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I. DENSITY OF ZEROS FOR A FIELD WITH ANISOTROPY

We consider a field ~S ≡ (Sx(x, y), Sy(x, y)). Subject to joint rotational invariance of ~S and ~r ≡ (x, y), the most
general Gaussian weight is
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where ~S(~q ) is the Fourier transform of ~S(~r ), λ(q) and τ(q) are longitudinal and transverse contents of the power
spectrum, and τ(q) = λ(q) in an isotropic system. The average density of zeros is obtained from[1]
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Here the average can be taken at ~r = 0 because of translation symmetry. Also, the averages ∂α
~S are independent

since the probability distribution function is invariant under ~S → ~S + ~C . The first average is easily calculated as
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The variance of ~S(0) is
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and by inserting Eq. (4) to Eq. (3), we get
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As a first step to calculating the average determinant, we consider
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We next rewrite Eq. (6) as

〈∂iSα∂jSβ〉 = δijδαβ κ + (δijδαβ + δiαδjβ + δiβδjα) µ, (7)

where κ =
∫

dq q3 τ(q)/(4π), and µ =
∫

dq q3 (λ(q) − τ(q))/(16π) is zero in an isotropic system. In the isotropic
system, each of the four derivatives is an independent variable. However, for µ 6= 0, there are two correlated pairs
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such that the average value of the determinant is zero.
As a second step towards the calculation of average absolute value of the determinant, we find its probability

distribution as
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As established above, the two factors in the final exponent are independent random elements. The random variables
∂αSβ ≡ uαβ are Gaussian distributed, with co-variances given by Eq. (7). By inverting the co-variance matrix, we
can construct the probability distribution for {uαβ}, and then calculate the average
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(The normalization N in the denominator is simply the numerator evaluated at ω = 0.) Similarly, the second average
is
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Inserting Eqs. (9) and (10) into Eq. (8) gives the implicit result

p(d) =

∫ ∞

−∞

dω

2π

eiωd

[1 − 2iωµ + ω2(κ2 + 2µκ)]
1

2 [1 + 2iωµ + ω2(κ2 + 6µκ + 8µ2)]
1

2

. (11)

Let us consider the isotropic case, µ = 0. The probability distribution function is
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from which we obtain
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From Eqs. (2), (5), and (13), average density of pinwheels is then
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where P (q) = λ(q) + τ(q) = 2τ(q) is the power spectrum of the field. The above result is smaller by a factor of two
than that obtained in Ref. [2]. However, our calculation was with a vector field, whereas the orientation preference is
a director field which is the same if the vector is inverted. To incorporate this feature, Ref. [2] works with a complex
field |z(~x |e2iθ(~x ) ≡ (Sx + iSy)

2, a procedure that doubles the zeros calculated above for the field (Sx + iSy). This
factor is not important to us, since we are interested in how the result is modified by anisotropy.

Performing the integral in Eq. (11) for µ 6= 0 is not an easy task. We note that since 〈d〉 = 0, the average of the
absolute value provides a measure of the width of the probability distribution p(d). A similar measure of the width

of the distribution that is much easier to calculate is the standard deviation
√

< d2 >. Using standard properties of
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Gaussian distributed variables, the variance of d is calculated as
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As measures of the width of the distribution, 〈|d|〉 and
√

〈d2〉 should vary together. For our estimate, we shall assume
that they are proportional, and choose the a proportionality constant that makes the two expression equal for µ = 0;
i.e. we make the replacement
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resulting in the density of zeros
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Using the expressions for κ and µ, we note that
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where P (q) ≡ λ(q) + τ(q) is the total power content at q. With the aid of Eq. (18), Eq. (17) now becomes
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For a fixed P (q), the density of zeros is minimum in the isotropic limit of τ(q) = λ(q). In the extreme anisotropic

limit of τ(q) = 0 or λ(q) = 0, the density of zeros increases by a factor of
√

2. In view of the approximations involved,
we also performed numerical simulations to check if the density of pinwheels is higher in the anisotropic case. We
found that this is indeed the case although the relative increase in density of 1.12 is less than the value of

√
2.

Let us illustrate the time evolution of the density of zeros, using a simple linear model for development of the field,
in which the longitudinal and transverse components of the power spectrum grow as

λ(q, t) = λ0(q) erl(q) t,

τ(q, t) = τ0(q) ert(q) t, (20)

where growth rates are rl(q) = 2[J(q) + q2K(q)] and rt(q) = 2J(q). If initially λ0(q) = τ0(q) = P0/2, for q < qmax,
i.e. an isotropically random initial condition, the density of zeros starts as

n(t = 0) ≈ 1

16π
q2
max. (21)

As time goes on, modes with the largest growth rate dominate, reducing n through pair annihilations. Assuming
small anisotropy, such that rl(q) ≈ rt(q) = 2J(q) with a maximum at q̄ = 2π/Λ, we have
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However, because of small anisotropy (rl(q) 6= rt(q)), one of these nearly degenerate modes will dominate the other,
such that for longer times,
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Figure 3 in the manuscript shows schematic evolution of n for isotropic and anisotropic cases, the increase of the
density in the latter must also involve creation of pairs of vortices.
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II. CORTICAL MAP OF CAT

We also measured joint histograms, hR[2(θi − θj), 2(φj − θj)] for the map of cat in a manner similar to the monkey.
The size of the cat map is 204×372 pixels, each representing a region of linear size 13 micrometers. As in the case of
monkey map, we display histograms for short separations of 5 to 10 pixel spacings [Figs. 1(a) and (b)] and separations
comparable to pinwheel separations of 55 to 60 [Figs. 1(c) and (d)]. There is no dependence on the relative angle for
short distances, but such a dependence appears on distances comparable to pinwheel separations. This again indicates
a lack of full rotation symmetry in the map of cat. To estimate errors, we average over 2000 histograms each of which
is constructed by random samplings with 2.9% pixels of the cat map.

III. PINWHEEL PATTERNS WITH VARIOUS ANISOTROPIC COUPLINGS

Since we do not claim to know the precise form of interactions that lead to cortical patterns, we should at least show
that our conclusions are not sensitive to specific choice of interactions. We tested a variety of long-range interactions
in our numerical simulations, and found that pinwheels are generally present in the presence of ‘anisotropy.’ As an
example, we observe a pinwheel pattern with a negative value of K which is used to generate the map in Fig. 2a.
Another potential concern is that in our simulations the orientations are represented by a vector, while in actuality
they should be modelled by a director field (vectors without arrows). We also performed simulations in which all
angles were explicitly limited to the range from 0 to π. Figure 2b displays the result of such a simulation, once more
resulting in a pinwheel pattern (for interaction strength of K = 0.0039).

The type of anisotropy introduced above, which couples rotations of orientation and topography, should not be
confused with the anisotropy corresponding to preference for a particular direction. In fact, we find that both maps
of monkey and cat show a predominance of certain orientations. The histogram of orientations for monkey is shown
in Fig. 3a and for cat in Fig. 3b. We test the possibility of stabilizing pinwheels with this form of anisotropy by
numerical simulations in models with a preference for the horizontal direction, employing the time evolution

∂t~si = ~si

(

1− | ~si |2
)

+
∑

j

[J (rij) ~sj + K (rij) (~sj · r̂ij) r̂ij ] + ~H, (24)

where ~H = Hxx̂. Introducing the predominance of certain orientation does not change the outcomes. We still find
that with K(rij) = 0, and preference for the horizontal direction with Hx = 0.1, results in a rainbow state with no
vortices, as depicted in Fig. 4a. We obtain a lattice of pinwheels by adding interactions K(rij) = Jl with Hx = 0.1
[Fig. 4b]. The pinwheels are thus not stabilized by the preference for a particular angle, but by the reduced symmetry
of combined rotations of orientations and the visual field.

IV. ERROR ESTIMATION FOR HISTOGRAMS OF ORIENTATION PREFERENCE

We estimate error bars in Fig. 2c and e of the manuscript by averaging over 2000 histograms. Each histogram is
calculated by randomly samplings 2.9 % of total pixels in the monkey map. We then tested that this artificial sampling
procedure does not lead to spurious effects due to finite-size and other potential factors by applying it to numerically
generated maps. For the latter, we generated random pinwheel patterns through superposition of isotropic Fourier
modes having the same longitudinal and transverse components. To do so, we obtain the orientation at position
(i, j) by two-dimensional Fourier transformation of Sα(~q)(i, j) = exp(c1 + c2q

2 − c3q
4) exp(iΦα,i,j) where α = x or

y and Φα,i,j is a random variable ranging from 0 to 2π. Figure 5 displays such an isotropic pattern with 256×256
pixels, with a pinwheel density close to that of the monkey map. The angle histograms from the isotropic pattern
for 2 (φij − θj) = 0 (red line) and 2 (φij − θj) = 90 (black line) are shown in Fig. 5b. We construct histograms for
the isotropic pattern with larger size (512×512) than the monkey map(360×480) [Fig. 5]. Here error bars in Fig. 5b
and c are estimated by averaging over 2000 histograms. As in the analysis for the monkey map, each histogram
is constructed by randomly sampling 2.9% of total pixels in one pattern. The difference between two histograms
for 2 (φij − θj) = 0 and 2 (φij − θj) = 90 from the monkey map is larger than the histogram differences form both
isotropic patterns with sizes 256×256 and 512×512. Hence we have some confidence that observed couplings of relative
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orientation to the underlying topography in the monkey map are not from statistical errors.
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FIG. 1: Histograms of OP from a map of cat. Here θi(θj) is the preferred orientation at a pixel i(j), and φij is the angle of the
line joining points i and j. The left column displays full histograms as functions of relative orientations, as well as orientations
relative to the line joining the two pixels i and j. In the right column, solid lines represent histograms for 2(φij − θj) = 0o, and
dotted lines represent histograms for 2(φij − θj) = 90o. a and b correspond to separations of 5 to 10 pixel spacings, and c and
d to separations of 55 to 60 pixels.

FIG. 2: a. Stable pattern of pinwheels with joint rotation symmetry, with a negative value of K = −0.0039. (Compare with
Fig. 4c of the manuscript.) b. A pinwheel pattern is also generated in simulations where the angles are constrained to the
region of [0,π].
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FIG. 3: Predominance of certain orientation in the maps of monkey (a) and cat (b). All orientations are not equally present
in either map.
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FIG. 4: a. The development of a random initial condition by a filter with isotropic pair interactions (K(rij) = 0), but with a
preference for the horizontal direction (Hx = 0.1). Such preference does not stabilize the pinwheels. b. The stabilized pinwheel
pattern with anisotropic pairwise interactions (K(rij) = −0.0039), in addition to a preference for the horizontal direction
(Hx = 0.1).
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FIG. 5: a. A pinwheel pattern randomly generated by superposition of isotropic Fourier modes. The size of the pattern is
256×256 pixels. The relative angle histograms for 2(φij −φj) = 0o (black) and 2(φij −φj) = 90o (red) from patterns with sizes
of 256×256 (b) and 512×512 (c). Here error bars are estimated by averaging over 2000 histograms. Neither pattern shows
comparable topographic dependence to that in the monkey map.


