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Kaoru Ohno (*) and Kurt Binder

Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 6500 Mainz, F.R.G.
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Résumé. - Nous établissons une théorie d’échelle des réseaux généraux de polymères, dans de bons solvants,
en volume et en milieu semi-infini, en utilisant l’équivalence entre la fonction génératrice du nombre total de
configurations et la fonction de corrélation à plusieurs spins du modèle de Heisenberg classique à n
composantes dans la limite n ~ 0. Dans le cas de réseaux de polymères à topologie fixée G, composés de f
chaînes linéaires de longueur f, le nombre total de configurations se comporte, pour f grand, comme
Ng(l, l, ..., l) ~ l03B3g-103BClf. L’exposant 03B3g peut s’exprimer entièrement en terme des exposants y ( f ) et

03B3s(f) des polymères étoilés (libres et à centre fixé) à f branches. Quand les g des f branches du polymère étoilé
sont attachés à une surface par leurs extrémités, les exposants 03B3g ~ 03B311 ... 1 (f) sont donnés en terme de ceux
des polymères étoilés à f branches et des exposants des chaînes linéaires 03B311 ...1 (f) = 03B3 (f) + 03BD + g
[03B3 11- 03B31]. De plus, l’exposant 03B3g pour les polymères en forme de peigne (avec g unités trifonctionnelles) se
réduit à une combinaison linéaire des polymères étoilés à 3 branches, y (3 ), et de l’exposant du nombre de
configurations des chaines linéaires, 03B3 : 03B3comb (g) = 03B3 + g [03B3(3) - 03B3 ]. Les exposants de polymères étoilés
03B3 (f), 03B3s(f) et 03B311...1 (f) sont calculés dans la théorie du champ moyen et dans le développement en 03B5. Nos

résultats pour 03B3 (f) et 03B3s(f) sont

$$
$$

où A ( f ) et B(f) sont des fonctions régulières de f d’ordre 03B52. Pour A ( f ) nous trouvons 03B52/64 + O (03B53). Nos
expressions de 03B3g en fonction de y ( f ), 03B3s(f) sont en accord avec les résultats antérieurs de Duplantier.
Toutefois notre première expression pour 03B3 (f) ne converge pas vers le résultat exact de Duplantier dans la
limite de dimension 2. Nous obtenons la forme d’échelle de la fonction de distribution des extrémités d’un

réseau de polymères de topologie générale G : pg (r) ~ r-d 03A6g (rL- 03BD) où 03BD est l’exposant des chaînes linéaires et
L la longueur totale des chaînes. En particulier la valeur moyenne carrée de la distance entre extrémités

r2&#x3E;g se comporte en L203BD. Nous appliquons aussi les idées d’échelle à l’étude du cas où les réseaux de

polymères sont faits de chaînes linéaires de différentes longueurs. Nous signalons aussi les relations avec la
méthode directe.

Abstract. 2014 A scaling theory of general polymer networks in bulk and semi-infinite good solvents is derived by
using the equivalence between the generating function for the total number of configurations and the multi-
spin correlation function of the classical n-component Heisenberg model in the limit n ~ 0. For general
polymer networks with fixed topology G composed of f linear chains with the same length l, the total number
of configurations behaves for large f as Ng(l, l, ..., l) ~ l03B3g- 1 03BClf. The exponent 03B3g is expressed exactly in
terms of the corresponding exponents y ( f ) and 03B3s(f) of f-arm (free and center-adsorbed) star polymers.
When g of the f arms of the star polymer are attached to the surface at their end points, the exponent
03B3g 03B311 ... 1 (f) is given in terms of that for f-arm star polymers y ( f ) and the exponents of linear chains as
03B311 ... 1 (f) = 03B3 (f) + v + g [03B311 - 03B31]. Also the exponent 03B3g for comb polymers (with g 3-functional units) is
reduced to a linear combination of the exponent of 3-arm star polymers, y (3 ), and the configuration number
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exponent of linear chains, 03B3, as 03B3comb (g ) = y + g [y (3) 2014 y ]. The star-polymer exponents 03B3 (f), 03B3s(f) and
03B311 ... 1 (f) are evaluated by means of mean-field theory, 03B5 expansion and some general considerations. Our
results for y ( f ) and 03B3s(f) are

$$
$$

where A ( f ) and B (f) are regular functions of f and are of O(03B52). A ( f ) is found to be 03B52/64 +
O(03B53). Our first formula for 03B3 (f) is, however, inconsistent with Duplantier’s exact result for the two-
dimensional case, while our scaling relations for 03B3g in terms of 03B3(f), 03B3s(f) are consistent with his earlier
results. The end-to-end distribution function pg(r) of a polymer network with general topology G is found to
have a scaling form pg (r) ~ r-dg(rL-03BD) with the exponent 03BD of linear chains. Here L denotes the total length
of chains. Thus the mean square end-to-end distance r2&#x3E;g behaves like L203BD. Scaling ideas are also applied to
study the case where linear chains with different lengths construct the polymer networks. Relations to the
direct method are also pointed out.

1. Introduction.

The theory of linear polymers in a good solvent has
been very successful as a result of the connection
established by de Gennes [1, 2] and des Cloizeaux
[3, 4] between the polymer statistics and the critical
phenomena of the n-component classical Heisenberg
model (we call this the n-vector model) in the

n -&#x3E; 0 limit. The effect of the walls or other confining
geometries has also found considerable interest (see
for example Ref. [5]) not only from the connection
to surface critical phenomena (see Ref. [6] for a

review) but also from the point of view of various
applications [7, 8].
The more complicated statistics of general polymer

networks has received a continuous attention over a

long time [9]. Polymer gels [2] are huge networks of
flexible chains with the general structure illustrated
in figure 1.1. The statistics of such huge branched
polymers are related to the configurations of lattice
animals and standard percolation theory as was

pointed out by Lubensky and Issacson [10]. In the
dilute limit, the problem reduces to the study of a
single polymer network in a good solvent. The

simplest example of a polymer network is probably a
single ring polymer [2], which has a behaviour quite
different from that of the linear polymer. Certain
more complicated networks like star polymers and
comb polymers have only recently been studied

Fig.1.1. - A general polymer network containing f func-
tional branch points, loops and loose chains with free ends
(schematic).

intensively following experimental progress in the
synthesis of such macromolecules [11]. Using the so-
called direct renormalization-group (RG) approach
associated with Edward’s continuum model [12] up
to the first order in E = 4 - d (d is the spatial
dimension), Miyake and Freed [13, 14] studied star
polymers, and Vlahos and Kosmas [15] studied

comb polymers. Monte Carlo, molecular dynamics
simulations and numerical series expansions were
carried out by Wilkinson et al. [16], Barrett and
Tremain [17], Lipson et al. [18], and Grest et al. [19]
for the free star polymer, and by Colby et al. [20] for
the surface-adsorbed star polymer. Moreover, Dup-
lantier and Saleur [21-23] considered general poly-
mer networks in bulk [21] and semi-infinite [22] two-
dimensional geometry and obtained many exact

results by invoking the conformal invariance. Refer-
ence [21] also treats the RG c = 4 - d expansion up
to 0 ( E ), and reference [23] contains general scaling
considerations.
The single polymer network in a good solvent in a

semi-infinite geometry involves the statistics of the

polymer network consisting of f linear chains each of
which has length li, i = 1, ..., f. These chains are
mutually connected at their ends, although some
dangling ends are allowed. It is also possible to

imagine that some of the ends or branch points are
adsorbed on the surface plane. If there is no such
adsorption, the network is called free. For each type
of the polymer network g, the structure of such

connections is fixed topologically. With this fixed
topology till, chains move flexibly, but there exists a
strong excluded volume effect between different

chains forming the network as well as different

points of the same chain in the network. One of the
interesting statistical quantities is the total number
of possible configurations Xg(f 1, l2, ..., l f). Particu-
lar attention will be paid to the case
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where all the chains have the same length f, or
alternatively to the case

where the total chain length L is fixed. In (1.1b) we
introduced Kronecker’s 5 as 8 k, k = 1 and 8 k, e = 0
for k =l. The quantities defined in (1.1a) and

(1.1b) are expected to behave as (see Sect. 3)

and

asymptotically for large f and L. Here g is a certain
parameter associated with the critical temperature of
the n-vector model in the limit n - 0 (see (3.5)) and
does not depend on the details of topology of the
network. On the other hand, the exponents yg and

jig are universal quantities. They do not depend on
the details of the underlying lattice but do depend on
the spatial dimensionality d and the topology till.
The purpose of this paper is to give a unified

scaling theory describing the statistics of general
polymer networks in bulk and semi-infinite geomet-
ries. First of all, there is a relationship between the
asymptotic behaviour of the polymer networks like
(1.2) and the critical phenomena of the n-vector
model in the limit n - 0. We present a proof of this
relationship in section 2 from the point of view of the
high-temperature series expansion. Then, in sec-

tion 3, the asymptotic behaviours of the number of
configurations (1.2), the end-to-end distribution
function and mean-square end-to-end distance are
found to be related to critical phenomena of mag-
netic systems. In section 4, by developing a

phenomenological scaling theory, we show that the
exponent yg of any general polymer network includ-
ing polymer networks near walls in the dilute limit is
related to the exponents of star polymers. Based on
this, we will give an explicit calculation using mean-
field theory (Sect. 5) and the RG e = 4 - d expan-
sion (Sect. 6) in order to derive the behaviour of free
and adsorbed star polymers. A relation between the
star polymer exponent y ( f ) and the contact ex-
ponent 9 i for a linear chain is also discussed in

section 6. More general cases where the polymer
network is constructed by linear chains with different
lengths is dealt with in section 7. Finally, in section 8,
we summarize our main results and give some
discussions.

2. Equivalence between polymer networks and the n-
vector model in the limit n - 0.

The equivalence between the linear polymer chain
and the n-vector model in the n - 0 limit was first

pointed out by de Gennes [1]. This equivalence can
be proven exactly by considering the high-tempera-
ture series expansion which is essentially a cluster
expansion [24, 25]. Similar arguments are possible
for more general cases of polymer networks.
The n-vector model is defined by the Hamiltonian

where the summation runs over all the nearest-

neighbour pairs ij, and each spin at each lattice

point, i, has n components

and fixed length

This Hamiltonian describes the Ising model, the
Planar (XY) model and the classical Heisenberg
model, respectively, for n = 1, 2 and 3.

Consider the system of f linear chains which do
not have contacts with each other (see Fig. 2.1). We
suppose that the i-th linear chain has length
fit, starting from the point Oi and ending at the point
Pi (i = 1, ..., f), and that the numbers Q1, l2, ...,

Q f are all fixed and moreover that all the end points
°1’ P1, °2’ P2, ..., °f, P f are fixed. This latter

Fig. 2.1. - Many polymer system. Each chain i has length
li i and carries the spin component (i ) ; then this system
maps onto the magnetic model in the n - 0 limit.

condition will be removed later (Sect. 3) in discussing
the total number of configurations JY’g(Q1, f 2’
..., I f f) introduced in paragraph 1. We write the
number of configurations for this fixed topology 9
and for these fixed end-points as
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(note that X g(f l’ f 2’ ..., ff) in Sect. 1 is related to

(2.5) by Eq. (3.6) in Sect. 3) and introduce its

generating function as

The aim of this section is to prove the equivalence
between this generating function and the 2f-point
correlation function

of the n-vector model in the limit n -&#x3E; 0. For this

identity, it is only necessary to assume the parameter
relation

T

as in the case of a linear chain. To construct the 2 f
point correlation function (2.7), we introduce one
spin for one end-point and assume that the two spins
belonging to the same linear chain are of the same
component, i. e . , the two spins of the i-th chain are of
the i-th component. Finally we take the thermal
average of the product of these 2 f spins to get (2.7).
The high-temperature series expansion is conve-

niently performed by introducing diagrams [24, 25].
We draw the nearest-neighbour spin pairs appearing
in the Hamiltonian H [see (2.2)] with a straight line.
On the other hand, we connect the two end-points
Oi and Pi of the same chain by a wavy line for all
i = 1, ..., f. Then, for example, the spin trace which
appears in the second order of the expansion

r n 1

is diagrammatically represented by figure 2.2.

Fig. 2.2. - Diagram appearing in the second order. This
diagram represents (2.9).

Now we discuss the property of the diagrammatic
expansion in the limit n - 0. We should first note
that, in the limit n - 0, we have the identity

~

because all the terms with L ,&#x3E;1 contain at least one

loop and each loop carries a factor of n. Then we
may expand the 2 f-point correlation function in the
power series of K = J/kB T like

where we put

with a L (Ð) as the contribution associated with the
diagram Ð.
From the symmetry of the Hamiltonian, it is

obvious to see that a diagram 0 with a vertex point
at which odd numbers of (solid or wavy) lines meet
does not contribute. Moreover, the diagram with a
vertex point at which 4 or more (solid or wavy) lines
meet does not contribute either, in the limit
n - 0, because the spin trace at this vertex carries at
least a factor of n due to the normalization (2.4).
This situation will be much more transparent, if we
evaluate some examples of diagrams. Figure 2.3a
represents a decorated loop diagram and figure 2.3b
represents a two-loop diagram with one articulation
point. The corresponding spin traces are awl(5)) =
(4 ! /2 ) n 2/ (n + 2 ) for figure 2.3a and aL(Ð) =
n/ (n + 2) for figure 2.3b. These spin traces vanish
in the limit n - 0 because of the existence of the
vertex point at which 4 solid lines meet. Each of
these vertices carries a factor of n.

Fig. 2.3. - Examples of diagrams occurring in higher
orders : (a) a triangular loop diagram with a decoration,
and (b) a diagram with one articulation point. Both of
these diagrams vanish in the n --&#x3E; 0 limit.

In addition there is another property : if a diagram
T has a disconnected part involving no wavy line,
this diagram does not contribute. This statement
holds for general n, but, in the limit n - 0, this is
obviously understandable because the additional

disconnected part carries a factor n due to a closed

loop.
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From these considerations, we are led to the

conclusion : the a L (Ð) is nonvanishing, if and only
if the diagram 0 is composed of f disconnected
single loops each of which has one wavy line. For
such a diagram with f single loops (an example of
one single loop is given by Fig. 2.2 and Eq. (2.9)),
we have

Thus, substituting this into (2.11), we have

where Ng (L ) denotes the total number of lattice
realizations of such diagrams, i. e. , diagrams with f
closed loops each of which contains one wavy line,
consisting totally of L solid lines. Then, by using the
number (2.5) of configurations, we may write

00 00 00

which is comparable to (1.1b). Hence we are led to
the desired identity

in the limit n - 0.
The physical polymer networks that we wish to

describe do contain loops and branch points while
the networks which are described so far by multi-spin
correlation functions of the n-vector model are

disconnected linear polymers. However, by requiring

Fig. 2.4. - Construction of the polymer network. (a) loop
geometry and (b) 3-arm star geometry are constructed by
introducing proximity constraints for some of the end

points.

that some of the end points of these linear polymers
{O1, P1, ..., Of, Pf} are in close proximity of each
other, we in fact obtain the desired statistical proper-
ties of the considered network : e.g., properties of a
closed loop are obtained requesting that the site

P1 is nearest neighbour of O1 on the lattice ; a 3-arm
star geometry is obtained if sites O1, 02, 03 are
nearest neighbours of each other (Fig. 2.4), while
the sites of the points Pi, P2, P3 are not restricted,
etc. In fact, using such a proximity constraint has the
same physical effect as putting in suitable chemical
crosslinks to form the network.

3. Relation to critical phenomena.

The equivalence between polymer networks and the
n-vector model proved in the last section enables us
to deduce several interesting quantities associated
with polymer networks from the knowledge of the
multi-spin correlation function of the magnetic sys-
tem.

First of all, we consider the whole nonlinear

susceptibility constructed from the multi-spin corre-
lation function Cg (K) which is associated with the
topology 9 and given by (2.7) :

In (3.1), it is not necessary to assume that all the
summations run over all space. For example, one
can imagine a polymer adsorbed at a surface, where
some of the summations run over sites on the surface

plane only. Some suitable number of lattice points
Nx is introduced in (3.1) in order to make Xg (K)
finite. For the semi-infinite solvents, N x should be
taken as

where N is the total number of lattice points and
N,, the number of surface lattice points. Near the
critical point K = Kc, the nonlinear susceptibility
(3.1) generally exhibits a singular behaviour like

Here t is the reduced temperature

The parameter &#x3E; is hence proportional to the critical
temperature of the magnetic system.
Then we recall that Cg(K) in (3.1) is identical to

the generating function (2.6) for fixed topology and
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for spatially fixed end points (the identity (2.16)
between Zg(K) and Cg(K)). Substituting (2.6) in
(3.1) (see (2.16)) and noticing the relation for the
total number of configurations

we have

Therefore introducing the total number of configur-
ations with fixed total length L as defined in (1.1b),
we obtain

If we replace this summation by an integration over
L and introduce the reduced temperature t in a

slightly different manner by 
’

with &#x3E; given by (3.5) (t = 0 corresponds to the
critical point K = Kc and Eq. (3.4) holds near the
critical point), (3.8) becomes a form of Laplace-
transformation :

(Henceforth we use the symbol for equalities valid
only in the scaling limit.) Because the nonlinear
susceptibility is expected to have a power-law singul-
arity (3.3) near the critical temperature, an inverse
Laplace-transformation of (3.10) with (3.3) gives

which is identical to (1.2b). Thus the exponent
Vg for the total number of configurations of networks
with total length L is found to be identical to the
exponent of the nonlinear susceptibility (3.1). In

enumerations of self-avoiding walk models of poly-
mers on lattices, the constant u, which is given by
equation (3.5), is sometimes called the effective
coordination number. This mapping shows that J.L is

independent of the topology of the polymer network,
in agreement with conclusions of reference [16].
Now we want to know the behaviour of

Xg (f , f , ..., t ), where each single chain has the
same fixed length f. To this end, we assume that if
all chain lengths fit, f 2’ ..., f f are of the same order,
then X g( f l’ f 2’ ..., 9 f f) behaves like

which should be compared with (1.2a). If such a

region dominates in the summation of (l.lb), we
may substitute (3.12) in (l.lb) to obtain

Then the comparison between (3.11) and (3.13)
yields

At this point we should give some comments on
(3.13) and (3.14). The nonlinear susceptibility
X,(K) can be calculated with the help of renormali-
zation group (RG) theory as is done in later sections.
It is known [26], however, that the function (3.1)
which is given as thermal average of the product of
composite operators (explicit forms are presented in
(4.1)-(4,4) in the next section) becomes, after renor-
malization, a linear combination of the original
function and other functions which have the same or
lower canonical dimensions. What we call other

functions here are susceptibilities related to other
topologies which can be deduced from the original
topology 19 by shrinking some arms (linear chains)
which form the network (in our problem, all the

external momenta are zero and the terms with

external momenta as a factor are unimportant).
Because we are interested in the configurations of
networks with the same chain length f, we should
discard all these terms which occur due to additive
renormalization. Thus it is only necessary to identify
the renormalization factor associated with the topol-
orgy 9 itself. We will call this part of the renormalized
nonlinear susceptibility the essential part. Equations
(3.13) and (3.14) are basically true for the essential
part. The scaling theory which will be developed in
next section is based on this idea and valid in

discussing the case where each chain has the same
length f. On the other hand, if we are interested in
the configurations of networks with total length L,
then we should identify the most singular term
among the linear combination obtained by the

additive renormalization. This procedure is equival-
ent to searching the most dominant part of the
partial summations in the summation (1.1b). In later
sections, we evaluate the number of configuration
exponent yg from the essential part of the nonlinear

susceptibility.
Next, we introduce the local nonlinear suscepti-

bility in order to discuss the end-to-end distribution
of the polymer network :
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Note that the summations with respect to two end

points Oi and Pi are omitted in the right hand side,
so that this function depends explicitly on these sites
Oi and Pi. Now we use the identity (2.16) in (3.15).
After the substitution, we have

where we have introduced the number of configur-
ations with fixed total length L and with two fixed
end points Oi and Pj :

(for Ng (L) see (2.15)). Then introducing the re-

duced temperature as (3.9), we are led to the

Laplace-transformation

In the case of free polymer networks, Xg(Oi’ P. ; K)
has the scaling form

where v is the correlation length exponent and
7’J g is related to Y g by 7g = v (2 - qg) ; rij denotes
the distance between Oi and Pi. Inverse-Laplace-
transformation of (3.18) with (3.19) gives

Finally, dividing this by the total number of configur-
ations, we obtain the distribution function for gen-
eral polymer networks with fixed total length L as

which takes exactly the same form as the distribution
function for the single chain problem (see for

example Ref. [2]). It is easy to see that the distri-

bution function for general polymer networks where
all chains have the same length f also has the same
form as (3.21). Thus we get to the mean square end-
to-end distance

which behaves like a single polymer chain. While the
exponent describing the end-to-end distance does
not depend on the topology 9 of the network, the
proportionality constant in the relation (3.22) surely
does. E.g., for star polymers with f arms it is

interesting to consider how this prefactor depends
on f [13-18]. This question cannot be answered by us
using only scaling consideration.

4. Phenomenological scaling theory of general poly-
mer networks.

Arbitrary polymer networks with fixed topology and
fixed total length L may be discussed in a rigorous
manner by invoking the magnetic analogy given in
sections 2 and 3. However, the scaling theory that
will be developed in this section is rather closely
related to the case where each linear chain has the

same fixed length f, because the following scaling
assumption is valid only for the essential part of the
nonlinear susceptibility discussed in section 3.
Our discussion is in principle applicable to any

geometry of the container for the solvents. To

assume some geometry of the container corresponds
to assume the same geometry of the lattice model.

Typically, we deal with a semi-infinite geometry of
the container and discuss surface-adsorbed polymer
networks as well as free polymer networks. How-
ever, in the case of the surface problem we do not
consider any forces between the wall and the mono-

mers which form the polymer, rather we assume as a
geometrical constraint that some end points or

branch points of the networks are attached to the
surface.

Consider the polymer network 9 composed of f
mutually connected linear chains. In the following
scaling theory of general polymer networks, the

nature of the g-functional unit (the g-fold branch
point) plays a central role. The g-functional unit
around point P consists of g neighbouring points
P1, P2, ..., Pg, at which each linear chain starts. See
figure 4.1 for example. Then introduce the g-th
order composite operator

Fig. 4.1. - g-functional unit at point P. A Branch point is
composed of several neighbouring sites P1, P2, ...,

P9 at which each polymer chain is starting.
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for each g-functional unit. In this summation over all
points P, one should fix the vertex structure, because
the neighbouring points P1, P2, ..., Pg do not change
their configuration around the point P. One can also
consider the g-th order composite operator at the
surface as

Then, from the equivalence between polymer net-
works and the n-vector model discussed in sections 2
and 3, the generating function for the number of
configurations of this polymer network 9 is given by
the n -&#x3E; 0 limit of the nonlinear susceptibility

where some of the Wg may be replaced by the
. 

surface operator ’03C8g, and Nx is taken as (3.2). One
should recall that the i-th chain carries the i-th spin
component, so that the same component appears
just twice in the brackets of (4.3). An example of the
polymer network 19 is given by figure 4.2. For this
network, we have

Note that the first order composite operator is

identical to the summation of the single spin variable
over all space

In order to develop the phenomenological scaling
theory, we introduce the n-vector model

with composite fields,
M M

Fig. 4.2: - An example of polymer networks. This net-
work is related to the correlation function given by (4.4).

and

(H is given by (2.2)). Then the generating function
(4.3) is evaluated by differentiating the free energy

constructed from the above Hamiltonian with respect
to fields :

Here hg may be either the bulk field or the surface
field. In this way, (4.4) is rederived by

Now, it is natural to suppose that the g-th order
composite fields hg and h’ scale, respectively, as

t °9 and t °°, independent of their components. That
is, the free energy (4.7) of the system with Hamilto-
nian (4.6) is assumed to have the scaling form

Here a is the specific-heat exponent and given by the
hyperscaling relation

Note that the additional factor t- II which appears in
the surface free energy (4.13) is due to the inte-

gration of the free energy density over the distance
03BE~ t - II from the surface (for further details the
reader may refer to Ref. [6]) ; v is the correlation
length exponent for the single chain problem. This
scaling assumption of the composite fields is a

plausible one, but, as was discussed in section 3, one
should note that the multi-spin correlation function
with composite operators is often not multiplicatively
renormalizable but mixed with other functions which

have same or lower canonical dimension [26]. This is
related to the fact that, in the configurations of the
network 19 with fixed total length L, there appear
simpler networks which can be obtained from Q by



1337

shrinking some of the linear chains. In order to
discuss the configurations with all chain lengths
being the same, we should discard all such terms and
preserve only the singularity associated with the

topology 9 (essential part). The corresponding ex-
ponent yg is obtained from the exponent yg of the
essential part associated with the topology 9 of the
nonlinear susceptibility via equation (3.14).
As a result, the scaling form of xg(K) depends

only on the number of g-functional free units

ng and the number of g-functional surface units

ng. This scaling theory concerns only the mutually
connected polymer networks. One should not worry
about the polymer networks composed of several
disconnected parts because each disconnection

brings the additional factor t2 - a in X g (K ) (hence the
additional factor La -1 in JVg(L )) and makes their
contribution less singular. (Note that a =- 0.23 for
d = 3 and a = 1/2 for d = 2 using the hyperscaling
relation d v = 2 - a and the known exponent of v. )
If we consider the bulk problem, we have the
essential part of the nonlinear susceptibility

r , I

with

Then using the relation (3.14), the exponent for the
total number of configurations yg is given by

An expression equivalent to equation (4.15) was
obtained by Duplantier [21] by a somewhat different
approach. On the other hand, if we consider the

surface-adsorbed problem, we have

with

and, in turn,

For the simplest cases of linear chains shown in
figures 4.3a-e, we should regain the known expo-
nents. The exponents yi and y 11 describe the

asymptotic behaviour of linear chains with one end
or both ends attached to the surface. In the magnetic

Fig. 4.3. - Exponent yg for polymer networks expected
from the present scaling theory. Only simple networks
with 1-, 2- and 3-functional units are presented here.
Similar expressions are obtained for more complicated
networks also by (4.15), (4.16), (4.19) and (4.20). ,

problem, y 1 and y 11 are the surface exponents for
the layer- and the local-susceptibilities, respectively
[5, 6]. Therefore, for the first three topologies we
have

To avoid confusion, it should be noted here that in
the standard literature (e.g. Ref. [6]) the present
41 is denoted as L1b, and 41 is denoted as al. The next
two topologies (Figs. 4.3d and e) are associated with
single loop polymers whose exponent is given by that
for the energy density, i.e., (s8! S81) for neighbour-
ing sites O1 and 02 [2]. Because the bulk energy
density behaves as (1 - a and the surface energy
density behaves as t 2 - " [27], we obtain yg=
a -1 and a - 2, respectively, for figures 4.3d and
4.3e. Therefore we identify

Thus we can express the exponents 41, 2li, A2 and
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42 by means of known exponents. From (4.17a)-
(4.17c), we have the well-known surface scaling
relation [6]

We consider next the simple case of star polymers
(Fig. 4.3i and o). A star polymer is a simple polymer
network which has many arms (linear chains) starting
from the center (see Fig. 4.4). If we put yg = y ( f )
for the free star polymer with farms (Fig. 4.4a), it is
given by

Fig. 4.4. - Three topologies of star polymers : (a) the
free star, (b) the center-adsorbed star and (c) the arm-
adsorbed star.

On the other hand, if we consider the star polymer
with f arms whose center is adsorbed at the surface
(see Fig. 4.4b) and write its exponent as yg =
1’s(f), then we obtain

Now the exponent yg for an arbitrary polymer
network in the bulk or semi-infinite geometry is

expressed by means of the well known exponents y,
v, a, 1’1 and 1’11 (note that these are not mutually
independent because of (4.14) and (4.18)) and the
star polymer exponents y ( f ) and 1’s(f), because
(4.15) and (4.16) can be rewritten by means of these
exponents. The values of yg for several simple
examples are listed in figure 4.3. E.g. one may
consider the case where due to the chemistry the

branch point is attached to the surface (Fig. 4.3e, f,
o and p) ; or, alternatively, the different chemical
nature of end groups leads to binding of these groups
to the wall (Fig. 4.3b, c, k, 1, m and n) ; or both the
branch point and the end groups may sit on the wall
(Fig. 4.3g, h, q, r, s and t).
The exponent yg for star polymers where some of

the arm-end points are adsorbed at the surface is,
thus, not an independent exponent. If g of farm-end
points are adsorbed on the surface (Fig. 4.4c), and if
we write its yg as yll ...1 (f ) with g subscripts 1, we
have the relation

Also interesting is the case of comb polymers [15]. If
we consider comb polymers with g = ( f - 1 )/2
3-functional units and g + 2 dangling ends (Fig. 4.5),
we have the exponent

It is left as a simple exercise to the reader to work
out the exponent for a comb polymer adsorbed on
the surface with all its trifunctional units or with all

its dangling ends, respectively.

Fig. 4.5. - The topology of comb polymers. There are g
branch points and g + 2 linear chains.

Since the exponents yg for all topologies of

branched polymer networks can always thus be

expressed as linear combinations of the exponents
y ( f ) and I’s(/) of f arm star polymers and the
exponents describing linear polymers, it remains to
calculate y ( f ) and 7s(/) explicitly. This problem is
addressed in the next section (in order to check the
scaling relation (4.21), we calculate y 11...1 ( f ) as

well).

5. Mean-field theory of star polymers in the semi-
infinite space.

The simplest topologies of a star polymer in semi-
infinite space are shown in figure 4.4 : (a) is the free
star polymer, (b) gives the center-adsorbed case and
(c), the arm-adsorbed case. This section deals with
mean-field theory for these star polymers and the
next section is devoted to an E expansion.

Consider first the n-vector model (2.1) with (2.2)
in semi-infinite space. Taking the continuous limit of
this lattice Hamiltonian and neglecting the irrelevant
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higher powers of the spins, we are led to the
S4 model in semi-infinite space :

Here the surface lies at z = 0 and the space coordi-
nate r means r = (x, z ) with z as the distance from
the surface and with x as the (d -1 )-dimensional
coordinate parallel to the surface. Note that the

parameter t (&#x3E; 0 ) plays the role of the reduced

temperature (3.4) and the effect of the repulsive
surface is simulated by the surface potential c5 (z)
with c -&#x3E; oo. The condition c - aJ corresponds to
the ordinary transition of the magnetic problem [6].

In the last two sections, we discussed the problem
of the essential part of the nonlinear susceptibility in
relation to the RG theory. In the case of star

polymers (or generally for any tree polymers includ-
ing no loops), however, it is not necessary to worry
about this problem at least in discussing low orders
of the e expansion, because the essential part of the
nonlinear susceptibility shows the most singular
behaviour.

5.1 THE MAGNETIC PROBLEM [6]. - In mean-field
theory (u = 0 ), the 2-point correlation function

(p = x - x’ I means the projected distance parallel
to the surface) obeys the differential equation

with the boundary condition

The solution of (5.3) satisfying (5.4) is obtained by
transforming it from real space (x, z ) to (d - 1 )-
dimensional Fourier space (q, z) :

The symbol - denotes Fourier-transformed func-

tions. The real space function is, then, by transform-
ing (5.5) inversely and using the integral given in
reference [28] (p. 706, No. (6, 596, 7)),

where J v (ç) and Kv (ç) are the Bessel and the

modified Bessel functions [28] ; s denotes the real
distance

and s denotes the image distance

The linear susceptibility at a distance z from the

surface is found by elementary integration :

which behaves like

(Curie-Weiss’ law) for large z and

for small z. From these expressions, two exponents
y = 1 and y = 1/2 are identified within mean-field
theory.

5.2 BULK AND CENTER-ADSORBED STAR POLY-

MERS. - Within mean-field theory, the 2 f-point
correlation function Cg (K) given by (2.7) decouples
into the f multiples of the 2-point correlation function
as

where the point 0 denotes the center of the star and
the points Pl, ..., P f denote the ends of the arms.
This decoupling is graphically represented by fig-
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Fig. 5.1. - Diagrammatic representation of the mean-

field nonlinear susceptibility XMF(Z, t) for star polymers.
Solid lines represent arms, (0) denotes the center and
(D) indicates the full spatial integral. This diagram
corresponds to equation (5.10).

ure 5.1, if we draw the two point correlation function
starting at the center 0 and ending at Pi as a solid
line. In this subsection, we deal with a star polymer
whose arms do not touch the surface (Fig. 5.2). If we
fix the location of the center of the star, 0, and
evaluate the related nonlinear susceptibility in order
to count the number of possible configurations, then
the result will in general depend on z, the distance
between the center 0 and the surface (see Fig. 5.2).

Fig. 5.2. - Star polymers with fixed center point. The
center is fixed at a distance z from the surface. Free and
center-adsorbed star polymers are obtained, respectively,
for z --+ oo and z --+ 0.

The two cases illustrated in figure 4.4a (free star

polymer) and figure 4.4b (center-adsorbed star poly-
mer) correspond, respectively, to the large and small
z limits. The generating function for the number of
configurations which is identical to the nonlinear

susceptibility reduces in the approximation (5.10) to

where XMF(Z, t ) denotes the mean-field linear sus-
ceptibility of the semi-infinite system which behaves
like (5.9). Then the two limiting cases are obtained
as

Hence, for the free star polymer, yg = f and, in
turn the relation (3.14) yields y (f ) = 1. On the
other hand, for the center-adsorbed star polymer,
we have Yg = f /2 and then ys( f ) =1- f /2.

5.3 ARM-ADSORBED STAR POLYMER. - Next we

consider the star polymer some of whose arm ends
are attached to the surface as is shown in figure 4.4c.
Suppose that the total number of arms is f, the
number of surface-adsorbed arms is g (-- 1 and
h = f - g. We first treat the more general case
where these g end points are attached to a plane
parallel to the surface at a distance z apart from the
surface, while the center of the star lies at a distance
z’ from the surface (see Fig. 5.3). The result should

Fig. 5.3. - Star polymers with fixed center and fixed
ends. Some of the ends of the arms are fixed at a distance z
and the center is fixed at a distance z’, respectively, from
the surface. The distance z’ should be integrated over to
get arbitrary configurations of arm-adsorbed star poly-
mers.

be integrated over z’. The nonlinear susceptibility
depends on z and is given by, in the mean-field

approximation,

r 00 -

with

From some detailed calculations, we find that the
most singular behaviour for small BAz appears from
the highest power of m in each order of the

expansion with respect to small B/tz and hence from
the last term of (5.14) ; and it is enough to replace
Il, m by

-- 2m Ft z



1341

Finally, equation (5.13) is evaluated as follows :

Here B (a, (3 ) is the Beta function [28]. Comparing
(5.16) with (3.3), we get Yg = 1/2 + h = 1/2 +
f - g. If we write the corresponding exponent
yg as y’11... 1 (I) with g subscripts 1, then, via the
relation (3.14), we obtain yll ." 1 (f ) =-= 3/2 - g. The
exponents Af and Af’, which according to equations
(4.15) and (4.16) allow to express yg for arbitrary
polymer networks (remember a = 0, v = 1/2 in
mean field theory), become L1¡ = 2 - f /2 and

A’ f = 3/2 - f.

6. E expansion for star polymers in semi-infinite

space.

In order to go beyond mean-field theory, one may
construct a systematic expansion by regarding the
S4 interaction as a small perturbation and applying
the renormalization-group (RG) e = 4 - d expan-
sion scheme. The S4 coupling corresponds to the
excluded volume interaction in the problem of

polymer networks. Drawing the mean-field 2-point
correlation function with a solid line and the
S4 interaction with a dotted line, the first order
correction to mean-field theory is given graphically
by figure 6.1a and b. (The zeroth order graph is
shown in Fig. 5.1, which corresponds to Eq. (5.10).)

Fig. 6.1. - The diagrams appearing in the 1st order in

e = 4 - d. (a) is the case of intra-arm interaction and (b) is
the case of inter-arm interaction.

There are f ways of drawing the single intra-arm
interaction like figure 6.1a, because there are farms,
i.e., f solid lines. Hence the contribution from

figure 6.1a is proportional to f. On the other hand,
there are f (f - 1)/2 ways of drawing the single
inter-arm interaction like figure 6.1b, so that

figure 6.1b contributes with a factor f ( f -1 )/2.
The result for the free star polymer is given by

This result is the same as that of Miyake and Freed
[13, 14], who used the direct RG approach. In the
following two subsections, the first order correction
to the mean-field values of ys( f ) and yll ,..1 (I) is
evaluated explicitly by using the magnetic analogy.
In the last subsection, y ( f ) for free star polymers
and y S ( f ) for center-adsorbed star polymers are

considered in more detail.

6.1 CENTER-ADSORBED STAR POLYMER. - The
first problem is a star polymer in semi-infinite space
whose arms do not touch the surface (see Fig. 5.2).
The center of the star has a fixed distance z from the
surface. The diagrams to be evaluated are shown in
figures 6.1a and b. Just the solid lines connected by
the dotted line are important, because all the other
solid lines are non-interacting and only contribute to
the mean-field susceptibility, XMF(Z, t ), as a factor.
The interacting part is shown in figures 6.2a and b.
In these figures, a square (D) indicates the full

spatial integral of that point and a circle (0 )
indicates the center of the star which is fixed at a
distance z from the surface. Interactions are assumed
to occur at a distance z’ from the surface. Then the
solid line whose one end has the square (D) and
another end lies at z’ means the mean-field layer-
susceptibility X MF (z’ , t ). The distance z’ should be
integrated out to yield the final result depending
only on z.

Fig. 6.2. - Interacting part of the first order diagram,
figure 6.1. The diagram (a) represents the intra-arm
interaction. This diagram is identical to that of the 1st
order correction to the mean-field layer susceptibility
X MF (Z t ). The diagram (b) represents the inter-arm in- .

teracting part.

Figure 6.2a gives the one loop correction to the
mean-field layer-susceptibility XMF(Z, t ), which was
evaluated in the earlier paper of Reeve and

Guttmann [29]. Here we will rederive the same

result by using the z-representation in place of their
Fourier-sine representation :

" /*oo)
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In (6.2), the self-energy

is evaluated, by using (5.6), taking account of [28]

( y E denotes Euler’s constant) and introducing a

suitable momentum cutoff A, as

at d = 4. Using this together with XMF of (5.8) and C
of (5.5) yields the relevant logarithmic behaviour

If this logarithmic behaviour is exponentiated
together will the zeroth order term XMF(z, t), and
using the well-known fixed-point value [26]

then the layer susceptibility exponent is found to be
7i = 1/2 + (n + 2) e/2(n + 8) + O(E2) [5, 6, 29].
Next, we turn our attention to figure 6.2b. It is

expressed by the integral

where ftq (z, z’) is the Fourier-transform of the

single bubble

The q = 0 component of Hq is evaluated for small z
at d = 4 as

by using the integral formula listed in reference

[30] : p. 27, No. (I, 3.12). Then, substituting (6.10)
into (6.8) gives for small z

which yields the relevant logarithmic correction to
mean-field behaviour. Together with the former
result of figure 6.2a (Eq. (6.6)), the nonlinear sus-
ceptibility up to first order is evaluated for small z as

Exponentiating this with the fixed-point value (6.7), the exponent yg is found to be

Hence through the relation (3.14) we have the final
result

for the configuration-number exponent of a center-

adsorbed star polymer. If we put f =1 and

f = 2 in (6.14), we retrieve the expected results

1’1 = 1/2 + e/8 + 0(e2) and y -1= s/8 + 0(e2),
respectively. All of these calculations become much
simpler when we take the opposite limit z - oo ; in
this case we retrieve the exponent y ( f ) for a free
star polymer (6.1). We do not enter into details of
this calculation.
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6.2 ARM-ADSORBED STAR POLYMER. - The second

problem is a star polymer in semi-infinite space some
of whose arms touch the surface (see Fig. 5.3). The
touching is conveniently expressed by the limit
z --&#x3E; 0, where the ends of g arms are all assumed to
be fixed at a distance z from the surface. The
relevant diagrams up to first order in E are shown in
figures 6.3a-e. We first note that, for small z, the
mean-field correlation function with q = 0 behaves
as

We also note that the mean-field susceptibility
function X MF (Z’, t ) is given by (5.8) with z replaced
by z’. Then the diagrams figures 6.3a-c are evaluated
using the integral

as
I

Fig. 6.3. - The diagrams which appear in the calculation
in the 1st order in e = 4 - d for the star polymer which has
some of its ends at a (close) distance z from the surface.

and

for small z. On the other hand, the diagrams
figures 6.3d and e are evaluated using the integral

as

and

for small z. If the explicit forms of Ll, m and Ml,m are inserted into X (a&#x3E;, X (b), ..., and X (e&#x3E;, the summations
appearing in these expressions become 
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where qi (x + 1 ) = t/1 (x) + 1/x is the psi (poly-Gamma) function [28]. Combining these results, we obtain

and

Then comparing these logarithmic factors with the mean-field value (5.16) and using the fixed point value
u * given by (6.7) yields

and through the relation (3.14)

This is our final result for the configuration-number
exponent for an arm-adsorbed star polymer. Using
(6.1) for y ( f ) and using v = 1/2 + E/16 + O (ez)
[26] and Y1- Y11 = Y + v - Yl = 1 + 8/16 +
0(82), we find

and hence our result (6.24) is certainly consistent
with the scaling relation (4.21). Moreover, as is

expected, (6.24) reduces to y 1 1 when g = 1 and

f = 1 or 2, and reduces to y 11 when g = f = 2.

6.3 FURTHER CONSIDERATIONS. - We now con-
sider the properties of the exponent yg for star

polymers in more detail. If we write the nonlinear

susceptibility associated with a free star polymer as

we can identify the first two terms very easily from
the e expansion without any explicit calculation.
First of all, it is obvious to see that the term

proportional to f is related to the usual linear

susceptibility as 
’

where 1/t means its mean-field value (see (5.9a)).
Next, we operate with - a/at on this function. A
solid line in the diagrammatic representation of the E
expansion is given by the mean-field 2-point corre-
lation function

in d-dimensional Fourier-space. Note the relation

which corresponds diagrammatically to an insertion
of the circle (0 ) in the solid line. Hence, the
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derivative - (a/at ) O1 (t ) yields the summation of
all possible insertions of one circle (0 ) into the

diagrams for 01 (t ). If we regard this circle as the
center of the star, then we have automatically all

possible interactions between two arms. Thus we

have the identity

Therefore, putting X (1 ; t ) - rt- "I, we have

After some calculation, we find that this expression
can be exponentiated to give

with

and

Here 0 2[ f ( f -1 ) ( f - 2 ) ] denotes a term which

vanishes for f = 0, 1 and 2. Finally using the relation
(3.14) yields a result valid to all orders in E

We have introduced the function A ( f ) which is a
regular function of f (finite for f = 0, 1 and 2) and of
o ( e 2).
Now we consider some special properties of

y ( f ). If we take the limit f - 0, we should have
y(f) = 0 or identically

because we expect

Moreover, we should have

because a star polymer with one or two arms is

identical to a linear chain. One can easily see that
the general form (6.35) certainly satisfies these

special properties. It is interesting, however, to note
that the result for a two-dimensional star polymer
due to Duplantier [21], namely

does not satisfy our simple expectation (6.35) which
implies y (0 ) = 1 in contrast to y (0 ) = 17/16.
Perhaps this discrepancy occurs because two dimen-
sions for random walk problems is very special
(d = 2 is the same as the fractal dimension of simple
random walks). Since equation (6.39) is thought [21]
to be exact, the implication is that the s expansion
breaks down in d = 2.
The function A ( f ) in (6.35) has been calculated

within the framework of an E expansion up to second
order in E = 4- d. Details of this calculation will be

published elsewhere [31]. Here we only mention the
final result

Now we discuss additional scaling relations which
relate the exponents y (3 ), y (4 ) for star polymers
with three and four arms to the exponents 01,
02 describing the short distance behaviour of the
distribution functions p (rl ), p (r2) between an end
point of a linear chain and a point in its interior

(Fig. 6.4b) or two interior points of a chain

(Fig. 6.4c). These distribution functions have been
considered by des Cloizeaux [32] who also obtained
the exponents 0 1, 02 by E expansion up to order
62, as well as the exponent 0 0 describing the short
distance behaviour of the end-to-end distance distri-

bution p (ro) of a polymer chain (Fig. 6.4a)

where the exponents 80’ 81 1 and 0 2 are [32]
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Fig. 6.4. - Distribution function for the distances ro,
rl, r2 between pairs of points in a linear chain : case (a)
refers to both points being end points, case (b) refers to
the case where one point is an end point and the other
point is in the interior of the chain, while case (c) refers to
the case where both points are interior points of the chain.

Putting now ro, T1 and r2 equafto a nearest neighbour
distance and multiplying these probabilities p (ro),
p (r1 ), p (r2 ) with the total number of configurations
for the linear chain without any constraint, N (l ) -
f’Y -1 1/-t f, yields the total number of configurations
for the polymer networks with the topologies shown
in figures 4.3d, j, and 6.5a, respectively. Therefore,
we obtain the scaling relations (remember that in
figures 4.3 and 6.5a the exponent yg rather than
yg 2013 1 is shown)

This type of reasoning has first been proposed by
Duplantier [23]. In fact, this type of scaling consider-
ation can be generalized to star polymers with a

general number f of arms : e.g., the probability
distribution that both two interior points and one
end point of a linear chain come into close proximity
(distances r much smaller than the radius l v of the
loops involved in this configuration), see figure 6.5b,
would be analogously related to a branched polymer
with a five-fold branch point and the topology shown
in figure 6.5c, which has the exponent y (5 ) -
2 y + 2 a - 2. However, the corresponding ex-

ponent Oi for configurations as shown in figure 6.5b
or configurations involving the close proximity of
even more points of a linear chain have not been
calculated yet.

Fig. 6.5. - Polymer network with one 4-fold branch point
and two free ends (a) which corresponds to the configur-
ation of one linear chain as shown in figure 6.4c, and a
linear chain with two interior points as well as an end point
in close proximity (b) compared to the corresponding
network with a five-fold branch point (c). Exponents
yg for the networks are quoted in the figure.

Using equations (6.43a-c), (6.42a-c), (6.35) and
(6.40) and the e expansion for the bulk exponents
[26]
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it is a matter of simple algebra to verify that

equations (6.43a-c) are satisfied to order E 2. Thus we
could check our scaling relation for these special
cases up to 0 ( E 2).

Before ending this section, we also give a general
form of the exponent ys( f ) for center-adsorbed star
polymers with f arms. Since we should have

y S ( 1 ) = y 1 and y S (2 ) = y - 1, we can expact that
y S ( f ) has the form

Here we used the surface scaling relation (4.18) ;
B ( f ) is a regular function of f and is of O(E2). The
evaluation of B ( f ) up to second order in c is left to a
future study. The expression (6.45) is consistent with
Duplantier and Saleur’s result [22] for the two-
dimensional center-adsorbed star polymers.

7. Polymers with different length.

* SCALING AND CONNECTION TO DIRECT METHOD.

Scaling ideas can also be applied to study precisely
the case where the polymer network is composed of
linear chains with different lengths. Note that the
equivalence proved in section 2 becomes somewhat
useless in its original form for this purpose, because
it deals with polymer networks with fixed total chain
length or with all chains having the same fixed chain
length. In order to formulate the polymer networks
composed of many linear chains with different fixed
lengths, we should introduce the anisotropic n-vec-
tor model, where different spin components have
different coupling constants :

The consideration in section 2 can be extended

straightforwardly to this more general case. Along
the same lines as in section 2, one finds that the
generating function with f variables

for the number of configurations of the polymer
network with fixed topology 9 and with fixed end-
and branch-points is identical to the 2 f-point corre-
lation function

for the anisotropic n-vector model in the n -&#x3E; 0 limit.
Then, as was discussed in section 3, if we remove the

constraint of fixed end- and branch-points, the

generating function for JVg(fi, f2, ..., £ f) becomes
equivalent to the nonlinear susceptibility associated
with the same topology

Here Nx is given by (3.2) and the summations run
over all the end- and branch-points. We should first
note that, in the limit n -&#x3E; 0, if at least one of
K(m,s approaches the critical value Kc of the iso-
tropic model, then the corresponding spin compo-
nent becomes critical. Thus we introduce the reduced

temperatures via the relations

with the same u as the isotropic case (see (3.5) and
(3.9)). The nonlinear susceptibility of this anisotropic
model as a scaling form

where Yg is the exponent for the isotropic case (note
that we may not use the form of (7.6) for the usual
system with magnetic anisotropies, if the limit
n - 0 is not taken for granted [33]). The scaling
function Yg becomes constant when all the argu-
ments become unity. By using (7.5) and replacing
summations over the chain lengths by means of
integrals, the generating function (7.2) is expressed
as multiple inverse-Laplace-transformations :

Therefore, putting (7.6) in this formula, we obtain
the scaling form for the total number of configur-
ations

Here we used the relation 7g==ys+l2013/ (see
(3.14)). Also note that the scaling function Yg
becomes constant when all the arguments become

unity.
In mean-field approximation, the multi-spin corre-

lation function (7.3) decouples into f multiples of the
2-point correlation functions, as was discussed in
section 5. The 2-point correlation function for the
i-th linear chain in the free network is given by
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in d-dimensional Fourier space. In order to discuss
the number of configurations, one should consider
inverse-Laplace-transformations. The inverse-Lap-
lace-transform of c (i) (q) is introduced via

from which one obtains

Next, we transform this into real space. The real-
space propagator is given by the d-dimensional

inverse-Fourier-transformation as

This is obviously the propagator in the direct prob-
lem [12]. In such a way, our magnetic approach is
surely consistent with the direct approach.
We also make a comment on the value of expo-

nents yg of arbitrary free networks within mean-
field theory. The value of the exponent yg for an
arbitrary free polymer network 9 is expressed by
(4.15). Within mean-field theory, dg is given by

(for surface-adsorbed problem, dg = 3/2 - g). Using
a = 0 together with the topological relations for the
number of linear chains f and for the number of
loops nloop

1 00

we identify the mean-field exponent

for arbitrary free networks.
Now we give two examples of the scaling function

Yg within mean-field theory. First of all, we have
Yg = 1 and yg = 1 for any free tree networks

including no loops. A nontrivial f-dependence ap-
pears in general networks with at least one loop. To
see this, we consider watermelon [21] networks

Fig. 7. l. - Watermelon networks. For this network, the
number of configurations is given by (7.18) within mean-
field theory.

shown in figure 7.1. The total number of configur-
ations of this network is calculated as

and hence at d = 4 where mean-field theory should
apply, we have

For comb polymers as shown in figure 4.5, one such
scaling function was calculated by Vlahos and Kos-
mas [15] up to first order in E = 4 - d.
We end this section by pointing out specific

applications of equation (7.8) which arise when

some of the chain lengths involved in the network
become very small. Then it may happen that branch
points which previously were separated by a chain of
length fi i merge and hence form a higher-order
branch point. In this limit of small li, the dependence
of the scaling function Yg on fi i must become a
simple power-law. As an example, let us consider a
comb polymer as shown in figure 4.5, assuming that
there are g = 2 branch points of functionality
f = 3 connected by a chain of length f’ while all

other chains in the comb polymer are assumed to
have the same length f. Then equation (7.8) reduces
to
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where yg = a - 6 + 4 41 + 2 A3 and Y g (1) = 1. On
the other hand, if Q --&#x3E;,. 0 the comb polymer reduces
to a star polymer with four arms, and we then have
X g (f , f’ -. 0 ) -- f ’Y (4) - 1 J.L 4 f (with y (4 ) = a - 5 +
4 A, + A4). This implies that Yg (z --+ 0 ) - zYi with
Yl = - 1 + 2A3 - A4, and hence

Similarly, if Q’ -&#x3E; oo, we obtain essentially a linear
polymer decorated at its ends with two short linear
chains of length f each ; since N g (f , f ’ --&#x3E;,), oo ) -
(f’)’Y -1 JL I’ we can conclude Y’g (z -&#x3E; oo ) - z’Y -1 and
hence

It is straightforward to carry out similar considera-
tions for more complicated topologies as well.

8. Summary and discussion.

First we summarize the main results of this paper.
The generating function of the number of configur-
ations, Zg (K) introduced in (2.6), was shown to be
identical to the 2f-point correlation functions, as-

sociated with the same geometry g, of the n-vector
model in the limit n - 0 (see Sect. 2 for further

details). It was found that the exponent yg for the
number of configurations with all chain lengths
being the same is related by equation (3.14) to the
critical exponent of the essential part (Sects. 3 and 4)
of the nonlinear susceptibility associated with the
2 f-point correlation function. Therefore it becomes
possible to evaluate yg more easily from the many-
point correlation function of magnetic system than
by other methods. New results for yg for the surface-
adsorbed star polymers were derived by mean-field
theory (Sect. 5) and by an E expansion (Sect. 6).
When the center of the star is adsorbed at the

surface, our result for the exponent yg is

for the f arm star polymer. When g ends of arms are
adsorbed on the surface, our result is

where, needless to say, there are g subscripts 1 in
this notation. From further calculations, one can

T An 0 AouT 1000

identify the dependence of y ( f ) and y, (f ) on f and
E = 4 - d. Our final results are given by (6.35) with
(6.40), and (6.45). Especially, y ( f ) was obtained
accurately up to 0 (£2), while all previous work was
restricted to 0 (E ). Our formula (6.35) for y ( f ) is
valid to all orders in E, but inconsistent with Duplan-
tier’s [21] two dimensional exact result (6.39).

In section 4, we presented a phenomenological
scaling theory for general polymer networks in semi-
infinite solvents from the point of view of the

mapping to the magnetic problem. Using this scaling
approach, we argued that yg for any general polymer
networks can be expressed in terms of well-known
exponents like y, v, a, y and y 11, and the exponents
y ( f ) and ys( f ) for free and center-adsorbed star
polymers. If the polymer network 9 has ng free g-
functional units and no surface-adsorbed points,
then yg is expressed by (Eq. (4.15))

On the other hand, if there are also ng surface-
adsorbed g-functional units, then yg is given by
(Eq. (4.16))

Here the quantities dg and dg are related to the
exponent for star polymers as follows :

(see (4.19) and (4.20)). In particular, a comb poly-
mer containing g 3-functional units can be described
by an exponent l’ comb (g) = y + [y (3 ) - y ], and

hence does not involve any new exponents. The
relations (8.3a) and (8.4a) are the same as those of
Duplantier [21]. Surface-adsorbed polymer networks
have previously been considered in two dimensions
only [22] ; our equations (8.3b) agrees with the

corresponding scaling relation of Duplantier and
Saleur [22] in this special case.

In section 6, the scaling relation between the

configuration number exponents y ( f ) for star poly-
mers and the contact exponents 01 for linear chains
was discussed and checked up to 0 (E 2) by using des
Cloizeaux’s result [32] for contact exponents.
Moreover, we discussed, in section 3, the end-to-end
distribution function pg(r) of the polymer-network
till. The exact scaling form of pg (r ) was found to be
linear-chain-like, that is,
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where L = f, + Q2 +... + f f - From (8.5), the mean
square end-to-end distance behaves as

which has the same form as for a linear chain.
Different topologies 9 of the polymer network show
up only in the prefactor in equation (8.6).
Another interesting feature of this paper is that

our Hamiltonian (4.6) with composite fields (4.7)
has a structure quite similar to that obtained earlier
by Lubensky and Issacson [10], who dealt with the
problem of lattice animals. Our derivation of (4.7)
offers a good basis of discussing such a problem. A
somewhat related approach has been presented also
by Gonzales [34]. However, in dealing with general
branched polymer networks one must keep in mind
that our treatment refers to networks with a fixed

topology 9 (containing a finite number of loops and
branch points), in the limit where all polymer chains
in the loops or in between the branch points (as well
as the dangling chains with the loose ends) have
about the same length f, and the scaling limit
f - oo is considered.
When some of the linear chains forming the

network become relatively longer or shorter than the
others, there occurs another power-law dependence
in the number of configurations. This behaviour was
discussed briefly in the last part of section 7.

Next we should mention some future problems.
The polymer networks in solvents at the 0 tempera-
ture are expected to behave in a somewhat different
manner [35-37], although that has not been dealt
with in this paper. Such an extension will be left for a

future study. One further problem is to carry out the
E expansion for y ( f ) and y S ( f ) for star polymers to

higher order. From the present analysis (Sect. 6.3),
it becomes obvious that, if we consider the large
order behaviour, higher powers of f appear in the
result of y ( f ) and 7s(/)’ Therefore, in order to
discuss star polymers with a large number of arms f,
it is necessary to incorporate higher-order terms of
the E expansion. To this end, we have recently
considered the most important behaviour for large f
in each order of the expansion for y ( f ), and

attempted to make a resummation of all these

dominant terms. This work will appear elsewhere

together with the calculational details for the present
second-order result [31].

Another interesting topic is the density profile of
star polymers for which scaling ideas have so far
been proposed on the basis of the phenomenological
blob picture [38]. It would be interesting to check
these ideas from a study of distribution functions for
internal distances in star polymers based on the
present mapping to the magnetic n - 0 problem,
which is then related to a semi-dilute polymer
solution just as for linear polymers [2, 3]. From that
we can immediately conclude that the screening
length § (c ) for solutions of branched polymers (e.g.,
stars) at concentration c scales with c in the same

way as for solutions of linear polymers. For star
polymers this result was anticipated by Daoud and
Cotton [38].
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