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SUMMARY

A prophylactic or therapeutic vaccine offers the best
hope to curb the HIV-AIDS epidemic gripping sub-
Saharan Africa, but it remains elusive. A major chal-
lenge is the extreme viral sequence variability among
strains. Systematic means to guide immunogen
design for highly variable pathogens like HIV are
not available. Using computational models, we
have developed an approach to translate available
viral sequence data into quantitative landscapes of
viral fitness as a function of the amino acid
sequences of its constituent proteins. Predictions
emerging from our computationally defined land-
scapes for the proteins of HIV-1 clade B Gag were
positively tested against new in vitro fitness
measurements and were consistent with previously
defined in vitro measurements and clinical observa-
tions. These landscapes chart the peaks and valleys
of viral fitness as protein sequences change and
inform the design of immunogens and therapies
that can target regions of the virus most vulnerable
to selection pressure.

INTRODUCTION

A cheap, easily administered prophylactic or therapeutic vaccine

represents the best hope for arresting the global HIV-AIDS

epidemic (Baker et al., 2009), but it remains elusive after three

decades of effort. The recent discovery of antibodies that can

neutralize diverse HIV strains (Walker et al., 2011) and evidence

that a cytotoxic T lymphocyte (CTL)-based vaccine has the

potential to abort infection (Hansen et al., 2009, 2011) offer

hope, but important challenges remain. Prominent among these

is the ability of the virus to mutate to new variants that do not
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carry a significant penalty in replicative fitness (Autran et al.,

2008; Goulder and Watkins, 2004). The replicative fitness of

the virus is correlated with disease pathogenesis: infection with

low fitness viruses or the emergence of immune pressure-medi-

ated low fitness viruses is associated with improved control of

the viral load (Miura et al., 2010). It has been suggested, there-

fore, that vaccine-induced immune responses should be

focused on vulnerable regions of the virus, within which muta-

tions impose a high fitness cost (Goulder and Watkins, 2004;

Streeck et al., 2007; Walker et al., 2011).

Highly conserved residues have long been suggested as

a target for effective CTL responses (Létourneau et al., 2007;

Rolland et al., 2007; Streeck et al., 2007), but studies have shown

that viral fitness is also strongly influenced by couplings between

multiple simultaneous mutations (Allen et al., 2005; Brockman

et al., 2007, 2010; Brumme et al., 2009; Dahirel et al., 2011;

Draenert et al., 2004; Ferrari et al., 2011; Leslie et al., 2004;

Létourneau et al., 2007; Martinez-Picado et al., 2006; Miura

et al., 2009a; Miura et al., 2009a, 2009b; Schneidewind et al.,

2007, 2008; Troyer et al., 2009; Walker et al., 2011). These

couplings may arise, for example, due to the structural proximity

of groups of residues within the three dimensional protein struc-

ture or participation of the group in a particular viral function

involving multiple proteins. The coupling betweenmultiple muta-

tions may be compensatory—wherein the fitness of the viral

strain containing multiple mutations is higher than would be ex-

pected from the mutations occurring independently—or delete-

rious—wherein the multiple mutant is less fit than would be pre-

dicted from the single point mutations. Rare individuals capable

of controlling HIV infection without therapy (elite controllers)

naturally target multiple residues in groups of residues within

which multiple simultaneous mutations are particularly detri-

mental to viral fitness (Dahirel et al., 2011). Together, these

studies suggest that groups of residues containing deleterious

mutational couplings are promising new targets for vaccine-

induced immune attack (Dahirel et al., 2011).

A comprehensive knowledge of the fitness of viral strains con-

tainingmultiplemutations would reveal manymore regions of the
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Figure 1. Cartoon Schematic of a Viral Fitness Landscape

The replicative fitness of a viral strain is a function of its amino acid sequence.

This information can be visualized as a topographical map where the amino

acid sequence specifies a location on the landscape, and the height of the

landscape prescribes viral fitness. For visualization purposes, this cartoon

pertains to a virus consisting of only two residues. For multiresidue viral

proteins, the fitness landscape is traced out in higher dimensions. The broken

line indicates a hypothetical high-fitness mutational escape pathway from the

global fitness maximum, to a nearby local maximum.
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viral proteome containing groups of residues vulnerable to

immune targeting. This would open the possibility of designing

immunogens containing these vulnerable regions, which could

be presented by people with diverse HLAs to induce effective

CTL responses (similar to elite controllers). The ability to deter-

mine the fitness of any viral strain could also inform the design

of therapies based on antibodies and small-molecule inhibitors.

Systematic identification of regions where multiple mutations

are deleterious requires an approach that assigns a quantitative

measure of the replicative fitness to any viral strain containing

multiple mutations. First postulated by Sewall Wright in 1932

(Wright, 1932), the fitness landscape describes the replicative

capacity of the virus as a function of its amino acid sequence.

Effective antibody responses would target epitopes in viral

surface proteins defined by narrow peaks, because they are

likely to be conserved across strains. CTL responses should

target combinations of epitopes or protein residues where muta-

tions drive the virus from the high-fitness peaks into the valleys

where its compromised fitness impairs its ability to replicate

and inflict damage to the host. Furthermore, a potent vaccine

would also elicit additional responses to block viral escape to

nearby high-fitness strains identified by the fitness landscape.

Thus, viral fitness landscapes offer an unprecedented means

to identify vulnerable regions of the virus, and guide the design

of efficacious vaccine immunogens and therapies for diverse

viruses. Here, we present a method to determine the fitness

landscape of viruses and apply it to HIV.

The Shannon entropy (a measure of sequence variability) of

single residues and targeted epitopes is correlated with the

emergence of escape mutations and has been proposed as

a measure of the fitness cost of escape (Allen et al., 2005; Ferrari

et al., 2011). This measure, however, is restricted to localized

groups of residues and therefore largely ignores mutational

couplings that are known to be important determinants of viral

replicative fitness. Dahirel et al. recently presented a means to

qualitatively identify groups of sites possessing strong muta-

tional couplings (Dahirel et al., 2011), but this approach does

not furnish quantitative measures of viral fitness required to

construct the fitness landscape. Regression models have been

fitted to in vitro HIV fitness measurements as a function of amino

acid sequence (Hinkley et al., 2011; Kouyos et al., 2012).

However, such approaches require extensive and laborious

in vitro fitness measurements.

In contrast to these approaches, we have devised amethod to

obtain fitness landscapes by direct analysis of available protein

sequence databases, without appealing to experimental fitness

measurements.We apply ourmethodology to proteins within the

key HIV-1 structural polyprotein, Gag, and validate the inferred

fitness landscape by direct comparison to new and existing

experimental data and clinical observations. To illustrate one

utility of the inferred fitness landscapes, we use the landscapes

to design a Gag immunogen that is predicted to prime effica-

cious CTL responses in persons with diverse HLA haplotypes.

RESULTS

Model Development
Only a limited number of full-genome HIV sequences are

currently available. Analyses of these few sequences do not
provide sufficient statistical power for the development of

a unified fitness landscape for the entire HIV proteome, necessi-

tating that we pursue models for individual proteins. However,

our approach is directly extensible to the translation of full

genome sequence data to fitness landscapes as more

sequences become available. Conceptually, it is useful to visu-

alize the fitness landscape as a topographical map (Figure 1),

where the amino acid sequence of the virus determines the loca-

tion of the viral strain on themap, and the height of the landscape

prescribes its replicative fitness.

The HIV-1 structural polyprotein Gag is a promising target for

CTL responses, containing multiple peptides that are presented

by HLA class I molecules, and regions that are mutationally

restricted by structural and functional restraints (Dahirel et al.,

2011; Goulder and Watkins, 2004; Schneidewind et al., 2007,

2008; Troyer et al., 2009). A number of Gag residues exhibit dele-

terious mutational couplings (Dahirel et al., 2011). Thus, to

develop and illustrate the accuracy of our approach, we have in-

ferred fitness landscapes for the four principal Gag proteins: p6,

p7 (nucleocapsid), p17 (matrix), and p24 (capsid).

Multiple sequence alignments (MSA) for the four Gag proteins

in HIV-1 clade B were downloaded and processed from the Los

Alamos National Laboratory HIV database (http://www.hiv.lanl.

gov) as described in the Supplemental Experimental Procedures

available online. These data are compilations of consensus

sequences drawn from infected patients. Our goal is to infer

the viral fitness landscape from these data.

We described each sequence in the MSA by using a binary

code. If the amino acid at a particular residue in a protein

sequence is the wild-type (WT) amino acid, it is denoted by 0;

if the residue is any one of the 19 ‘‘mutant’’ amino acids, it is de-

noted by 1. Neglecting the particular identity of themutant amino

acid greatly reduces the computational cost of extracting fitness

landscapes, and is a good approximation for the relatively well-

conserved Gag polyprotein (cf. Supplemental Experimental

Procedures). The disadvantage is loss of residue-specific
Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc. 607
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Figure 2. Comparison of Our Theoretical Metric of Fitness (E) and

Experimental In Vitro Replicative Fitness Data

(A) In vitro replicative fitness was measured for 19 Gag single and double

mutants (cf. Experimental Procedures). A Pearson correlation coefficient of

r = �0.52 (p = 0.02) reveals a statistically significant negative correlation

between the energy difference of the engineered mutants relative to the WT

strain computed from our model, (E - Ewt) and the logarithm of the measured

relative fitness of the mutant, log(f/fwt).

(B) Replicative fitness data was compiled for 25 engineered Gag mutants

containing up to five point mutations (Brockman et al., 2007 [Jurkat cell], Miura

et al., 2009b, Troyer et al., 2009, Schneidewind et al., 2007, 2008). This data

also exhibits a strong negative correlation r = �0.81 (p = 2 3 10�7). In each

panel, a linear least-squares fit is provided to guide the eye, and error bars

delineating estimated uncertainties in the relative fitness are provided where

available.
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resolution, so that the fitness landscapes cannot differentiate

between mutant viral strains containing different amino acids in

the mutated positions.

The sequence data contain information on the probability of

occurrence of each single, double, triple, and higher order muta-

tion. A mathematical model reproducing these probability distri-

butions describes the evolutionary space accessible to HIV.

Because each protein comprises tens to hundreds of residues,

the number of possible double, triple, quadruple, etc., mutations

is extraordinarily large, making it intractable to fit a model

describing the probability distributions of mutations of all orders.

Instead, we follow themaximum entropy principle (Jaynes, 1957)

to seek the least biased model capable of reproducing the

observed probabilities of occurrence of every single and double

mutation (Mora and Bialek, 2011; Tkacik et al., 2006, 2009) and

use it to predict higher-order mutations. As described in the

Experimental Procedures, this leads us to infer a model where

the probability of occurrence of a particular sequence is

described by a well-studied model in physics, known as the in-

finite-range Ising spin glass (Binder and Young, 1986).

We found that mathematical models inferred in this way not

only reproduce the pattern of single and double mutations, but

also predict with high accuracy the observed probabilities of

occurrence of triple and quadruple mutants, and the probability

of observing a sequence containing any particular number of

mutations (cf. Supplemental Experimental Procedures). In fact,

depending upon the Gag protein, our mathematical models

capture 70%–99% of the information content on correlated

mutational interactions contained in the available sequences

derived from patients. Thus, our models have achieved the

goal of capturing the mutational patterns exhibited by the virus

within the MSA.

Having fittedmodels for each protein, a quantity, E, can be as-

signed to viral strains containing any combination of mutations

(cf. Experimental Procedures). In analogy with the physics litera-

ture, we refer to E as the ‘‘energy.’’ The value of E corresponding

to a particular mutant strain is related to the probability of

observing this strain within the population of all possible

mutants, whereby low-energy strains are highly prevalent and

high-energy strains comparatively rare. We assume that highly

prevalent—and therefore low energy—sequences in the popula-

tion correspond to strains with high intrinsic replicative fitness.

Our model suggests that log(f), where f is the fitness of any

mutant strain, should be negatively correlated with its energy

(cf. Equation 1). Under relatively restrictive assumptions, Sella

and Hirsh have precisely derived the connection between

E and fitness (Sella and Hirsh, 2005). However, the complex

interactions between HIV and the immune systems of diverse

individuals make it difficult to mathematically demonstrate that

our model obtains intrinsic viral fitness landscapes. Accordingly,

in the following sections we present strong evidence that E is

indeed a good proxy for fitness by testing our model predictions

against new and existing in vitro experimental data and clinical

observations from HIV-infected persons.

The Inferred Fitness Landscape Compares Well with
In Vitro Replicative Fitness Data
If our model for the fitness landscape inferred from sequence

data is a measure of intrinsic replicative viral fitness, we should
608 Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc.
observe a negative correlation betweenmeasured in vitro fitness

of mutant viral strains and our proposed metric of fitness, the

energy, E, corresponding to that strain. This is because our

model predicts that low E corresponds to high fitness (see

above). To test this hypothesis, we predicted the energy of 19

viral strains with single and double mutations in the p24 protein.

These mutations were introduced to the HIV-1 clade B NL4-3

backbone, and the in vitro replicative capacity of each strain

was measured (cf. Experimental Procedures). Each residue

was mutated to the most common mutant amino acid at that

position observed in the sequence data.

Following the prescription of our model (cf. Equation 1), we

plot the energy of strain i relative to the WT, (Ei � Ewt), against

the logarithm of its measured relative fitness, log(fi/fwt). We

observe a statistically significant negative correlation (Figure 2A,

Pearson correlation coefficient, r = �0.52 (p = 0.02, two-tailed

Fisher test)). The direct relationship between Ei and fi also

exhibits a strong negative correlation (Figure S1A, r = �0.68



Figure 3. Clinically Documented Mutant Strains Correspond to Low

Energy/High Fitness States within our Inferred Model

Clinically documented mutant strains correspond to low energy (high fitness)

states within our inferred model. Circles represent energies assigned by our

model to the 10 p24 single mutants, 8 p24 double mutants, and 5 p17 double

mutants listed within Table S1, which identifies the particular mutants, HLA

associated epitopes, and computed energies. Squares represent energies of

the strains of three p17 epitopes observed to undergo sequence adaptation in

longitudinal deep sequencing of an HIV-infected host (Henn et al., 2012). In all

cases, residues outside the epitope are treated as WT in the assignment of

energies.
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[p = 9 3 10�4]). Because our fitness assays were performed

in vitro in the absence of immune pressure, these results suggest

that our inferred landscapes describe the intrinsic replicative

fitness effects of mutations in Gag.

To further test our model, we compiled 50 previously pub-

lished experimental measurements of the in vitro replicative

fitness of engineered p24 Gag mutants containing up to five

polymorphisms (Brockman et al., 2007; Crawford et al., 2007;

Miura et al., 2009a; Schneidewind et al., 2007, 2008; Troyer

et al., 2009). Because in inferring ourmodel we do not distinguish

between any of the 19 possible mutant amino acids at each posi-

tion observed in the MSA, our model is statistically most accu-

rate in describing the fitness effects of mutant strains containing

the most probable mutant amino acids at mutated positions.

Accordingly, we first compared our model to those 25 fitness

measurements in which the engineered polymorphism corre-

sponds to the single most probable mutant amino acid at that

position observed in the MSA. As for comparisons with our

own experimental data, we observed a strong negative correla-

tion between our predictions of the energy of a strain and its

measured in vitro replicative fitness (Figure 2B, r = �0.81

[p = 2 3 10�7]). The relationship between Ei and fi also

exhibits a strong negative correlation (Figure S1B, r = �0.75

[p = 63 10�6]). Despite the inaccuracy of the binary approxima-

tion for the other 25 published data points, the negative correla-

tion was maintained upon considering all 50 data points (Figures

S1C and S1D). In the Supplemental Experimental Procedures,

we describe an extension of our model that does not require

making the binary approximation.

The viral sequences used to parametrize our model were ex-

tracted from infected individuals, each of whom possess
a unique adaptive immune response targeting different regions

of the HIV proteome. Thus, the effectively fittest viral strains in

each individual are expected to differ. Why, therefore, do we

see good correspondence between E and in vitro intrinsic repli-

cative fitness? Assuming the representation of HLA alleles to

approximately follow that of United States Caucasians

(Gonzalez-Galarza et al., 2011), the recognition frequencies of

the most common HLA restricted p17 and p24 epitopes

(Streeck et al., 2009) indicate that, of the 363 residues in p17

and p24, only 46 are targeted by more than 10% of the popula-

tion, no single residue is targeted bymore than 23%, and 146 are

not targeted at all. If we may assume that a diverse range of HLA

class I haplotypes are represented within the population from

which the sequences were obtained and that infecting strains

rapidly revert to replicatively more fit strains if the immune pres-

sure in a new host does not attack the region in which a mutation

was forced in the infecting host (Davenport et al., 2008; Friedrich

et al., 2004; Henn et al., 2012), then our models represent aver-

ages over haplotypes in the population. This averaging may

explain why our models appear to reflect the underlying intrinsic

viral fitness, rather than ‘‘footprints’’ of adaptive immune pres-

sure (Matthews et al., 2009).

Clinically Documented Escape Strains Correspond to
High Fitness Strains
Viral strains can escape CTL recognition by establishing one or

more point mutations within, or flanking, the target epitope. It

is expected that the clinically observed escape strains will be

those that permit the virus to evade immune recognition with

minimal cost to its replicative fitness, and should correspond

to low-energy strains in our model.

Published accounts of escape strains sequenced from HIV in-

fected individuals and statistical analyses of proximate HLA

associated polymorphisms allowed us to compile a list of p17

and p24 escape mutations against which to test our inferred

fitness landscape (Brockman et al., 2007, 2010; Brumme et al.,

2009; Draenert et al., 2004; Leslie et al., 2004; Martinez-Picado

et al., 2006; Miura et al., 2009b; Schneidewind et al., 2007,

2008; Troyer et al., 2009). In p24, we gathered a set of ten single

and eight double mutants, and in p17, a set of five double

mutants and one triple mutant. In contrast to Shannon

entropy-based approaches that consider the variability of single

residues or epitopes in isolation (Allen et al., 2005; Ferrari et al.,

2011), our method permits quantitative ranking of any multiresi-

due mutant according to the value of E (proxy for fitness) as-

signed by our model. The particular mutants, HLA associated

epitopes, and computed energies are listed in Table S1. The

energy assigned to each mutant by our model is shown in

Figure 3.

Of the p24 single mutants, nine out of ten possess energies

within the bottom 11.7% of the spectrum of 231 possible

single-mutant strains (E < 8.4). The remaining candidate,

carrying a mutation at position 264, possesses an energy

E = 19.4, placing it at the 29th percentile of the energy spec-

trum. The low fitness (high energy) apparently tolerated by

this mutant is explained by the observation that mutations of

this residue are never observed in isolation, but only in concert

with a mutation at position 268 (Schneidewind et al., 2007). We

find that the interaction coupling between these residues is
Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc. 609



Figure 4. Escape Mutations Associated with HLA B*57 in the TW10

(Gag240–249) Epitope Occur at Residues Predicted to Incur the Small-

est Fitness Penalty

Comparison of point mutant energy costs with documented B*57 associated

escape mutations in the TW10 (Gag240–249) epitope in p24. The ten residues

constituting the epitope are indexed along the abscissa, and the energy cost

associated with making a point mutation at each position, DE, is along the

ordinate. The greater the energy cost, the higher the fitness penalty. Mutations

at position 246 were not observed within our sequence alignments, leading to

the specification within our model of an infinite energy cost of a point mutation

at this position, which we denote by *. The observed escape mutations at 242

and 248 (Brumme et al., 2009) occur precisely at the two positions carrying the

lowest energy cost (smallest fitness penalty).
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compensatory, leading to a high-fitness double mutant with

a low energy (E = 11.0) corresponding to the bottom 1.3% of

the spectrum. A third compensatory mutation is also frequently

observed at position 173 (Schneidewind et al., 2007), leading to

further compensation, and a highly fit triple mutant (E = 2.9).

This progression of compensatory interactions demonstrates

the ability of our model to capture couplings between multiple

simultaneous mutations throughout the protein, which cannot

be achieved by the Shannon entropy of single residues or

epitopes.

All eight of the p24 double mutants reside within the bottom

4.2% of the energy spectrum of all possible 26,565 doubly

mutated strains. Similarly, the energies of four of the five p17

double mutants lie in the bottom 6.1% of the 8,646 possible

double mutants. The remaining double mutant resides in the

31st percentile. While the p17 triple mutant possesses an

energy E = 16.99, flipping one particular residue back to WT

results in a highly fit (E = 1.03) double mutant that is the 13th

lowest energy strain of all 8,646 possible double mutants

(0.15% energy percentile) (cf. Table S1). We note that we iden-

tified the p17 triple mutant from a statistical analysis of poly-

morphisms in the vicinity of the A11-TI9 epitope at Gag84–92
(Brumme et al., 2009), rather than an observation of this strain

within an infected person.

By cross-referencing the list of best-defined HIV CTL epitopes

(the CTL ‘‘A list’’) (Frahm et al., 2008), with a compilation of statis-

tically significant HLA associated polymorphisms (Brumme

et al., 2009), we identified 25 epitopes in p17 and p24 with

defined CTL escape mutations. If we assume that all point muta-

tions within, or flanking, these epitopes lead to equally efficient

CTL escape, our inferred fitness landscape predicts that escape

mutations should correspond to those residues in epitopes that

incur the smallest energy penalty upon mutation and thus maxi-

mally preserve viral fitness.

As illustrated in Figure 4, the well-documented B*57 associ-

ated escape mutations at positions 242 and 248 in the TW10

(Gag240–249) epitope in p24 (Brumme et al., 2009) coincide

precisely with the point mutations leading to the lowest fitness

penalty (lowest energy cost). Similar results for the 24 remaining

examples are presented in Figure S2 In 21 of 25 cases, the

observed escape mutation—or one such mutation in epitopes

where multiple escapes are observed—occurs at precisely the

least costly, or next least costly, position. Of the four remaining

cases, two of the documented escape mutations identified by

statistical analyses are defined as ‘‘indirect’’ HLA associations

(Brumme et al., 2009), implying that they may exist as compen-

satory mutations elicited by a prior mutation in other proteins,

rather than as primary escapes to evade CTL pressure. Our

models have been constructed for single proteins and are there-

fore capable of capturing mutational couplings between resi-

dues within the same protein. As more whole-genome

sequences become available, our method can be applied to

identify the fitness effects of interprotein couplings.

The fact that the preponderance of escape mutations

observed in people with different genotypes are high fitness

(low energy) strains further supports the hypothesis that the in-

ferred fitness landscape reflects intrinsic viral fitness, and not

immune footprints of individuals with particular HLAs. Not all

high fitness mutant strains are clinically observed, due in part
610 Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc.
to finite sampling of the circulating strains, redundancy in the

genetic code rendering mutations of some amino acids intrinsi-

cally more difficult than others, and that not all positions are

subject to immune pressure-driven mutations.

Temporal Patterns of Mutations in Individual Patients
Follow High-Fitness Routes
As a further, stringent test of whether our models reflect intrinsic

viral fitness, we compared our predictions to recently reported

longitudinal deep sequencing within a single host over the first

4 years of HIV infection (Henn et al., 2012). Three of the six

sequenced CTL Gag epitopes in this individual exhibited

sequence adaptation over the course of infection. Comparison

of the observed sequence adaptations to the fitnesses (energies)

computed from our model show that they populate the high

fitness (low energy) states of the inferred landscape (Figure 3)

and, the temporal adaptation courses follow high fitness (low

energy) routes (Figure 5).

As illustrated in Figure 5A, the infecting strain contained two

mutations within the KW9 (Gag28–36) epitope, presumably driven

by immune pressure in the previous host (Henn et al., 2012). They

occur at the second and third energetically least costly positions

predicted by our model, and the energy of this double mutant is

in the bottom 3.3% of all double mutants. By day 1,543 of infec-

tion, 79.5% of the population had reverted to WT. The LY9

(Gag78–86) epitope of the infecting strain (Figure 5B) contained

a point mutation at the least costly position. By day 1,543,

31.3% of strains had reverted to WT, with the remaining strains

split between three other states that we predict to be highly fit.

The energies of these four states are very close, suggesting

that stochastic fluctuations may have populated the marginally

less fit states. Finally, the GY9 (Gag71–79) epitope in the infecting

strain (Figure 5C) carried a single mutation at the second least



Figure 5. The Inferred Fitness Landscape

Describes Viral Evolution in Individual

Patients

Longitudinal deep sequencing within a single in-

fected host identified three p17 CTL Gag epitopes

as undergoing sequence adaptation during the

first 4 years of HIV infection (Henn et al., 2012). In

(A)–(C), the title provides the location of each CTL

epitope within Gag (e.g., Gag28–36), the HLA

association (e.g., A24), and the name of the

epitope (e.g., KW9). On the left side, we present

bar charts illustrating our inferred h parameter (c.f.

Experimental Procedures) at each position in the

epitope. On the right, we list the strains observed

by deep sequencing at the six time points (Henn

et al., 2012), the fraction of the deep sequencing

reads corresponding to each strain (Henn et al.,

2012), and the energy of each strain assigned by

our model. Red letters indicate point mutations

relative to ourMSA consensus; all residues outside

the epitope are treated as WT in the computation

of energies from our model. In (D), we present the

temporal adaptation courses tracking the energy

assigned by our model to the mutant strains of

each epitope sequenced at each time point.

(A) The infecting strain contains two mutations in

the KW9 epitope (Gag28–36) at positions 28 and 34,

corresponding to the positions with the second

(h28 = 1.50) and third (h34 = 2.12) lowest h values

and a compensatory J coupling (J28,34 =�0.15, c.f.

Experimental Procedures), lowering the energy of

the double mutant relative to the two independent

point mutations. By day 476, 61.5% of the viral

population has reverted to the lower energy single

mutant (h28 = 1.50). By day 1,543, 79.5% of viral

strains have reverted to the lowest energy (E = 0)

WT state. The remaining 20.5% occupy the third

least costly singly mutated state (h34 = 2.12). The

lowest (h30 = 0.55), second lowest (h28 = 1.50), and

third lowest (h34 = 2.12) singly mutated states are

similar in energy.

(B) The LY9 epitope (Gag78–86) enters with a single

mutation in the infecting strain at the single lowest

energy position (h82 = 0.17). No sequence adap-

tation is observed until day 1,543, at which time

31.3% of the population has reverted to the lowest

energy (E = 0) WT, 57.1% of the population occupy the second lowest energy singly mutated state (h79 = 0.97), 6.3% occupy a low energy doubly mutated state

(h79 = 0.97, h82 = 0.17, J79,82 = 0.25), and 5.4% remain in the infecting state.

(C) The GY9 epitope (Gag71–79) entered with a single mutation at the second least costly position in the epitope (h76 = 1.30), nearly equienergetic with the least

costly point mutation (h79 = 0.97). By day 165, the WT strain transiently emerged in 30.8% of the population but vanished by day 476. At day 1,543, 37.8% of the

population remains in the infecting state. The remaining 62.2% possess mutations at the second least costly (h79 = 0.97) and least costly (h76 = 1.30) positions,

and a small compensatory coupling (J76,79 =�0.04). This double mutant is of very low energy, lying within the lowest 1%of all 8,646 possible p17 double mutants.

Of the three epitopes considered, only for GY9 is a significant fraction of the day 1,543 population not observed in the lowest energy WT state, although it

transiently emerges in day 165. Of the three epitopes, GY9 was the only one against which a CTL response was reported (Henn et al., 2012), consistent with

a situation in which the WT state is effectively less fit than a competing mutant strain capable of evading immune pressure.

(D) Temporal adaptation courses follow high fitness (low energy) routes for each of the three epitopes: KW9 (red circles), LY9 (green squares), and GY9 (blue

triangles).

Immunity

Translating HIV Sequences into Fitness Landscapes
costly position. By day 165, theWT transiently emerged in 30.8%

of strains, to be replaced in 62.2%of the population by day 1,543

with a highly fit double mutant residing within the bottom 1% of

all double mutants. In Figure 5D, we show the temporal adapta-

tion courses of the three epitopes. Of the three epitopes, a CTL

response was reported against only GY9 (Henn et al., 2012). This

response may render the WT strain effectively less fit than higher

energy mutants that are able to evade immune pressure.
Accordingly, in the presence of this immune pressure, the WT

may be outcompeted by a highly fit double mutant, offering

a plausible rationalization for its observed transient emergence

and disappearance.

That the strains observed during sequence adaptation within

a single host correspond to the high fitness (low energy) muta-

tions predicted by our model, further substantiates our inferred

landscapes as reflections of intrinsic viral fitness.
Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc. 611



Figure 6. Fitness Costs Associated with Targeting Different HLA-

Associated Immunodominant Epitopes

Rank-ordered bar chart of 121 p24 class I HLA epitopes according to the

computed energy penalty, D < E >, imposed upon the viral ensemble. The

particular epitopes considered are listed in Table S2. Epitopes associated with

a reported immunodominant response within a particular HLA class I allele

(Streeck et al., 2009) are designated by colored bars and labeled with the

epitope location and HLA association. Red bars indicate that the corre-

sponding HLA allele has been linked with enhanced HIV control, whereas blue

bars denote those that have not (Miura et al., 2009b; Pereyra et al., 2010;

Trachtenberg and Erlich, 2001). The immunodominance data pertaining to the

B*57 KF11 epitope Gag162–172 were assumed to also apply to the epitope

formed from its nine residue subset, Gag164–172. Six of the seven immunodo-

minant epitopes leading to the greatest fitness cost are associated with

protective HLA alleles; the dashed line at D < E > = 1.54 represents the cutoff

above which all immunodominant responses are associated with protective

alleles.
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CTL Targeting of Peptides Presented by Elite
Controllers Incur the Largest Fitness Costs
A diversity of HIV mutant viral strains exists within an infected

host (Lee et al., 2008). Viral populations containing strains with

lower replicative fitness have been correlated with better disease

control (Miura et al., 2010). We hypothesized that our model may

be able to identify effective CTL immune responses as those that

give rise to mutations that significantly decrease the average

fitness of the viral population within a host.

The results we have reported strongly suggest that the energy,

Ei, of a particular viral strain, i, is a good measure of its intrinsic

replicative fitness. To simulate the diversity of viral strains that

may exist within an infected host, we used the energies pre-

dicted by our model to generate a large ensemble of mutant

strains in which each is represented in proportion to its fitness

(cf. Equation 1; Supplemental Experimental Procedures). The

average fitness of an ensemble of sequences should correlate

with its average energy, < E > = Si P(i) Ei, where P(i) is the prev-

alence of strain i in the ensemble.

We suggest that an effective immune response will signifi-

cantly increase the average energy (decrease the average

fitness) of the ensemble of viral strains in an individual. Such

responses will preferentially eliminate high-fitness viral strains,

leaving behind unfit strains that are less able to replicate and

damage the host. Conceptually, this corresponds to deletion of

those strains residing near the peaks of the fitness landscape,

causing the ensemble as a whole to be pushed into the low-

fitness valleys (cf. Figure 1). The fitness cost upon targeting
612 Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc.
a particular CTL epitope was quantified as the change in < E >,

D < E >, upon removing from the ensemble all viral strains with

WT amino acids in the targeted epitope, simulating the effect

of CTL elimination of these strains. Our model predicts that tar-

geting epitopes associated with larger values of D < E > should

result in better control of HIV infection.

Using this criterion, we rank-ordered the 121 p24 epitopes

defined in the Los Alamos HIV Molecular Immunology Data-

base (http://www.hiv.lanl.gov/content/immunology) listed in

Table S2. We define a particular HLA associated epitope to

be immunodominant if its cognate CTL response is observed

in more than 50% of patients expressing this HLA in either

the chronic or acute phase of infection (Streeck et al., 2009).

Available immunodominance data allowed us to identify 12

such epitopes, of which 8 are associated with protective HLA

alleles that clinical and genome wide association studies have

linked with superior ability to control HIV infection (Hendel

et al., 1999; Pereyra et al., 2010; Streeck et al., 2009; Trachten-

berg and Erlich, 2001) (Table S2). As illustrated in Figure 6, the

three immunodominant epitopes that lead to the greatest

fitness costs, and six of the seven immunodominant epitopes

leading to the greatest fitness costs, are presented by HLA

molecules associated with persons who can naturally control

HIV infections (Hendel et al., 1999; Miura et al., 2009b; Pereyra

et al., 2010; Trachtenberg and Erlich, 2001). We find, therefore,

that elite controllers target epitopes where mutational escape

incurs the largest fitness costs, consistent with the observation

that viral strains extracted from these persons have impaired

replicative capacity (Miura et al., 2009b). Notably, the results

in Figure 6 pertain to multiple HLA types, providing further

support for the assertion that our landscapes describe intrinsic

viral fitness, rather than ‘‘footprints’’ of adaptive immunity

(Matthews et al., 2009). Our results also suggest that we can

predict disease pathogenesis from knowledge of viral strains

in a patient because we can determine the average fitness of

the in-host viral population. As an aside, we observe that the

negative D < E > value corresponding to epitope 121 reflects

an immune pressure that preferentially removes unfit strains, al-

lowing the remaining fitter strains to occupy a larger fraction of

the population. This effect may suggest a possible interpreta-

tion for failed vaccine trials that led to increased viral loads

and a reduction in time to antiretroviral treatment resumption

(Autran et al., 2008).

Dahirel et al. identified groups of residues (‘‘sectors’’) in Gag

subject to mutational couplings particularly detrimental to viral

fitness (Dahirel et al., 2011). The three top-ranked immunodomi-

nant epitopes in our model contain five, six, and seven residues,

respectively, within the top sector of Dahirel et al. containing the

most detrimental couplings, whereas the nine remaining

epitopes each contain four residues or fewer. This suggests

that our landscapes are capable of identifying vulnerable protein

regions containing deleterious mutational couplings.

Not all immunodominant p24 epitopes associatedwith protec-

tive alleles will lead to large fitness costs, because each allele

may mediate its beneficial effect through only a small fraction

of the epitopes it targets. For example, B*27 is a protective allele,

with chronic phase escape from its KK10 (Gag263–272) epitope

associated with progression to AIDS (Pereyra et al., 2010;

Schneidewind et al., 2007; Trachtenberg and Erlich, 2001). The

http://www.hiv.lanl.gov/content/immunology
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relatively low ranking of this epitope in Figure 6 may be due to (at

least) two factors. First, this epitope contains only three residues

from Dahirel et al.’s top sector (Dahirel et al., 2011). Nine B*27

epitopes are defined within our list of 121 epitopes, containing

a total of 11 residues within this sector. Targeting the KK10

epitope in isolation may lead to only a modest reduction in viral

fitness, whereas targetingmultiple B*27 epitopes simultaneously

may lead to a more substantial fitness loss due to additional

deleterious couplings. Second, the protective action of B*27

may lie elsewhere in the proteome, as suggested by recent

work demonstrating a strong B*27 response to the KY9 Pol

epitope (Friedrich et al., 2011; Payne et al., 2010).

The available data allowed us to identify only one immunodo-

minant CTL epitope within p17, and none within p6 and p7,

thereby precluding similar analyses for these proteins (Streeck

et al., 2009).

The Inferred Fitness Landscapes Can Be Used for In
Silico Immunogen Design
As one illustration of the value of fitness landscapes, we consider

the design of CTL Gag immunogens that may induce potent

immune responses in people with diverse genotypes. We

observe that this strategy may be directly extended to guide

the design of antibody immunogens, combinations of potent

antibodies, or small molecule inhibitors.

Peptides from regions of HIV that are particularly vulnerable to

multiple mutations tend to be immunodominantly targeted by

CTLs in persons possessing protective HLA molecules (Dahirel

et al., 2011). In contrast, nonprotective HLA molecules domi-

nantly present epitopes from regions where mutational escape

from immune pressure is relatively easy. Nonprotective HLAs

can target peptides from vulnerable regions only subdominantly

when the whole proteome is presented (cf. Table S2) (Dahirel

et al., 2011; Streeck et al., 2009). The previous section demon-

strates that our landscapes can identify vulnerable regions of

the viral proteome that can be presented subdominantly (or

dominantly) by diverse HLAs. An immunogen designed to prime

these responses, whereas excluding dominantly presented

regions from which mutational escape is easy, could, if properly

delivered as a vaccine, elicit effective immune responses within

hosts with diverse haplotypes.

We consider the design of a CTL Gag immunogen for a target

population comprising the top 21 haplotypes of North Americans

with European ancestry, accounting for 44.6% of this popu-

lation (http://www.ncbi.nlm.nih.gov/projects/gv/mhc). Cross-

referencingwith the list of optimally defined ‘‘A list’’ CTL epitopes

(Frahm et al., 2008), we found that the class I HLA-A, HLA-B and

HLA-C molecules in this population restrict p = 1, 0, 10, and 20

epitopes in p6, p7, p17, and p24, respectively. For each Gag

protein, we constructed all possible combinations of 1,2,3,.,p

epitopes, where each combination represents an immunogen

candidate. There are 1, 1,023, and 1,048,575 combinations for

p6, p17, and p24, respectively. The efficacy of each candidate

in each of the 21 haplotypes was evaluated by identifying those

epitopes in the immunogen that could be presented by HLA

molecules constituting the haplotype and the fitness penalties

upon simultaneously targeting these epitopes. The penalty, D <

E >, was calculated in the manner described in the previous

section. The fitness penalty exacted by forcing mutations within
the epitopes comprising each immunogen candidate, i, in each

haplotype, j, is denoted as DhEiji.
We evaluated each immunogen candidate, i, derived from

each of the three proteins according to three criteria: (1) the

weighted average fitness impact in the target population,

DhEii =
P21

j=1ujDhEiji, where uj is the fraction of haplotype j in

the target population, (2) the fraction of the target population

that respond to at least one epitope in the immunogen (fractional

coverage), and (3) the number of epitopes in the immunogen. The

performance of all p6, p17, and p24 immunogen candidates

according to these three criteria are presented in Figures 7A–

7C. Within this candidate pool for each protein, we identified

candidates such that immunogens that are superior to them in

any one criterion (increased fitness penalty, higher population

coverage, fewer included epitopes) are inferior in one or more

of the other criteria. These immunogens constitute the ‘‘optimal

frontier’’ (or ‘‘Pareto frontier’’; Arora, 2011) of the candidate pool,

where improvements in any one criterion are necessarily accom-

panied by a deterioration in another. Candidates that do not lie

on the frontier are suboptimal, because improvements may be

made in any one criteria without incurring a penalty in another.

For p6, p17, and p24, we identified 1, 25, and 44 optimal candi-

dates for inclusion in an immunogen. Their epitope compositions

are listed in Tables S3–S5. The evaluation criteria may be altered

without changing the approach. For example, in Figures 7D–7F

we show the results of calculations in which criterion (ii) was

modified to evaluate the fraction of the target population that

respond to at least two epitopes.

There are (1 + 1)3 (25 + 1)3 (44 + 1) = 2,340 candidate immu-

nogens for the combined [p6, p17, p24] polyprotein formed from

the combination of candidates on the optimal frontier for each

individual protein, plus the ‘‘null’’ immunogen containing no

epitopes in a particular protein. By using the same criteria as

before, we identified 95 Gag polyprotein immunogens on the

optimal frontier Figure 7G. Their composition is listed in Table

S6. As this table shows, our strategy permitted the identification

of a 12 component (113 residue) immunogen with 100%

coverage of the target population (i.e., all members respond to

at least one epitope). Similar optimizations could be carried out

to define potent immunogens where each member of the popu-

lation responds to two, or three, or more epitopes. In future work,

we plan to test the efficacy of our designed Gag immunogens in

inducing potent CTL responses in vitro and in animal models.

DISCUSSION

HIV is a highly mutable virus that also replicates very rapidly. The

large diversity of viable viral strainsmakes it difficult for the adap-

tive immune system to mount natural responses that effectively

control the virus (Autran et al., 2008; Goulder and Watkins,

2004). Immune responses or therapeutic agents that target

regions of the viral proteome where mutations lead to a large

cost in replicative fitness can be very effective for viral control

or aborting the infection (Dahirel et al., 2011; Goulder and

Watkins, 2004; Streeck et al., 2007). Systematic means to derive

the viral fitness landscape permits the identification of such

regions. These landscapes, therefore, offer an unprecedented

guide for the rational design of vaccine immunogens that could

redirect the adaptive immune response toward regions of the
Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc. 613
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Figure 7. Evaluation of Immunogen Candidates

(A–C) Scatter plots of (A) p6, (B) p17, and (C) p24 vaccine candidates in the three-dimensional design space spanned by: (1) the weighted average fitness impact

in the target population, DhEi, (2) fraction of the target population that respond to at least one epitope in the immunogen (fractional coverage), and (3) the number

of components in the vaccine. The target population comprised the 21 most prevalent haplotypes in North Americans of European ancestry, accounting for

(legend continued on next page)
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virus most vulnerable to attack. They could also help design

optimal combinations of passively-administered antibodies

and small molecule therapeutic inhibitors that could neutralize

diverse strains.

We report a computational method that can translate viral

sequence databases into quantitative landscapes of intrinsic

fitness of viral strains containing multiple, potentially synergistic,

mutations. We have applied this approach to proteins contained

in Gag and positively tested our predictions against experiments

and clinical data.

As one illustration of how to leverage the insights furnished

by inferred fitness landscapes, we have designed a Gag

immunogen to prime CTL immune responses against vulner-

able regions of the viral proteome within a target human

population. Recent experiments with mousepox virus suggest

that such long-peptide immunogens, if properly delivered, can

redirect the host immune system to mount CTL responses

capable of conferring protective immunity upon mice that

are otherwise naturally susceptible to infection (Remakus

et al., 2012). Similarly, Melief, van der Burg, and coworkers

have reported the efficacy of long-peptide immunogens to

kill cancerous tumors if they are delivered in a way that results

in highly immunogenic responses (Melief and van der Burg,

2008). We plan to test our immunogen in animal models

with optimized delivery approaches that result in sufficient

immunogenicity.

Subject to continued validation, the approach we have devel-

oped provides a general methodology to translate viral sequence

data into fitness landscapes. With both viral sequencing and

computational hardware costs rapidly declining, our method-

ology offers ameans to compute full-genome fitness landscapes

for diverse viral pathogens— and possibly cancers—as suffi-

ciently large numbers of sequences become available. This

methodology may therefore represent a potentially powerful

tool to guide the design of improved prophylactic and thera-

peutic strategies.
EXPERIMENTAL PROCEDURES

Fitness Landscape Inference

Under the binary approximation, the sequence of an m-residue protein may be

specified by the m-dimensional vector z!, the elements of which, fzigmi= 1, indi-

cate whether the amino acid at position i is WT, zi = 0, or mutant, zi = 1. The

maximum entropy model that fits the one- and two-body mutational probabil-

ities is the Ising spin glass model (Binder and Young, 1986). The probability of

observing a particular sequence, z!, within the population of all possible

mutants is

Pð z!Þ= 1

Z
e�Eð z!Þ; Eð z!Þ=

Xm

i= 1

hizi +
Xm

i= 1

Xm

j= i+ 1

Jijzizj: (Equation 1)

In analogy with spin glasses, we refer to E as a dimensionless ‘‘energy,’’ and

the normalizing factor Z=
P

fzig= f0;1ge
�Eð z!Þ as the partition function. The hi
44.6% of this population. Respectively, 1, 1,023, and 1,048,575 immunogen cand

candidates were located on the Pareto frontier (red circles). The composition of

(D–F) Scatterplots analogous to those in (A)–(C) for (D) p6, (E) p17, and (F) p24,

respond to at least two epitopes in the immunogen; 1, 31, and 62 candidates ar

(G) Scatter plot of the 2,340 combination Gag vaccine candidates in the three-dim

the target population, DhEi, (2) fraction of the target population that respond to at

components in the vaccine. The compositions of the 95 Pareto efficient candida
and Jij model parameters are inferred from the one- and two-point mutational

probabilities observed in the protein sequence data using a semianalytical

extension of the iterative gradient descent implemented by Mora and Bialek

(2011). We detail this procedure in the Supplemental Experimental Proce-

dures, along with a description of the Monte-Carlo procedure used to sample

from the fitted models for each of the four Gag proteins.

Replicative Fitness Assays

The following mutations and mutation combinations were introduced into

a HIV-1 subtype B NL4-3 plasmid using the QuikChange II XL Site-Directed

Mutagenesis kit (Stratagene, La Jolla, CA), as previously described (Wright

et al., 2012): 146P, 147L, 146P/147L, 219Q, 242N, 219Q/242N, 186I, 310T,

295E, 182S, 179G, 229K, 331R, 190I, 302R, 315G, 168I, 326S, 310T/326S.

To generate the mutant viruses, we electroporated 10 mg of mutant plasmids

into an HIV-1-inducible GFP-reporter T cell line by using conditions described

previously (Huang et al., 2011), and virus growth was subsequently monitored

by detection of GFP-positive cells by flow cytometry (Brockman et al., 2010;

Wright et al., 2012). Replication capacities of mutant viruses were similarly as-

sayed in the GFP-reporter T cells by flow cytometry (Brockman et al., 2010;

Wright et al., 2012). Briefly, cells were infected at a MOI of 0.003 and the expo-

nential slope of increase in the percentage infected cells between days 3 and 6

postinfection was calculated as the measure of viral replication capacity.

Replication capacities of mutant viruses were expressed relative to that of

theWTNL4-3 virus, included as a control in every assay, such that a replication

capacity of 1 indicated replication equal to that of NL4-3. Assays were per-

formed in triplicate and the results averaged.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, six tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.immuni.2012.11.022.
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Evans, D.T., Desrosiers, R.C., Mothé, B.R., Sidney, J., et al. (2004).

Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat.

Med. 10, 275–281.

Friedrich, D., Jalbert, E., Dinges, W.L., Sidney, J., Sette, A., Huang, Y.,

McElrath, M.J., and Horton, H. (2011). Vaccine-induced HIV-specific CD8+

T cells utilize preferential HLA alleles and target-specific regions of HIV-1.

J. Acquir. Immune Defic. Syndr. 58, 248–252.

Gonzalez-Galarza, F.F., Christmas, S., Middleton, D., and Jones, A.R. (2011).

Allele frequency net: a database and online repository for immune gene

frequencies in worldwide populations. Nucleic Acids Res. 39(Database issue),

D913–D919.

Goulder, P.J., and Watkins, D.I. (2004). HIV and SIV CTL escape: implications

for vaccine design. Nat. Rev. Immunol. 4, 630–640.
616 Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc.
Hansen, S.G., Vieville, C., Whizin, N., Coyne-Johnson, L., Siess, D.C.,

Drummond, D.D., Legasse, A.W., Axthelm, M.K., Oswald, K., Trubey, C.M.,

et al. (2009). Effector memory T cell responses are associated with protection

of rhesus monkeys from mucosal simian immunodeficiency virus challenge.

Nat. Med. 15, 293–299.

Hansen, S.G., Ford, J.C., Lewis, M.S., Ventura, A.B., Hughes, C.M., Coyne-

Johnson, L., Whizin, N., Oswald, K., Shoemaker, R., Swanson, T., et al.

(2011). Profound early control of highly pathogenic SIV by an effector memory

T-cell vaccine. Nature 473, 523–527.

Hendel, H., Caillat-Zucman, S., Lebuanec, H., Carrington, M., O’Brien, S.,
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Structural and functional constraints limit options for cytotoxic T-lymphocyte

escape in the immunodominant HLA-B27-restricted epitope in human immu-

nodeficiency virus type 1 capsid. J. Virol. 82, 5594–5605.

Sella, G., and Hirsh, A.E. (2005). The application of statistical physics to evolu-

tionary biology. Proc. Natl. Acad. Sci. USA 102, 9541–9546.
Streeck, H., Lichterfeld, M., Alter, G., Meier, A., Teigen, N., Yassine-Diab, B.,

Sidhu, H.K., Little, S., Kelleher, A., Routy, J.-P., et al. (2007). Recognition of

a defined region within p24 gag by CD8+ T cells during primary human immu-

nodeficiency virus type 1 infection in individuals expressing protective HLA

class I alleles. J. Virol. 81, 7725–7731.

Streeck, H., Jolin, J.S., Qi, Y., Yassine-Diab, B., Johnson, R.C., Kwon, D.S.,

Addo, M.M., Brumme, C., Routy, J.P., Little, S., et al. (2009). Human immuno-

deficiency virus type 1-specific CD8+ T-cell responses during primary infec-

tion are major determinants of the viral set point and loss of CD4+ T cells.

J. Virol. 83, 7641–7648.

Tkacik, G., Schneidman, E., Berry II, M. J. and Bialek, W. (2006). Ising models

for networks of real neurons. Arxiv preprint arXiv:q-bio/0611072.

Tkacik, G., Schneidman, E., Berry, M.J., II, and Bialek, W. (2009). Spin glass

models for a network of real neurons. Arxiv preprint arXiv:0912.5409.

Trachtenberg, E.A., and Erlich, H.A. (2001). A review of the role of the human

leukocyte antigen (HLA) system as a host immunogenetic factor influencing

HIV transmission and progression to AIDS (Los Alamos, New Mexico, USA:

HIV Molecular Immunology).

Troyer, R.M., McNevin, J., Liu, Y., Zhang, S.C., Krizan, R.W., Abraha, A., Tebit,

D.M., Zhao, H., Avila, S., Lobritz, M.A., et al. (2009). Variable fitness impact of

HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS

Pathog. 5, e1000365.

Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.-P.,

Wang, S.-K., Ramos, A., Chan-Hui, P.-Y., Moyle, M., et al.; Protocol G

Principal Investigators. (2011). Broad neutralization coverage of HIV by

multiple highly potent antibodies. Nature 477, 466–470.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selec-

tion in evolution. In Proceedings of the Sixth International Congress of

Genetics vol. 1, pp. 356–366, Genetics Society of America.

Wright, J.K., Naidoo, V.L., Brumme, Z.L., Prince, J.L., Claiborne, D.T.,

Goulder, P.J., Brockman, M.A., Hunter, E., and Ndung’u, T. (2012). Impact

of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity.

J. Virol. 86, 3193–3199.
Immunity 38, 606–617, March 21, 2013 ª2013 Elsevier Inc. 617


	Translating HIV Sequences into Quantitative Fitness Landscapes Predicts Viral Vulnerabilities for Rational Immunogen Design
	Introduction
	Results
	Model Development
	The Inferred Fitness Landscape Compares Well with In Vitro Replicative Fitness Data
	Clinically Documented Escape Strains Correspond to High Fitness Strains
	Temporal Patterns of Mutations in Individual Patients Follow High-Fitness Routes
	CTL Targeting of Peptides Presented by Elite Controllers Incur the Largest Fitness Costs
	The Inferred Fitness Landscapes Can Be Used for In Silico Immunogen Design

	Discussion
	Experimental Procedures
	Fitness Landscape Inference
	Replicative Fitness Assays

	Supplemental Information
	Acknowledgments
	References


