Introduction


Hendrik Brugt Gerhard Casimir (1909-2000)

H.B.G. Casimir, Proc. K. Ned. Acad. Wet. 51, 793 (1948)

Normal modes of the Electromagnetic (EM) field between (ideal metal) plates:

Quantum fluctuations of these modes, lead to a zero point energy: (see, e.g. Casimir effect)

This leads to a finite attractive force between plates,


Experimental Verification

Early experiments provided at best qualitative support for an attractive force:

M.J. Sparnaay, Physica 24, 751 (1958). [Aluminum plates at distances  H>1µm]

Abrikosova & Deriagin, Sov. Phys. JETP 4, 1957 (1957). [Silica lenses]

van Blokland & Oveerbeek, J. Chem. Soc. F-T. I 74, 2637 (1978). [H 1-100 nm]

The era of high precision tests, started with   S. K. Lamoreaux    

"Demonstration of the Casimir Force in the 0.6 to 6µm Range,"  (using a torsion pendulum)

Phys. Rev. Lett. 78, 5 (1997)

U. Mohideen (and collaborators at UC Riverside), using atomic force microscopy

"Precision Measurements of the Casimir Force from 0.1 to 0.9mm,"  

U. Mohideen and A. Roy, Phys. Rev. Lett. 81, (1998)

T. Ederth (geometry of crossed cylinders)

"Template-stripped gold surfaces ... Casimir force in the 20–100-nm range,"  

T. Ederth, Phys. A 62, 062104 (2000)

  H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, Federico Capasso,

"Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force,"  

Science 291, 1941 (2001)

G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso,

"Measurement of the Casimir Force between Parallel Metallic Surfaces,"

Phys. Rev. Lett. 88, 041804 (2002) 

R.S. Decca, D. Lopez, E. Fischbach, and D.E. Krause, Phys. Rev. Lett. 91, 050402 (2003)

"Measurement of the Casimir Force between dissimilar metals,"

Challenges to high percision tests come from:

Geometry: non-planar shapes, roughness, ...

Material: non-ideal metals, impurities, ...

Environment: finite temperatures, gas particles, ...