
(1 + G0T1)G0. (8)

Here Tα = Tα,ij (r,r′) is the T operator of α, relating the
scattered wave to an incoming wave of unit amplitude;18 G0

is the Green’s function of free space, i.e., the solution of the
free space Helmholtz’s equation, which relates the total field
and the total current, as used in Eq. (3), by

Ei(ω) = 4πi
ω

c2
G0,ij Jj (ω). (9)

For a single object with operator T, the Green’s function
reduces accordingly to G = (1 + G0T)G0.18

After some computation steps, we find a closed form for
the correlation function in Eq. (4) in terms of G0 and the T
operators of the entities, see Eq. (A1). One important step is
that the integrals in Eq. (4) can eventually be taken over all
space [due to the fact that Tα = Tα(r,r′) is only nonzero if
both arguments are within Vα

15,18], such that together with
the summation over vector index i, an operator trace arises. A
comparison to the previously computed radiative heat transfer
〈H (β)〉15 [see also Eq. (B1)], denoting the energy absorbed by
object β in the nonequilibrium situation with T1, T2, and Tenv
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unequal, explicitly shows the following equality:

k(β)
α ≡ − d〈H (β)〉

dTα

∣∣∣∣
{Tα}=Tenv=T

= 1

kBT 2

∫ ∞

0
dt〈H (α)(t)H (β)(0)〉eq. (10)

Here we define the linear radiative heat transport coefficient
k(β)
α as a measure of the change in the heat absorption 〈H (β)〉

by object β in response to a small change in temperature of
α. It is interesting to note that for α 
= β, Eq. (10) implies
a nonlocal correlation between fluctuations in the different
objects, in contrast to the purely local character of Eq. (1).

As a side note, Eq. (10) directly shows the positivity of the
linear transport coefficient k(α)

α , as equilibrium autocorrelation
functions have non-negative Fourier transforms.19 On the other
hand, Eq. (10) for α 
= β does not allow us to make a statement
about the sign of −k(β)

α , which however is non-negative as
well.15,20

B. Casimir force

Now consider the change in the force F(β)13,15,18,21,22 when
all objects are at rest, but with one temperature perturbed to
nonequilibrium, as in Fig. 1. We find that variations in force
are related to the equilibrium correlation function of heat flux
and force [compare to Eqs. (A2) and (B4)] by

d〈F(β)〉
dTα

∣∣∣∣
{Tα}=Tenv=T

= − 1

kBT 2

∫ ∞

0
dt〈F(β)(t)H (α)(0)〉eq.

(11)

This relation is found by steps analogous to the ones above
Eq. (10), starting from the Lorentz force acting on β, given by
the volume integral

F
(β)
i (t) = 1

c

∫
r∈Vβ

d3rεijk{Jj (r,t) ,Bk(r,t)}S, (12)

where Bk is the kth component of the magnetic field, and εijk

is the Levi-Civita symbol. As before, the equality in Eq. (11) is
established by direct comparison to the result for the Casimir
force in the nonequilibrium situation with T1, T2, and Tenv

unequal given by Eq. (B3).15 [See Eq. (A2) for the explicit
result of the correlation function in Eq. (11).]

The relation (11) is anticipated from linear response in the
density matrix, yielding the time integral containing the energy
dissipation23 (in our case H ). The awaited general relation for
observable O(t),

d〈O〉
dTα

∣∣∣∣
Tα=T

= − 1

kBT 2

∫ ∞

0
dt〈O(t)H (α)(0)〉eq, (13)

is however yet unproven in this framework.

III. PERTURBING VELOCITY

A. Casimir force (vacuum friction)

The equilibrium system can also be perturbed by moving
object(s) α with a small velocity vα . The corresponding change
in the Casimir force acting on β, expressed in terms of the
linear force coefficient γ̂ (β)

α ≡ − d〈F(β)〉
dvα

|vα=0 (see Fig. 2), is

T 

T

T 

1 1

T

fr
(1) = −  1

(1)
1

1

T

2 

T

fr
(2) = −  1

(2)
1

FIG. 2. (Color online) An object moving with velocity v1 in the
presence of a static object, gives rise to the vacuum friction −γ̂

(1)
1 v1 ≡

d〈F(1)〉
dv1

|v1=0v1 acting on the moving object, and the force −γ̂
(2)
1 v1 ≡

d〈F(2)〉
dv1

|v1=0v1 acting on the static one.

related to the autocorrelation function of the Casimir force
in equilibrium,11,14,24 in analogy to the Kirkwood formula in
Eq. (2) (the diagonal part γ̂ (α)

α is the friction coefficient of
α). Here we explicitly confirm this relation for the fluctuating
electromagnetic field, thereby providing a closed expression
for the vacuum thermal friction. We find, elaborating in
analogy to the derivation of Eqs. (10) and (11), for the
fluctuations of the Casimir force,

(
γ̂ (β)

α

)
ij

= 1

kBT

∫ ∞

0
dt〈δF (β)

i (t)δF (α)
j (0)〉eq

= − h̄2

πkBT

∫ ∞

0
dω

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× ImTr

{
∂i(1 + G0Tα)

1

1 − G0TαG0Tα

×G0[i(∂jT
∗
α − Tα∂j ) − 2Tα∂j Im[G0]T∗

α]

× 1

1 − G∗
0T

∗
αG

∗
0T

∗
α

(δαβ + δαβG
∗
0T

∗
α)

}
, (14)

where α = 1 if α = 2 and vice versa. Note that the matrix
(γ̂ (β)

α )ij has in general nonzero off-diagonal elements in ij , and
the force need not be parallel to the velocity. While Eq. (14)
contains both the thermal and zero point contributions to the
net Casimir force, at T = 0 K, the linear force coefficient γ̂ (β)

α

vanishes, and there is no linear response in velocity.
There is, however, response related to higher time deriva-

tives of displacement, in accordance with known results (see,
e.g. Refs. 11, 14, 25, and 26). The friction coefficient in
Eq. (14) has been previously computed for the special cases of
two parallel plates, and for a small particle in front of a plate.11

The first equality sign in Eq. (14) can be confirmed by
deriving the linear force coefficient directly. Then the term
−iG0[i(∂jT∗

α − Tα∂j ) − 2Tα∂j Im[G0]T∗
α]G∗

0 is found as the
disturbed field correlator due to the moving object given
by Eq. (C8).27 This field then undergoes scattering due to
the surrounding objects, and computing the force introduces
another gradient ∂i in analogy to Eq. (B4) and Ref. 15.
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In case of an isolated object, the friction tensor γ̂ (α)
α

simplifies (where we omit the label α) to

γ̂ij = 1

kBT

∫ ∞

0
dt〈δFi(t)δFj (0)〉eq = 2h̄2

πkBT

∫ ∞

0
dω

× eh̄ω/kBT

(eh̄ω/kBT − 1)2
ImTr{∂i(1 + G0T)∂jIm[G0]T∗}. (15)

This is equivalent to the force acting on the object at rest
in a photon gas moving in direction j 28 [see also Eqs. (B4)
and (C8)]. The latter has the electric field correlator ∝
−i∂j Im[G0].

The trace in Eqs. (14) and (15) can be readily evaluated in
any basis, as exemplified in detail in Ref. 15 for heat transfer
and the nonequilibrium Casimir force. For example, Eq. (15)
reads for a sphere,

γ̂ij = −δij

2h̄2

3πkBT

∫ ∞

0
dω

eh̄ω/kBT

(eh̄ω/kBT − 1)2

ω2

c2

×
∑
P,l,m

Re
[
T P

l +3a(l,m)2T P
l T P∗

l +6b(l,m)2T P
l T P∗

l+1

]
,

(16)

where T P
l ≡ T P

l (ω,R) is the T-matrix element for the scat-
tering of a spherical wave with frequency ω, wave numbers
l,m, and polarization P = {N,M} from a sphere with radius R

(see, e.g., Ref. 15 for the expressions for T ). P = N if P = M

and vice versa. The coefficients in Eq. (16) are

a(l,m) = m

l(l + 1)
, (17)

b(l,m) = 1

l + 1

√
l(l + 2)(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)
. (18)

Expanding Eq. (16) to lowest order in R (noting that T P
l ∝ R3

to lowest order), and by relating the term linear in T P
l to

the polarizability, we recover the result obtained in Ref. 28.
Interestingly, if the sphere is a perfect mirror (in which case
it does not emit heat radiation), Eq. (16) gives a finite result.
Specifically, in the limit of a small spherical mirror, we find

γ̂ij = δij

896π7

135

h̄R6

λ8
T

, (19)

where λT = h̄c/kBT is the thermal wavelength, indicating that
the friction coefficient is proportional to T 8.

B. Radiative heat transfer

An additional anticipated general linear response relation
that is complimentary to Eq. (13) reads

d〈O〉
dvα

∣∣∣∣
vα=0

= − 1

kBT

∫ ∞

0
dt〈O(t)δF(α)(0)〉eq. (20)

Consider O = H (α), then by comparing Eq. (20) to Eq. (11)
we can finally provide the Onsager theorem for fluctuational
electrodynamics by writing

d〈H (α)〉
dvβ

∣∣∣∣
vβ=0

= −T
d〈F(β)〉
dTα

∣∣∣∣
{Tα}=Tenv=T

. (21)

Here we used the symmetry
∫ ∞

0 dt〈H (α)(t)δF(β)(0)〉eq =
− ∫ ∞

0 dt〈δF(β)(t)H (α)(0)〉eq, as found explicitly by using the
methods outlined above.

IV. EXPERIMENTAL RELEVANCE AND SUMMARY

Let us finally comment on experimental relevance of the
above results. While the friction in Eq. (14) is in principle
measurable in precision force experiments,29 the fluctuations
of H in Eq. (10) are harder to access. We propose instead a
method for indirect detection based on equilibrium fluctuations
of internal energy E (α)(t) from Eq. (10). Energy conservation
requires (in the absence of other heat sources) that

∂

∂t
δE (α)(t) = H (α)(t), (22)

using which Eq. (10) can be recast as

k(β)
α = − 1

kBT 2
lim
t→0

∂

∂t
〈δE (α)(0)δE (β)(t)〉eq. (23)

Relations of this type are sometimes referred to as macroscopic
fluctuation–dissipation conditions. The spectrum of energy
fluctuations of α in the environment of other objects can
be related to k(α)

α and its heat capacity C(α). Omitting the
index α for brevity, the equal time correlations of energy
are obtained by standard statistical physics arguments as
〈δE(0)2〉eq = CkBT 2. Hence, by integrating Eq. (23) we obtain

〈δE(t)δE(0)〉eq = CkBT 2

[
1 − kt

C
+ · · ·

]
≈ CkBT 2e−t/τ .

(24)

The dots imply higher powers in t , which we have assumed
lead to an overall exponential decay, with τ = C/k. Thus, if
the object’s heat coupling to the remainder of the system is
dominated by vacuum heat transfer H , then its internal energy
will fluctuate with time scale τ . The equilibrium Casimir force
is a function of temperature. If its fluctuations δF(α)(t) can be
assumed to depend on δE (α)(t), then they should also exhibit
a signature of the time scale τ . Without needing to specify the
explicit dependence of F(α)(t) on δE (α)(t), we can thus claim
that a Fourier analysis of F(α)(t) should reveal τ (besides other
characteristic time scales), and hence provide an equilibrium
means of detecting the vacuum heat conductivity. In order to
fulfill Eq. (22), any mechanical contact to the object (e.g., by
a cantilever) should be thermally insulated. Furthermore, the
relative fluctuations of energy are enhanced for smaller C [per
Eq. (24)] favoring smaller objects. For example, a setup of
a silicon sphere of radius 1 μm in front of a silicon plate at
a separation of 100 nm, leads to a time scale of τ ≈ 50 μs,
which is large enough for experimental detection.

To conclude, we have demonstrated that for a collection of
well separated objects, there is a Green-Kubo matrix relating
radiative heat transfers to long-range (cross-)correlations
of the heat flux fluctuations. A similar expression relates
the nonequilibrium component of the Casimir force to the
correlations between force and heat transfer in equilibrium.
The vacuum (frictional forces) from thermal photons due to
motion of an object (or any collection of objects) can be written
in a compact form using scattering theory. Finally, we provide
Onsager’s theorem for H and F. The results are based on
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fluctuational electrodynamics which assumes that each body
is separately in thermal equilibrium; an assumption that could
potentially be investigated in future work, and is expected to
break down in far from equilibrium situations.
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APPENDIX A: EQUILIBRIUM CORRELATIONS

We consider a system of two arbitrary objects (or two sets
of distinct objects) in equilibrium with the environment at
temperature T . The objects’ scattering properties are described
by their scattering (T) operators T1 and T2, respectively. Then,
following the derivation outlined in the main article, we obtain
the following results for the desired correlation functions:∫ ∞

0
dt〈H (1,2)(t)H (2)(0)〉eq

= 2h̄2

π

∫ ∞

0
dω

ω2eh̄ω/kBT

(eh̄ω/kBT − 1)2
ImTrM(2)

1,2, (A1)∫ ∞

0
dt〈H (1,2)(t)F(2)(0)〉eq

= −2h̄2

π

∫ ∞

0
dω

ωeh̄ω/kBT

(eh̄ω/kBT − 1)2
ReTr∇M(2)

1,2, (A2)

where we have introduced the operators

M(2)
1 = (1 + G0T2)

1

1 − G0T1G0T2
G0[Im[T1]

−T1Im[G0]T∗
1]G∗

0
1

1 − T∗
2G

∗
0T

∗
1G

∗
0

T∗
2, (A3)

M(2)
2 = (1 + G0T1)

1

1 − G0T2G0T1
G0[Im[T2]

−T2Im[G0]T∗
2]

1

1 − G∗
0T

∗
1G

∗
0T

∗
2

. (A4)

APPENDIX B: HEAT TRANSFER AND CASIMIR FORCE

We summarize the relevant results for heat transfer and
nonequilibrium Casimir forces from Ref. 15. Consider ob-
jects 1 and 2 held at temperatures T1 and T2, and with
the environment at temperature Tenv. The heat absorbed by
object 2 is given by Eq. (69) from Ref. 15 as

〈H (2)〉(T1,T2,Tenv) =
∑

α=1,2

〈H (2)
α 〉(Tα) − 〈H (2)

α 〉(Tenv). (B1)

Here 〈H (2)
1 〉 is the heat transfer from object 1 to object 2, and

〈H (2)
2 〉 is the so-called self-emission by object 2, corresponding

to the heat lost by object 2 due to the presence of object 1. These
are given by Eqs. (56) and (65) from Ref. 15, respectively,

〈
H

(2)
1,2

〉
(T1,2) = −2h̄

π

∫ ∞

0

ωdω

eh̄ω/kBT1,2 − 1
ImTrM(2)

1,2. (B2)

The Casimir force acting on an arbitrary object 2 is given by
Eq. (79) in Ref. 15, and can be written as

〈F(2)〉(T1,T2,Tenv)

= 〈F(2)〉eq(Tenv) +
∑

α=1,2

[〈
F(2)

α

〉
(Tα) − 〈

F(2)
α

〉
(Tenv)

]
. (B3)

The equilibrium Casimir force 〈F(2)〉eq is much studied,18 and
not relevant for our analysis. The nonequilibrium contribution
〈F(2)

1 〉 acts on object 2 due to the sources in object 1. The
other nonequilibrium contribution is the self-force 〈F(2)

2 〉 and
represents the force that acts on object 2 due to the sources
in the object itself. These nonequilibrium contributions to the
Casimir force are given by Eqs. (76) and (77) in Ref. 15 as

〈F(2)
1,2〉(T1,2) = 2h̄

π

∫ ∞

0

dω

eh̄ω/kBT1,2 − 1
ReTr∇M(2)

1,2. (B4)

With Eqs. (A1), (A2), and (B1)–(B4), the relations (10)
and (11) of the main text can be confirmed.

APPENDIX C: FIELD CORRELATIONS SOURCED
BY A MOVING OBJECT

Here we compute the spectral density Cobj(r,r′) ≡
〈Ei(r)E∗

j (r′)〉obj
ω resulting from an isolated object moving with

velocity v, to linear order in velocity. [In contrast to Eq. (7) in
the main text, the correlator 〈Ei(r,t)E∗

j (r′,0)〉 is symmetrized.]
Without loss of generality, consider the object moving along
the p axis, so that v = vêp.

We first consider an arbitrary equilibrium situation viewed
in a reference frame moving with velocity v, which follows
from the covariant treatment in Ref. 27. The spectral density
can be expressed in terms of the system’s Green’s function as

Cij (r,r′) ≡ 〈Ei(r)E∗
j (r′)〉ω

=
∫

d3k
(2π )3

∫
d3h

(2π )3
ei(k·r+h·r′)Cij (k,h)

≡
∫

d3k
(2π )3

∫
d3h

(2π )3
ei(k·r+h·r′)〈Ei(k)E∗

j (h)〉ω,

(C1)

where we use the symmetric version of expression for Cij (k,h)
from Ref. 27,

Cij (k,h) = −sgn(ω)
2iπh̄ω2

c2

{
coth

[
h̄(ω − kpv)

2kBT

]
Gij (ω,k,h)

− coth

[
h̄(ω + hpv)

2kBT

]
G∗

ji(ω, − h, − k)

}
. (C2)

We have set kp = k · êp, and Gij (ω,k,h) is the spatial/temporal
Fourier transform of the Green’s function Gij (t,r,r′) for the
system. Note that for v = 0 the equilibrium correlator in the
rest frame is recovered. By expanding the field correlations to
linear order in v, we obtain

dCij (k,h)

dv

∣∣∣∣
v=0

= −sgn(ω)
4iπh̄2ω2

c2kBT

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× [kpGij (ω,k,h) + hpG∗
ji(ω, −h, −k)].

(C3)
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GOLYK, KRÜGER, AND KARDAR PHYSICAL REVIEW B 88, 155117 (2013)

Transforming back to real space we get for the Lorentz
transformed field correlator to linear in v,

dCij (r,r′)
dv

∣∣∣∣
v=0

= −sgn(ω)
4πh̄2ω2

c2kBT

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× [∂pGij (ω,r,r′) + ∂p′G∗
ji(ω,r′,r)]. (C4)

For an isolated object, Eq. (C4) enables computing the field
correlator C in a frame which is moving with respect to both
the object and the environment. It follows with the Green’s
function of the system, expressed in terms of the object’s T
operator, G = G0 + G0TG0, and reads

dC

dv

∣∣∣∣
v=0

= −sgn(ω)
4iπh̄2ω2

c2kBT

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× [2∂pIm[G0] − i(G0∂pTG0 − G∗
0T

∗∂pG
∗
0)]. (C5)

To linear order in v, the result in Eq. (C5) can alternatively
be found by a decomposition into two terms: one arising from
the motion of the empty environment (with the static object
present) and the other one resulting from the moving object in
a static environment,

dC

dv

∣∣∣∣
v=0

= d(Cenv + Cobj)

dv

∣∣∣∣
v=0

. (C6)

We are interested in the latter component Cobj. The field
sourced by the moving environment in the presence of a static
object is computed by first considering Eq. (C4) for the empty
environment (described byG0), and then scattering at the static
object15 to get

dCenv

dv

∣∣∣∣
v=0

= −sgn(ω)
8iπh̄2ω2

c2kBT

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× (1 + G0T)∂pIm[G0](T∗G∗
0 + 1). (C7)

The desired correlator can now be found by use of
Eqs. (C5), (C6), and (C7), and reads

dCobj

dv

∣∣∣∣
v=0

= −sgn(ω)
4iπh̄2ω2

c2kBT

eh̄ω/kBT

(eh̄ω/kBT − 1)2

×G0[i(∂pT
∗ − T∂p) − 2T∂pIm[G0]T∗]G∗

0.

(C8)

This is precisely the source term in the expression of Eq. (14)
in the main text, demonstrating the equivalence of the force
correlator in Eq. (14) and the hereby found linear response
result.
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