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Neurons in the visual cortex respond best to rod-like stimuli of given orientation. While the
preferred orientation varies continuously across most of the cortex, there are prominent pinwheel

centers around which all orientations are present. Oriented segments abound in natural images, but
tend to be collinear; neurons are also more likely to be connected if their preferred orientations are
aligned to their topographic separation. These are indications of a reduced symmetry requiring joint
rotations or orientation preference and the underlying topography. We verify that this requirement
extends to cortical maps of monkey and cat by direct statistical analysis. Furthermore, analytical
arguments and numerical studies indicate that pinwheels are generically stable in evolving field
models which couple orientation and topography.

I. INTRODUCTION

The preferential response of cells in the primary visual
cortex to lines of a particular orientation has been known
for over forty years [1], yet remains a subject of intense
experimental study and modelling. Early models were
simple structural arrangements of local iso-orientation
columns into regular arrays [7–9]. Intricate maps of
global patterns of orientation preference over the cortex,
obtained by optical imaging [2,3], revealed more com-
plex arrangements. Thus, later models focused on the
development of orientation preference (OP) in networks
of neurons whose connectivity is modified in response to
stimuli [10–12]. Obtaining large scale patterns of OP
with many pinwheels is computationally costly with the
latter models [25]; drastically simplified models generate
large static maps essentially from bandpass filtered white
noise [13–15].

Analytical understanding of the development of visual
maps, and its connections to other problems in pattern
formation, is best obtained in terms of evolving fields.
In this framework, OP is modelled by a director field
s ≡ (sx(x, y), sy(x, y)), indicating the preferred orienta-
tion at location r ≡ (x, y) on the cortex. The field s (r, t)
then evolves in time according to some development rule
that depends on its configurations at earlier times [16,17].
Wolf and Geisel (WG) have shown [18] that a large num-
ber of such evolutions can be summarized through a dy-
namical equation ∂ts (r, t) = F [s]. (WG combine the two

components into a single complex field z = (sx + isy)
2
.)

Common elements in models of evolving fields are:

(a) Starting from an initial condition with little OP, there
is a rapid onset of selectivity governed by L [s], the lin-
ear part of the functional F [s]. The characteristic length
scale observed in cortical maps is implemented by a lin-
ear operator that causes maximal growth of features of
wavelength Λ, i.e. acting as a ‘band-pass filter’ in the
parlance of circuits. It is possible to follow the linear
development analytically: WG show that the density of
pinwheels (zeros of the field z(r)) has to be larger than
π/Λ2 in this regime.

(b) Since the linear evolution leads to unbounded growth
of OP, nonlinearities are essential for a proper satura-
tion of the field. While analytical studies of nonlinear
development are difficult, numerical simulations indicate
that the OP patterns continue to change (albeit more
slowly) even after their magnitudes have saturated. More
importantly, the pinwheels typically annihilate in pairs,
giving way to a rainbow pattern of wavelength Λ. To
maintain pinwheels, development has to be stopped, or
extrinsic elements such as inhomogeneities that trap the
pinwheels have to be introduced. [26] Since the neural
processes that lead to OP are still not fully understood,
the stability of pinwheels has not been a topic of much
study amongst neuroscientists. Nevertheless, the search
for intrinsically stable pinwheel patterns has motivated
some recent studies [19,20], briefly described below. We
propose here an alternative explanation, demonstrating
that evolving field models with proper rotational symme-
try generically lead to patterns with stable pinwheels.
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FIG. 1. a depicts the image of an arrow formed by oriented
solid lines, on a topographic grid of dotted lines. In b, each
solid line is rotated anti-clockwise by 45o independent of the
grid. The thus ‘rotated’ image bears little resemblance to the
original. In c, there is simultaneous rotation of the grid and
the solid lines, as the whole image is rotated.

Symmetry considerations are paramount in problems
of pattern formation. Since all directions are more or
less equally present in cortical maps, practically all mod-
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els of OP (certainly those summarized in WG) assume
that different orientations are equivalent. [28] This is im-
plemented by requiring the evolution of s (r, t) to be un-
changed if all angles are rotated together. This rotation
is independent of the topographic space r, which is also
assumed to be isotropic (no preferred directions). Two
versions of rotation are illustrated in Fig. 1. Figure 1b
displays a collection of oriented lines that are rotated in-
dependently of the background grid from Fig. 1a. We
propose that the appropriate symmetry for OP maps is
simultaneous rotations of the orientations and the un-
derlying space, as illustrated in Fig. 1c. The observa-
tional evidence for this reduced symmetry is reviewed in
Sec. II. As suggested by Fig. 1, the absence of full ro-
tation symmetry in natural images is expected, and in
fact demonstrated in Ref. [21]. We present a novel sta-
tistical analysis of OP maps from monkey and cat, which
also supports the lack of full rotation symmetry. Conse-
quences of reduced symmetry in evolving field models are
discussed in Sec. III. A linear analysis indicates that the
reduced symmetry introduces an additional time scale
into the problem, and an interval in which the pinwheel
density can actually increase by pair creations. Vectorial
versions are center–surround interactions are then em-
ployed in numerical simulations of model with joint rota-
tion symmetry. The simulations result in patterns with
intrinsically stable pinwheels, and histograms of OP sim-
ilar to those obtained from cat and monkey maps.

II. STATISTICS OF NATURAL IMAGES AND

CORTICAL MAPS

Casual consideration of scenes strongly suggests that
the persistence of edges of stationary objects (as in
Fig. 1), or of tracks of moving ones, leads to oriented
segments that cannot be rotated independent of their
background. This has been confirmed and quantified by
statistical tests in Ref. [21], where an orientation was as-
signed to each pixel of images from the natural world.
The primary query of Ref. [21] was the range and direc-
tionality of correlations in orientation. They observed
that correlations depend on the relative angles in the to-
pographic space, in a manner consistent with a collection
of circles.

Since the task of the visual system is to extract infor-
mation from observed images, it is likely that the neu-
ral connections that carry out the associated computa-
tions are influenced by symmetries and anisotropies of
the natural scenes. Contemplation of the Hebbian rule
[27] “neurons that fire together wire together,” suggest
that there should be more connections between neurons
whose shared OP is collinear to their topographic sepa-
ration. Indeed, biocytin injections which map the ‘hori-
zontal’ connections of neurons have been combined with
optical imaging of the primary visual cortex of the tree

shrew [22]. The connections from an injection site are
anisotropic, preferentially extended along the axis of OP
at the site. While less pronounced, similar anisotropies
are also observed in maps from monkey [23] and cat. Such
connectivities are incompatible with rotations of OP in-
dependent of the underlying topography. A map with all
OPs rotated by a fixed angle would require a different set
of horizontal connections.
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FIG. 2. Histograms of OP from a cortical map of monkey.
a. The relative orientation 2 (θi − θj), between two pixels i
and j at a distance R, is one argument of the histogram;
the second is the OP of one point measured relative to the
line joining the two pixels (at angle φij). Full histograms
are shown on the left column, while the right column is for
2 (φij − θj) = 00 (black line) or 90o (red line). b and c are for
short separations of 5 to 10 pixel spacings, and show no de-
pendence on the relative angle. By contrast, there is a small
but clear indication of a coupling to the underlying topogra-
phy in d and e which are taken at distances of 70 to 75 pixels,
comparable to the separations of pinwheels. Such dependence
indicates the lack of full rotation symmetry in the map.

To test the hypothesis that cortical maps of OP also
reflect the reduced rotation symmetry, we undertook sta-
tistical tests of a map of monkey (in the form of 360×480
pixels, provided by K. Obermeyer). At each point i of the
map, there is an orientation angle θi, measured relative
to an arbitrary axis; two points i and j, separated by a
distance R form an angle φij with the same axis, as indi-
cated in Fig. 2a. Binning into intervals of 10o, we make
joint histograms of the form hR [2 (θi − θj) , 2 (φij − θj)].
(The factor of two is introduced since the relative ori-
entation is defined from 0 to π.) The second argument
measures the angle relative to the line joining points i
and j. If the orientations are independent of topography,
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the histograms should be independent of their second ar-
gument. This is not the case for the monkey histograms
shown on the left column in Fig. 2; the right column
shows cross-sections at 2 (φij − θj) = 0o and 90o which
display maximal contrast for parallel orientations. The
larger probability for 2 (φij − θj) = 90o does not vio-
late expectations based on collinear orientations. This
is because we do not know the actual topographic axis
in our monkey map. The choice of an arbitrary axis
does not modify θi − θj , but shifts the histograms along
2 (φij − θj). The advantage of our method is the ability
to detect lack of full rotation symmetry in the absence of
knowledge of topographic axis; but the lack of this infor-
mation prevents making a connection to correlations in
visual inputs.

Figures 2b and 2c are at separations R which are a
fraction of the typical distance between pinwheels, and
show no indication of any dependence on topography.
By contrast, Figs. 2d and 2e correspond to values of
R comparable to pinwheel separations. There is now a
small, but distinct dependence on the orientation of the
line between two points; indicating that the OPs do not
follow a distribution with full rotational symmetry. Sim-
ilar results were obtained for maps from cat (204×372
pixels, provided by M. Sur and J. Schummers), and are
available in supplementary materials. In both cases the
dependence on the second argument is small (at most
around %20), and some assessments of its statistical sig-
nificance is needed. Since we had access to only one map
in each case we made an indirect estimate of statistical
error by constructing an artificial ensemble of 2000 his-
tograms though random samplings of 2.9% of total pixels
in the monkey map. (As described in the supplemental
material we tested this sampling procedure on maps gen-
erated by numerical simulations.) From the thus included
errors bars in Fig. 2e, we conclude that the differences fall
outside statistical errors.

III. MODELING JOINT ROTATION SYMMETRY

We believe that the restriction to joint rotation sym-
metry is an essential aspect of the OP maps, and should
be incorporated into models and analytical studies. In
computational models with neural networks [25] this is
naturally achieved through the choice of proper training
set of images. How should this be implemented in analyt-
ical models of evolving fields? If the inputs to locations
(such as i and j in Fig. 2) are predominantly parallel, a
Hebbian interaction between them would evolve to min-
imize θi − θj . If the OP at i is indicated by a vector si,
this interaction can be written as J(R)si ·sj. [29] Such an
interaction, however, makes no reference to the relative
orientation θj −φij and thus cannot represent a response
to a preponderance of inputs that are collinear with the
topographic (unit) vector r̂ij . To account for the latter,

we could have distinct interactions between components
of si and sj that are parallel or perpendicular to r̂ij ; the
difference between them can be represented by a new in-
teraction of the form K(R) (si · r̂ij) (sj · r̂ij). [29]

As a specific model, let us assume a set of si(t), stim-
ulated by inputs pi(t), and interactions between them
that reflect the average activity of si(t) over previous
times. The two types of interaction introduced above are
then given by 2Jij(t) = [si · sj]av.

and Jij(t) + Kij(t) =
[(si · r̂ij) (sj · r̂ij)]av.

. In the initial stages, the couplings
are small and si(t) merely follow the inputs pi(t). The
couplings then evolve to reflect the statistics of inputs:
A tendency for the pi(t) and pj(t) to be parallel leads to
a positive Jij , while if and only if these inputs also tend
to be collinear, a finite Kij is generated. As the dynam-
ics proceeds further, the increased couplings could well
freeze si to a particular pattern. The interactions then
follow suit, and become correlated to the frozen orienta-
tions. Such a scenario could well account for the correla-
tions between OP and connectivity observed in the tree
shrew. [22] However, our intention is not to promote a
particular scenario, but to emphasize that any interac-
tions not specifically ruled out by symmetry will generi-
cally be present. In the following, we shall explore some
consequences of joint rotation symmetry on evolution of
the patterns.

A. Linear analysis

To underscore the difference between the two forms of
rotation symmetry, let us consider the regime of linear
evolution which is analytically tractable. Due to trans-
lation symmetry, the problem is simplified in terms of
the Fourier modes s̃α (q, t) =

∫

d2xeiq·xsα (x, t), where
α = 1, 2 (or x, y) labels the two components of the vec-
tor s̃. After Fourier transforming the interactions J(R)
and K(R) introduced above, the linear evolution equa-
tion takes the form

∂ts̃α (q, t) =
∑

β=1,2

[J(q)δαβ + qαqβK(q)] s̃β (q, t) . (1)

Due to the assumed isotropy, the functions J and K only
depend on the magnitude of the vector q. For example,
they can be band-pass filters peaked at q = 2π/Λ, to re-
produce the power spectrum of cortical maps. In the case
of full rotation symmetry, invariance of the equations un-
der independent rotations of s and r requires K(q) = 0.
However, if s and r can only be rotated together, a fi-
nite K(q) is possible and should be generically present.
(One way to see this is that q · s̃ is invariant under joint
rotations, but not separate rotations of s̃ and r.)

A finite K(q) mixes the evolution of the two compo-
nents s̃1 and s̃2. This mixing can be removed by decom-
posing the field ·s̃ into longitudinal and transverse compo-
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nents. For a given q, the longitudinal component is par-
allel to q, and the transverse component is perpendicular
to it. Under the action of the linear operator in Eq. (1),

the two components grow as e[J(q)+q2K(q)]t and eJ(q)t. If
K(q) = 0 (full rotation symmetry) the two modes grow
at the same rate, over a time scale τ1(q) ∼ 1/J(q). Evan
a small K(q) breaks this degeneracy, introducing a sec-
ond time scale τ2(q) ∼ 1/[q2K(q)] over which the effects
of anisotropy become apparent.

Note that when the two modes grow at the same rate
(K(q) = 0), an equal superposition to these modes is
compatible with a rainbow pattern which does not con-
tain any nodes. (Of course the rainbow is one of many
possible patterns.) However, K(q) is generically non-zero
for a joint rotation symmetry, and one of the two modes
eventually dominates the other. The dominance of trans-
verse or longitudinal components increases the density of
zeros, and is incompatible with rainbow patterns. We
repeated the analysis of WG for the density of pinwheels
in the linear regime, in the presence of a small K(q). The
calculation is cumbersome and relegated to the supple-
ments, but the final result for the evolution of pinwheel
density is depicted in Fig. 3. The initial random pattern
has a high density which rapidly decrease in a time of or-
der τ1 ∼ J (q)

−1
to the limiting value of π/Λ2 predicted

by WG. This is the case for both isotropic(K(q) = 0) and
anisotropic (K(q) 6= 0) cases. However, pinwheel den-
sity then goes up by a factor of approximately

√
2 for

the anisotropic case on a time scale of τ2 ∼
[

q2K (q)
]

−1

while it remains as π/Λ2 for the isotropic case. (See
the supplement for the approximations that lead to this
conclusion.) The increase in density implies (pair) cre-
ation of pinwheels in the anisotropic case, a phenomenon
that is absent in the isotropic models. Note that the
ultimate density ratio between isotropic and anisotropic
cases is a universal number, independent of the degree
of anisotropy. The strength of K(q) only dictates the
time scale over which the density increases, and not its
ultimate value.
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FIG. 3. Schematic depiction of the evolution of the density
of zeros for isotropic(red line) and anisotropic (blue line) in-
teractions. Anisotropy results in an increase of the density of
pinwheels in the latter stages of linear regime. The non-linear
extrapolation is a guess based on simulation results.

B. Simulations

While the above arguments from the linear regime
strongly suggest that joint rotational symmetry promotes
pinwheel stability, verification of this hypothesis comes
from simulations of the nonlinear evolution. For the lat-
ter, {si(t)} was placed on a lattice of points of locations
ri, and evolved in time according to

∂tsi = si

(

1− | si |2
)

+
∑

j

[J (rij) sj + K (rij) (sj · r̂ij) r̂ij ] , (2)

where rij = ri − rj has magnitude rij along the unit vec-
tor r̂ij . The nonlinearity appearing in the first term on
the right hand side stabilizes the magnitude of si to unity.
The linear evolution is governed by a vectorial center–
surround filter, composed of two parts: (a) A standard
center–surround filter with positive couplings Js in a cir-
cle of size R/2 ∼ Λ and negative values Jl in an annulus
from R/2 to R. (b) Additional couplings in the annular
region that explicitly depend on orientations relative to
the lines joining lattice points, and invariant only under
joint rotations. We employ positive long–range couplings
K, to mimic the preferential ‘horizontal’ connectivity of
co-oriented co-axially aligned receptive fields, as reported
in Ref. [22]. (Similar kinds of anisotropic interactions
were also employed in a model for dynamics of neural
activity in the visual cortex [24].)

Simulations are started on an L×L lattice with initial
values of |si| = 10−3, equally distributed over all angles,
with Js = 0.01, Jl = −0.0039, and R = 10. As shown
in Fig. 4a, undifferentiated initial conditions quickly de-
velop into a pattern with pinwheels reminiscent of actual
maps. Further evolution depends on the symmetry of
development rules. Full rotation symmetry with K = 0,
and the action of (b) above turned off, leads to a rain-
bow state with no pinwheels at long times, as in Fig. 4b.
However, reduction of this symmetry by adding interac-
tions in (b) with K = 0.0039, above eventually results
in a square lattice of pinwheels, as in Fig. 4c. Natu-
rally, we do not imply that pinwheels in cortical maps
form a square lattice (various inhomogeneities could eas-
ily trap these vortices in a distorted arrangement), but
that they are intrinsically stable under such development
rules. The precise choice of long–range couplings is not
important in this regard, and we observed pinwheel pat-
terns with other types of anisotropic coupling (some also
available in the supplements).
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FIG. 4. a The development of a random initial condition
by a typical center–surround (bandpass) filter leads to a col-
lection of pinwheels. The filter used in b has full rotation
symmetry (K(r) = 0 in Eq. (2)). In this case the pinwheels
annihilate in pairs, giving way to a rainbow pattern at long
times. c By contrast, a model with joint rotation symmetry
evolves to a stable pattern of pinwheels. This figure was gen-
erated by the vectorial center–surround filter in Eq. (2), with
a non-zero K(r).

Not surprisingly, the anisotropic couplings lead to cor-
relations between OP and the topographic angles. We re-
peated the histogram analysis of actual maps with those
generated by numerical simulations, and some results are
plotted in Fig. 5. There is no dependence on topogra-
phy for K = 0, as depicted in Figure. 5 which shows
two relative angle histograms for 2 (φij − θj) = 0o and
2 (φij − θj) = 90o. For K 6= 0, there are positive correla-
tions in relative angles for 2 (φij − θj) = 0o and negative
correlations for 2 (φij − θj) = 90o[Fig. 5b-d]. The topo-
graphic dependence is robust , and does not significantly
depend on the strength of the anisotropic coupling.

FIG. 5. Histograms of relative angles
for 2(φij − θj) = 0o(black line) and 2(φij − θj) = 90o(red
line) with isotropic (a) and anisotropic (b) interactions.

IV. CONCLUSIONS

Collinearity is a prominent characteristic of line seg-
ments in natural images. It is reasonable to expect that
cortical maps of OP reflect a corresponding tendency. A
basic consequence of the tendency of line segments to
be collinear is the absence of a full rotation symmetry,
independent of the underlying topography. We demon-
strate the lack of full symmetry by analyzing histograms

of monkey and cat maps. We then explore consequences
of reduced symmetry on the behavior of evolving fields
of OP. In the linear regime, we find that the new interac-
tions allowed generates a new time scale over which the
pinwheel density can actually increase. Numerical sim-
ulations confirm that this tendency persists in the non-
linear regime, resulting in patterns with stable pinwheels.

While the stability problem of pinwheels in OP maps
is not widely appreciated, it has been the motivation for
two other recent studies. In Ref. [19] a different cou-
pling between neurons is used based on a ‘wiring length
minimization’ principle, while in Ref. [20] higher order
non-linearities are employed in place of the stabilizing
si | si |2 term in Eq. (2). While these models lead to sta-
ble patterns of pinwheels, they can not account for the
‘anisotropic’ features of actual OP maps, as both have
full rotation symmetry. A potential relation between the
symmetries and correlations of line segments in natural
images, and the statistics of OP maps (including stabil-
ity and arrangement of pinwheels), may provide further
clues to how visual information is processed by the brain.
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