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Age-of-Information in Wireless Networks:
Theory and Implementation

by Igor Kadota

Submitted to the Department of Aeronautics and Astronautics on August 12, 2020,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

Emerging data-driven applications will increasingly rely on sharing time-sensitive infor-
mation for monitoring and control. Examples are abundant: mobile robots in automated
warehouses sharing status information to cooperate with each other and with humans, self-
driving cars exchanging safety-related information with other vehicles and infrastructure,
and smart-cities analyzing data from Internet-of-Things (IoT) sensors to provide real-time
feedback for vehicles and traffic management systems. In such application domains, it is
essential to keep state information fresh, as outdated information loses its value and can
lead to system failures and safety risks. The Age of Information (AoI) is a recently pro-
posed performance metric that captures the freshness of information from the perspective
of the destination. Optimizing AoI is a challenging objective that goes beyond low latency,
it requires that packets with low delay are delivered regularly over time to every destination
in the network. In this thesis, we use rigorous theory to gain insight into the AoI opti-
mization problem and to develop practical network control mechanisms, and we leverage
system implementation to evaluate the performance of these mechanisms in real operating
scenarios.

We consider a broadcast single-hop wireless network with a base station and a num-
ber of nodes sharing time-sensitive information through unreliable communication links.
We formulate a discrete-time decision problem and use tools from mathematical optimiza-
tion and stochastic control to develop network control mechanisms that optimize AoI. Our
first approach is to develop an algorithm that computes the optimal transmission schedul-
ing decision at every time t. As expected, this optimal solution is impractical due to its
high computational complexity - shown to grow exponentially with the size of the network.
To overcome this challenge, we propose low-complexity transmission scheduling policies
with provable performance guarantees in terms of AoI. For example, we use Lyapunov Op-
timization to develop an AoI-based Max-Weight policy, show that this policy is optimal for
symmetric networks, and show that, for general networks, this policy is guaranteed to be
within a factor of two away from the optimal AoI. Numerical results suggest that this Max-
Weight policy achieves near-optimal performance in various network settings. Throughout
the thesis, we analyze, optimize, and evaluate important classes of centralized and dis-
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tributed low-complexity transmission scheduling algorithms, namely Max-Weight, Max-
imum Age First, Stationary Randomized, Whittle’s Index, Slotted-ALOHA and Carrier-
Sense Multiple Access, using tools from Dynamic Programming, Lyapunov Optimization,
Renewal Theory and the Restless Multi-Armed Bandits framework.

Leveraging the theoretical results, we propose WiFresh: an unconventional network
architecture that scales gracefully, achieving near optimal information freshness in wire-
less networks of any size, even when the network is overloaded. We propose and realize
two strategies for implementing WiFresh: one at the MAC layer in a network of FPGA-
enabled Software Defined Radios using hardware-level programming, and another at the
Application layer, without modifications to lower layers of the communication system, in a
network of Raspberry Pis using Python 3. Our experimental results show that the more con-
gested the network, the more prominent is the superiority of WiFresh when compared to an
equivalent WiFi network, with WiFresh achieving two orders of magnitude improvement
over standard WiFi. Our measurements suggest that WiFresh is well-suited for large-scale
applications that rely on sharing time-sensitive information.

Thesis Supervisor: Eytan Modiano
Title: Professor, Department of Aeronautics and Astronautics

4



In memory of Professor Alessandro Anzaloni.

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



Acknowledgments

I would like to sincerely thank my PhD adviser, Prof. Eytan Modiano, for making this

amazing journey possible. Eytan is an incredible mentor. He taught me how to write

properly, how to present, how to do research, how to teach, and how to mentor students. I

would like to thank Eytan for the time and effort, they are very much appreciated.

I am thankful to my SM adviser in ITA, Prof. Alessandro Anzaloni, for inspiring me to

do research on networks. I learned to love networks by watching Alessandro’s lectures, and

my first research experience was during an internship with Alessandro and Prof. Andrea

Baiocchi in Italy. After this internship, my goal became to do a PhD in communication

networks. I sincerely thank Alessandro for teaching me about networks and for always

believing in me.

I would like to thank my PhD thesis committee: Professors Mor Harchol-Balter, Mo-

hammad Alizadeh, Moe Win, and Yin Sun. I sincerely appreciate the thoughtful research

advise and the time you invested into improving this thesis.

I am very grateful towards the people in LIDS, AeroAstro, Westgate, Ashdown, and

MIT for fostering a fun and creative work environment. I am thankful for sharing this

journey with so many good friends. I am thankful for collaborating with so many bright

people. I am grateful towards staff members at LIDS and AeroAstro that always helped me

with everything.

Last but certainly not least, I want to thank my wife Debora, my parents Conceição

and Jorge, and my sister and brother-in-law, Paola and Marco, for their support throughout

the years. They always catch me when I fall, and they give me the strength to follow my

7



dreams. They have always supported me, and I owe them everything.

Thank you!!!

8



Previously Published Material

Chapter 2 includes prior work:

• [52] Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh and Eytan Modiano, “Mini-

mizing Age of Information in Broadcast Wireless Networks,” in Proceedings of IEEE

Allerton, Sept. 2016, pp. 844–851.

• [51] Igor Kadota, Abhishek Sinha, Elif Uysal-Biyikoglu, Rahul Singh and Ey-

tan Modiano, “Scheduling Policies for Minimizing Age of Information in Broadcast

Wireless Networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.

2637–2650, Dec. 2018.

Chapter 3 includes prior work:

• [49] Igor Kadota, Abhishek Sinha and Eytan Modiano, “Optimizing Age of Infor-

mation in Wireless Networks with Throughput Constraints,” in Proceedings of IEEE

INFOCOM, April 2018, pp. 1844–1852. This publication received the Best Paper

Award and was featured in the MIT News article entitled “Keeping data fresh for

wireless networks”.

• [50] Igor Kadota, Abhishek Sinha and Eytan Modiano, “Scheduling Algorithms for

Optimizing Age of Information in Wireless Networks with Throughput Constraints,”

IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp. 1359–1372, Aug. 2019.

9

http://news.mit.edu/2018/keeping-data-fresh-wireless-networks-0605
http://news.mit.edu/2018/keeping-data-fresh-wireless-networks-0605


Chapter 4 includes prior work:

• [44] Igor Kadota and Eytan Modiano, “Minimizing the Age of Information in

Wireless Networks with Stochastic Arrivals,” in Proceedings of ACM MobiHoc, July

2019, pp. 221–230. This publication was a Best Paper Award Finalist.

• [45] Igor Kadota and Eytan Modiano, “Minimizing the Age of Information in Wire-

less Networks with Stochastic Arrivals,” IEEE Transactions on Mobile Computing,

2019. [Accepted for publication in Dec. 2019]

Chapter 5 includes prior work:

• [47] Igor Kadota, Muhammad Shahir Rahman and Eytan Modiano, “Poster: Age

of Information in Wireless Networks: from Theory to Implementation”, ACM Mo-

biCom, 2020. [Accepted for publication in Aug. 2020]

• [48] Igor Kadota, Muhammad Shahir Rahman and Eytan Modiano, “WiFresh: Age-

of-Information from Theory to Implementation”, Dec. 2019. [Under Review]

Chapter 6 includes prior work:

• [46] Igor Kadota and Eytan Modiano, “Age of Information in Random Access Net-

works with Stochastic Arrivals”, Aug. 2020. [Under Review]

Chapters 2, 3 and 4 appeared in part in the book:

• [98] Yin Sun, Igor Kadota, Rajat Talak and Eytan Modiano, “Age of Information:

A New Metric for Measuring Information Freshness”, San Rafael, CA: Morgan &

Claypool Publishers, 2019.

10



Contents

1 Introduction 23

1.1 Definition of Age of Information . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Outline and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 27

2 Age of Information in Wireless Networks 33

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Dynamic Programming Formulation . . . . . . . . . . . . . . . . . 37

2.2 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Universal Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Maximum Age First Policy . . . . . . . . . . . . . . . . . . . . . . 45

2.2.3 Stationary Randomized Policy . . . . . . . . . . . . . . . . . . . . 55

2.2.4 Max-Weight Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.5 Whittle’s Index Policy . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.A Proof of Proposition 2.17 (Threshold Policy) . . . . . . . . . . . . . . . . . 70

3 Throughput Constrained AoI Optimization 75

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11



3.2.1 Universal Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Stationary Randomized Policy . . . . . . . . . . . . . . . . . . . . 79

3.2.3 Drift-Plus-Penalty Policy . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.A Proof of Theorem 3.2 (Lower Bound) . . . . . . . . . . . . . . . . . . . . 94

3.B Proof of Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.C Proof of Theorem 3.10 (Optimality Ratio for DPP) . . . . . . . . . . . . . 100

3.D Whittle’s Index policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 AoI in Wireless Networks with Stochastic Arrivals 107

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.1 Long-term Throughput . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.2 Queue Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Universal Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Stationary Randomized Policies . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.1 Randomized Policy for Single packet queue . . . . . . . . . . . . . 120

4.3.2 Randomized Policy for No queue . . . . . . . . . . . . . . . . . . 123

4.3.3 Randomized Policy for FCFS queue . . . . . . . . . . . . . . . . . 124

4.3.4 Comparison of Queueing Disciplines . . . . . . . . . . . . . . . . 127

4.4 Max-Weight Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.A Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.B Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.C Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.D Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.E Proof of Theorem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

12



5 WiFresh: AoI from Theory to Implementation 151

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Background on Age of Information . . . . . . . . . . . . . . . . . . . . . . 156

5.2.1 Queueing Discipline . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.2 Multiple Access Mechanism . . . . . . . . . . . . . . . . . . . . . 159

5.2.3 Scheduling Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.2 Design of WiFresh Real-Time . . . . . . . . . . . . . . . . . . . . 164

5.3.3 Implementation of WiFresh Real-Time . . . . . . . . . . . . . . . 168

5.3.4 Design of WiFresh App . . . . . . . . . . . . . . . . . . . . . . . 169

5.3.5 Implementation of WiFresh App . . . . . . . . . . . . . . . . . . . 172

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.1 Single Source with High Load . . . . . . . . . . . . . . . . . . . . 174

5.4.2 Network with Increasing Load . . . . . . . . . . . . . . . . . . . . 177

5.4.3 Network with Increasing Size . . . . . . . . . . . . . . . . . . . . 178

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.A Synchronization for WiFresh App . . . . . . . . . . . . . . . . . . . . . . 183

6 AoI in Random Access Networks 185

6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.1 Transmission probability . . . . . . . . . . . . . . . . . . . . . . . 189

6.2 Analysis of Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.1 Inter-delivery interval . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.2 Age of Information . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3 Network Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.1 Slotted-ALOHA networks . . . . . . . . . . . . . . . . . . . . . . 198

6.3.2 Saturated CSMA networks . . . . . . . . . . . . . . . . . . . . . . 200

13



6.3.3 General CSMA networks . . . . . . . . . . . . . . . . . . . . . . . 201

6.4 Experimental and Numerical Results . . . . . . . . . . . . . . . . . . . . . 203

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 204

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.A Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.B Proof of Proposition 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.B.1 Network AoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.B.2 Transmission Probability . . . . . . . . . . . . . . . . . . . . . . . 212

6.C Proof of Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.C.1 Network AoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.C.2 Transmission Probability . . . . . . . . . . . . . . . . . . . . . . . 216

7 Concluding Remarks 219

7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 220

14



List of Figures

1-1 Illustration of a monitoring system. The wireless base station receives po-

sition information from the N = 4 mobile nodes and forwards this informa-

tion to the remote monitor. The position uncertainty associated with node

i from the perspective of the remote monitor is represented by the red cir-

cle with radius vi(t− τi(t)) centered at the last known position of node i.

The remote monitor does not know the current position of node i, which is

illustrated by the blue drone. . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-2 Illustration of the AoI evolution in a network with a single source sending

packets to a single destination through a wireless base station (BS). Packets

generated at the source wait in the queue before being served. The BS

transmits packets in order of arrival, i.e. using a First-Come First-Served

(FCFS) discipline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1-3 Expected delay, inter-delivery time and AoI for the M/M/1 queue with fixed

service rate µ = 1 and variable packet generation rate λ . The point of

minimum AoI is λ ∗ = 0.53. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1-4 Software Defined Radio testbed. . . . . . . . . . . . . . . . . . . . . . . . 30

1-5 Raspberry Pi testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2-1 Illustration of the single-hop wireless network. On the left, we have N

nodes. In the center, we have N links with their associated priority (or

weight) wi and probability of a successfull packet transmission pi. On the

right, we have the base station running a transmission scheduling policy. . . 36

15



2-2 Evolution of hi(t) over the time-horizon of T = 14 slots for a target link

i. On the top, successful packet transmissions over link i are represented

by blue boxes. Notice that Di(T ) = 4 packet deliveries and that T = Ii[1]+

Ii[2]+ Ii[3]+ Ii[4]+Ri. On the bottom, evolution of hi(t) according to (2.3).

Notice the sawtooth pattern. During any interval Ii[m] the AoI always grows

from 1 to Ii[m]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2-3 Evolution of ~h(t) when the MAF policy is employed in a network with

N = 3 nodes, error-free channels, pi = 1,∀i, and~h(1) = [7,5,2]T . In each

slot, the MAF policy selects the link with highest hi(t). The selected link is

represented in bold green. All elements in~h(t) change according to (2.3):

green elements are updated to 1 while black elements are incremented by

1. In this figure, the Round Robin pattern is evident. . . . . . . . . . . . . . 46

2-4 Evolution of s̃h
π

and s̃h
MAF

for a network with N = 3 nodes, T = 5 slots,

initial AoI ~h(1) = [4,3,1]T and unreliable channels. Recall that a chan-

nel is ON when ci(t) = 1 and OFF when ci(t) = 0. Successful transmis-

sions are represented in green and failed transmissions in red. On the

top, channel states associated with the sequence of scheduling decisions

of the arbitrary policy π . Notice that, due to coupling, the MAF policy

has identical channel states. On the middle, the evolution of ~h(t) when

policy π is employed. On the bottom, the evolution of ~h(t) when MAF

is employed. Comparing the sum of~h(t) over time for both policies, we

have s̃h
π
= {8;11;10;13;12} and s̃h

MAF
= {8;11;9;12;9}, and we see that

s̃h
MAF
t ≤ s̃h

π

t ,∀t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2-5 Illustration of the time period between the (m-1)th and mth packet deliver-

ies by link i when the MAF policy is employed in a network with N = 3

nodes. A blue box with index j represents a packet delivery by link j.

Notice the Round Robin pattern described in Remark 2.4. . . . . . . . . . . 53

2-6 Two-user symmetric network with T = 500,wi = 1, pi = p, ∀i. The simula-

tion result for each policy and for each value of p is an average over 1,000

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

16



2-7 Two-user general network with T = 500,w1 = 10,w2 = 1, pi = p, ∀i. The

simulation result for each policy and for each value of p is an average over

1,000 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2-8 Network with T = 100,000,wi = 1, pi = i/N, ∀i. The simulation result for

each policy and for each value of N is an average over 10 runs. . . . . . . . 68

3-1 Illustration of Algorithm 1 in a network with three links. On the left, the ini-

tial configuration with γ = max{γi}. On the right, the outcome γ∗ implies

that under policy R∗ link 2 will operate with minimum required schedul-

ing probability µ2 = q2/p2, while the other two links will operate with a

scheduling probability that is larger than the minimum. . . . . . . . . . . . 84

3-2 Network with increasing time-horizon T , N = 15, ε = 0.9, and V ′ = 1. The

simulation result for each policy and for each value of T is an average over

108/T runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3-3 Network with increasing time-horizon T , N = 15, ε = 0.9, and V ′ = 1. The

simulation result for each policy and for each value of T is an average over

108/T runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3-4 Network with increasing size N, T = N×106, ε = 0.9, and V ′ = N2. The

simulation result for each policy and for each value of N is an average over

10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3-5 Network with increasing size N, T = N×106, ε = 0.9, and V ′ = N2. The

simulation result for each policy and for each value of N is an average over

10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3-6 Network with increasing ε , N = 30, T = N×106, and V ′ = N2. The sim-

ulation result for each policy and for each value of ε is an average over 10

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

17



4-1 Illustration of the single-hop wireless network. On the left, we have a

downlink network with the BS serving multiple traffic streams to differ-

ent destinations. On the right, we have an uplink network with multiple

sources transmitting different traffic streams to the BS. The network model

in this section comprehends both scenarios. . . . . . . . . . . . . . . . . . 110

4-2 The blue and orange rectangles represent a packet arrival to queue i and a

successful packet delivery to destination i, respectively. The blue circles

shows the evolution of zi(t) for the Single packet queue and the orange

circles shows the AoI associated with destination i. . . . . . . . . . . . . . 113

4-3 Comparison of Stationary Randomized policies in a network with N = 2

streams, w1 = w2 = 1, p1 = 1/3, p2 = 1, λ1 = λ , λ2 = λ/3 and increasing λ .127

4-4 Networks with N = 4 streams, weights w1 = w2 = 4 and w3 = w4 = 1,

time-horizon T = 2× 106 slots, channel reliabilities pi = i/N, and λi =

(N− i+1)/N×λ ,∀i, for an increasing arrival rate λ . . . . . . . . . . . . . 132

4-5 Networks with N = 4 streams, weights w1 = w2 = 4 and w3 = w4 = 1,

time-horizon T = 2× 106 slots, channel reliabilities pi = i/N, and λi =

(N− i+1)/N×λ ,∀i, for an increasing arrival rate λ . . . . . . . . . . . . . 132

4-6 Networks with N = 4 streams, weights w1 = w2 = w3 = 1 and w4 = 4,

time-horizon T = 2× 106 slots, arrival rates λ1 = λ2 = λ3 = λ4 = 1/10,

channel reliabilities p1 = 4/5, p2 = 3/5, p3 = 2/5, and increasing p4 ∈

{0.05,0.10, · · · ,1.00}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4-7 Networks with N = 4 streams, weights w1 = w2 = w3 = 1 and w4 = 4,

time-horizon T = 2× 106 slots, arrival rates λ1 = λ2 = λ3 = λ4 = 1/10,

channel reliabilities p1 = 4/5, p2 = 3/5, p3 = 2/5, and increasing p4 ∈

{0.05,0.10, · · · ,1.00}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4-8 Networks with an increasing number of streams N ∈ {5,8,10,13,15,18,

· · · ,25,28,30}. Streams have identical priorities wi = 1,∀i∈ {1,2, · · · ,N},

arrival rates λi = 0.05,∀i, channel reliabilities pi = 0.8,∀i, and time-horizon

of T = N×5×105 slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

18



4-9 Networks with an increasing number of streams N ∈ {5,8,10,13,15,18,

· · · ,25,28,30}. Streams have identical priorities wi = 1,∀i∈ {1,2, · · · ,N},

arrival rates λi = 0.05,∀i, channel reliabilities pi = 0.8,∀i, and time-horizon

of T = N×5×105 slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4-10 Illustration of the state evolution associated with stream i of a network

employing policy R ∈ΠR and operating under the Single packet queue dis-

cipline. In partciular, we show the outgoing transition arcs from any given

state (hi(t),zi(t)) = (h,z),∀z ∈ {0,1,2, · · ·},h≥ z with the associated tran-

sition probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5-1 Illustration of a monitoring system. The wireless base station receives in-

formation from the N = 4 mobile nodes and forwards this information to

the remote monitor. The position uncertainty of node i from the perspec-

tive of the remote monitor is represented by the red circle with radius vihi(t)

centered at the last known position of node i. The remote monitor does not

know the current position of node i, which is illustrated by the blue drone. . 152

5-2 Illustration of the AoI evolution in a network with a single source sending

packets to a single destination through a wireless base station (BS). Packets

generated at the source wait in the queue before being served. . . . . . . . 157

5-3 Expected delay, expected inter-delivery time and expected average AoI of

the queueing system with service rate of µ = 1 and variable packet gener-

ation rate λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5-4 Illustration of the network with N source nodes sending time-sensitive in-

formation to the remote monitor via the wireless BS. . . . . . . . . . . . . 160

5-5 Polling mechanism with the BS controlling the channel access for N=2

sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5-6 Components of the WiFresh RT system. The MAC layers at the source and

BS are emphasized for they are central to the implementation of WiFresh RT.165

5-7 WiFresh RT testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

19



5-8 Components of the WiFresh App system. The Application layer at the

source and destination is emphasized for it is central to the implementation

of WiFresh App. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5-9 WiFresh App sources and their sensors. . . . . . . . . . . . . . . . . . . . 173

5-10 AoI hi(t) evolution over time in the Raspi testbed with λ = 6 kHz. On the

LHS we have WiFi UDP FCFS and on the RHS we have WiFresh App,

which uses LCFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5-11 Time-average AoI measurements for the SDR testbed with ten sources gen-

erating packets of 150 bytes with rate λ ∈ {100,250,500,750,1k,2k,5k}

Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5-12 Time-average AoI measurements for the Raspi testbed with ten sources

generating packets of 150 bytes with rate λ ∈{10,50,100,250,500,750,1k,2k,5k}

Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5-13 EWSAoI measurements for the Raspberry Pi testbed with N ∈ {1,2,4,6,8,

10,12,16,20,24} sources generating position information and images. . . . 180

5-14 EWSAoI measurements for the Raspberry Pi testbed with N ∈ {1,2,4,6,8,

10,12,16,20,24} sources generating position information and inertial mea-

surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6-1 Illustration of the Random Access network and associated timeline with

packet generation, transmission and collision events. . . . . . . . . . . . . 188

6-2 Timeline with packet generation, transmission and collision events, and

associated packet delay zi and AoI evolution hi(k). . . . . . . . . . . . . . 193

6-3 Simulation of symmetric Slotted-ALOHA networks with L = 1, increasing

conditional transmission probability µ and two different packet generation

probabilities λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6-4 Simulation of symmetric Slotted-ALOHA networks with L = 1, increasing

conditional transmission probability µ and two different packet generation

probabilities λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

20



6-5 Simulation of symmetric CSMA networks with L = 50, increasing condi-

tional transmission probability µ and two different packet generation prob-

abilities λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6-6 Simulation of symmetric CSMA networks with L = 50, increasing condi-

tional transmission probability µ and two different packet generation prob-

abilities λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6-7 Simulation of symmetric CSMA networks with L = 50, increasing condi-

tional transmission probability µ and two different packet generation prob-

abilities λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6-8 Software Defined Radio testbed. . . . . . . . . . . . . . . . . . . . . . . . 204

6-9 Optimal conditional transmission probability µ∗ obtained from the exper-

iments with the SDR testbed, from the simulation results, and from the

analysis in Proposition 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6-10 Optimal NAoI performance associated with the optimal µ∗. . . . . . . . . . 207

21



22

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 1

Introduction

F uture Internet-of-Things (IoT) applications will increasingly rely on sharing time-

sensitive information for monitoring and control. Examples are abundant: autonomous

vehicles, smart factories, smart homes, immersive gaming, command and control, et al.

Self-driving cars need to exchange safety-critical information with other vehicles and in-

frastructure. Swarms of drones need to exchange position, velocity and control information

to enable collision prevention mechanisms. Cyber-physical systems in smart factories need

to share status information to cooperate with each other and with humans. In such ap-

plication domains, it is essential to keep information fresh, as outdated information loses

its value and can lead to system failures and safety risks. Information freshness is a chal-

lenging objective that goes beyond low latency, it requires that packets with low delay are

delivered regularly over time to every destination in the network. In this thesis, we address

the problem of keeping information fresh in wireless networks.

To illustrate this challenging problem, consider a monitoring system composed of a

remote monitor, a wireless base station, and N mobile nodes. Each node i ∈ {1,2, · · · ,N}

moves with velocity vi meters per second, generates position information with an average

rate of λi packets per second, and sends these packets to the remote monitor via the wireless

base station. Assume that at time t, the latest packet received by the remote monitor from

node i had information about its position at time τi(t). Then, the uncertainty about node i’s

position is given by vi(t− τi(t)), as illustrated in Fig. 1-1.
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Figure 1-1: Illustration of a monitoring system. The wireless base station receives position
information from the N = 4 mobile nodes and forwards this information to the remote
monitor. The position uncertainty associated with node i from the perspective of the remote
monitor is represented by the red circle with radius vi(t− τi(t)) centered at the last known
position of node i. The remote monitor does not know the current position of node i, which
is illustrated by the blue drone.

The quantity t− τi(t) captures the freshness of information from the perspective of the

remote monitor. In particular, t − τi(t) = 2 seconds represents that at time t the remote

monitor knows the location of node i two seconds ago. Ideally, if all mobile nodes could

continuously generate position updates and transmit these updates to the remote monitor

without delay, then the information at the remote monitor would be always fresh, with

τi(t) = t, and there would be no position uncertainty, i.e. vi(t− τi(t)) = 0 . However, real

networks have inherent sources of latency (such as buffers) and limited communication

resources (especially in wireless channels). Hence, to keep the information at the destina-

tion fresh, it is necessary to consider the networked system as a whole and optimize across

the generation of packets at the sources, the queueing discipline at the buffers, and the

transmission scheduling policy of the network.

In this thesis, we model the networked system and its performance requirements in

terms of information freshness and use tools from stochastic control and mathematical

optimization to develop network control algorithms with provable performance guarantees

and low computational complexity. We then implement these algorithms using FPGA-

based Software Defined Radios and/or Raspberry Pis to evaluate their performance in real

operating conditions. Next, we formalize the concept of information freshness which will

be used throughout this thesis.
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1.1 Definition of Age of Information

The Age of Information (AoI) is a performance metric that was recently proposed in [57,59]

and has been receiving increasing attention in the literature [7–11, 19, 21, 22, 31, 32, 37–

39, 42, 49, 51–55, 57–59, 66, 74, 84, 87, 99–105, 113–115] for its application to commu-

nication systems that carry time-sensitive data. Consider a system in which packets are

time-stamped upon arrival. Naturally, the higher the time-stamp of a packet, the fresher its

information. Let τ(t) be the time-stamp of the freshest packet received by the destination by

time t. Then, the AoI is defined as h(t) := t−τ(t). The AoI measures the time that elapsed

since the generation of the freshest packet received by the destination. The value of h(t) in-

creases linearly over time while no fresher packet is received, representing the information

getting older. At the moment a fresher packet is received, the time-stamp at the destination

τ(t) is updated and the AoI is reduced to the packet delay, as illustrated in Fig. 1-2. The

AoI captures how fresh the information is from the perspective of the destination.

Figure 1-2: Illustration of the AoI evolution in a network with a single source sending
packets to a single destination through a wireless base station (BS). Packets generated at
the source wait in the queue before being served. The BS transmits packets in order of
arrival, i.e. using a First-Come First-Served (FCFS) discipline.

The two parameters that influence AoI are packet delay and packet inter-delivery time.

In general, controlling only one is insufficient for achieving good AoI performance. For ex-

ample, consider a single server queue with Poisson arrivals and exponential service times,
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i.e. an M/M/1 queue, with low arrival rate λ � 1 and fixed service rate µ = 1. In this

setting, the queue is often empty, resulting in low packet delay. Nonetheless, the AoI can

still be high, since infrequent packet arrivals result in outdated information at the destina-

tion. In Fig. 1-3, we plot the expected AoI, the expected packet delay and the expected

inter-delivery time as a function of λ for the M/M/1 queue. The analytical expression for

the AoI was obtained in [59] and the expressions for packet delay and inter-delivery time

can be found in [30]. Notice that the information is fresh, i.e. the AoI is low, when packets

with low delay are delivered regularly to the destination.

Figure 1-3: Expected delay, inter-delivery time and AoI for the M/M/1 queue with fixed
service rate µ = 1 and variable packet generation rate λ . The point of minimum AoI is
λ ∗ = 0.53.

1.2 Literature Review

The problem of minimizing AoI was introduced in [57, 59] and has been explored using

different approaches. Queueing Theory is used in [19, 21, 39, 54, 59, 66, 84, 115] to charac-

terize the AoI performance of various important queueing systems. Game Theory is used

in [26, 86, 112] to analyze the impact of communication interference on AoI. Information

Theory is used in [81, 116] for designing source and channel coding schemes to improve

AoI. The authors of [7, 8, 100, 113] consider the problem of optimizing the times in which

packets are generated at the source in networks with energy-harvesting or maximum update
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frequency constraints. Link scheduling optimization with respect to AoI has been recently

considered in [10, 11, 31, 32, 37, 38, 42, 49, 51, 52, 58, 74, 87, 99, 101–105, 114]. Different

applications of AoI in sensor networks, cellular networks and vehicular networks are an-

alyzed and/or emulated in [5, 9, 22, 53]. A few papers [48, 57, 92, 95] have implemented

AoI-based systems. This list of works is not exhaustive. For a comprehensive list we refer

the reader to [65, 97, 98].

The problem of optimizing network scheduling decisions with respect to throughput

and delivery times has been studied extensively in the literature. Throughput maximization

of traffic with strict packet delay constraints has been addressed in [13, 34–36, 62, 62, 90].

Inter-delivery time is considered in [29,70–72,93,94,118] as a measure of service regular-

ity. Most relevant to this thesis is the work on scheduling optimization with respect to Age

of Information which is considered in [10,11,31,32,37,38,42,49,51,52,58,74,87,99,101–

105, 114] and is further described next.

The authors of [10, 102] studied multi-hop networks, while other works addressed

single-hop networks. Deterministic packet arrivals were considered in [49, 51, 52, 58, 101–

105, 114], arbitrary arrivals in [10, 11, 31, 32, 99] and stochastic arrivals in [37, 38, 42, 74,

87, 104]. Networks with no queueing, i.e. when packets are discarded if not scheduled

immediately upon arrival, were considered in [37, 38], First-Come First-Served (FCFS)

queues were considered in [31, 32, 42, 104] and other works considered Last-Generated

First-Served queues, which are often equivalent to the simpler Last-Come First-Served

(LCFS) queues. Reliable links over which transmissions are always successful are consid-

ered in [10, 11, 31, 32, 37, 38, 42, 87, 99, 102, 114] and other works considered unreliable

links. Additional details on related works are provided within the chapters in this thesis.

1.3 Outline and Main Contributions

In this thesis, we address the problem of minimizing the Age of Information in wireless

networks. In particular, we consider a single-hop broadcast wireless network with a base

station and a number of nodes sharing time-sensitive information through wireless links.

We formulate a discrete-time decision problem to find a transmission scheduling policy that
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minimizes AoI and evaluate its performance using analytical, numerical and experimental

results.

In chapters 2 and 3, we consider sources that can generate packets with fresh informa-

tion on demand. This assumption isolates the link scheduling problem from the effects of

packet generation and queueing, allowing us to extract valuable insight from the scheduling

problem. The more realistic case of stochastic arrivals is considered in chapters 4 and 6. In

chapter 5, we study practical networks in which the packet generation is determined by the

individual sensor. For example, position information from the GPS receiver is generated at

1 Hz and inertial measurements from the IMU at 100 Hz. The remainder of this thesis is

organized as follows.

Chapter 2. Age of Information in Wireless Networks

In this chapter, we formulate a discrete-time decision problem for minimizing AoI in wire-

less networks, and show that the computational complexity of the optimal solution grows

exponentially with the size of the network. Then, we consider symmetric networks and

show that the optimal solution becomes a simple Maximum Age First policy which acti-

vates the link associated with the highest current AoI. For general networks, we discuss four

low-complexity scheduling policies: Maximum Age First policy, Stationary Randomized

policy, Max-Weight policy, and Whittle’s Index policy; and derive performance guaran-

tees for each of them as a function of the network configuration. Notably, we show that

both Stationary Randomized policy and Max-Weight policy are guaranteed to be within a

factor of two away from the minimum AoI possible, regardless of the network configura-

tion. Numerical results show that both Max-Weight and Whittle’s Index outperform the

other scheduling policies in every configuration simulated, achieving near optimal AoI in

various network settings.

To the best of our knowledge, this is the first work to derive performance guarantees for

transmission scheduling policies that attempt to minimize AoI in wireless networks with

unreliable channels.
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Chapter 3. Throughput Constrained AoI Optimization

We consider the problem of minimizing AoI in the wireless network while simultaneously

satisfying throughput requirements from the individual nodes. Throughput requirements

can either capture an attribute of the nodes or be used to enforce fair allocation of resources

in the network. Notice that a link scheduling policy that minimizes AoI in the network is

not necessarily fair.

In this chapter, we develop two low-complexity transmission scheduling policies, namely

Stationary Randomized policy and Drift-Plus-Penalty policy, and show that both are guar-

anteed to be within a factor of two away from the minimum AoI possible, while simultane-

ously satisfying any feasible1 throughput requirements.

To the best of our knowledge, this is the first work to consider AoI-based policies that

provably satisfy throughput constraints of multiple destinations simultaneously.

Chapter 4. AoI in Wireless Networks with Stochastic Arrivals

In this chapter, we consider sources that generate packets according to a stochastic pro-

cess and enqueue them in separate (per source) queues. We address link scheduling opti-

mization to minimize AoI in wireless networks operating under three common queueing

disciplines. We develop both a Stationary Randomized policy and a Max-Weight policy

under each queueing discipline. Our approach allows us to evaluate the combined impact

of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate

the AoI performance both analytically and using simulations. Numerical results show that

the Max-Weight policy with LCFS queues achieves near optimal performance.

Chapter 5. WiFresh: AoI from Theory to Implementation

In this chapter, we study AoI in practical wireless networks. Leveraging the theoretical

results, we propose WiFresh: an unconventional architecture that scales gracefully, achiev-

ing near optimal information freshness in wireless networks of any size, even when the

network is overloaded. We propose and realize two strategies for implementing WiFresh:

1We say that a set of throughput requirements is feasible if there exists an admissible scheduling policy
that can satisfy the requirements.
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one at the MAC layer in the network of FPGA-based Software Defined Radios in Fig.1-4

using hardware-level programming, and another at the Application layer, without modifi-

cations to lower layers of the communication system, in the network of Raspberry Pis in

Fig. 1-5 using Python 3. Our experimental results show that WiFresh can improve informa-

tion freshness by two orders of magnitude when compared to an equivalent standard WiFi

network.

Figure 1-4: Software Defined Radio testbed.
Figure 1-5: Raspberry Pi testbed.

To the best of our knowledge, this is the first experimental evaluation of a networked

system that scales gracefully in terms of information freshness.

Chapter 6. AoI in Random Access Networks

In this chapter, we study AoI in wireless networks employing Random Access mechanisms,

in particular Slotted-ALOHA and Carrier-Sense Multiple Access (CSMA). We propose a

discrete-time framework to analyze and optimize the average AoI in the Random Access

network. Furthermore, we implement the optimized Random Access mechanism in the

Software Defined Radio testbed in Fig.1-4 and compare the AoI measurements with ana-

lytical and numerical results in order to validate our framework. Our approach allows us to

evaluate the combined impact of the packet generation rate, transmission probability and

size of the network on the AoI performance.

To the best of our knowledge, this is the first work to provide theoretical results on the

optimization of a CSMA network with stochastic packet generation and packet collisions.
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Remark 1.1. For simplicity of notation, throughout the thesis we assume that limits

exist and use lim instead of limsup or liminf.
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Chapter 2

Age of Information in Wireless Networks

T raditionally, networks have been designed to maximize data throughput and minimize

packet latency. With the emergence of new types of networks such as vehicular net-

works, UAV networks and sensor networks, other performance requirements are increas-

ingly relevant. In particular, the Age of Information (AoI) has been receiving attention in

the literature for its application in communication systems that carry time-sensitive data.

In this chapter, we address the problem of minimizing AoI in broadcast wireless networks.

Consider a cyber-physical system where a number of nodes are transmitting time-

sensitive information to a monitor over unreliable wireless channels. Each node samples

information from a physical phenomena (e.g. position, proximity to obstacles and energy

consumption) and transmits this information to the monitor. Ideally, the monitor receives

fresh information about every physical phenomena continuously over time. However, due

to limitations of the wireless channel, this is often impractical. In such cases, the system

has to manage the use of the available channel resources in order to keep the information

at the monitor as fresh as possible, i.e. to minimize the Age of Information in the network.

In this chapter, we consider a broadcast singe-hop wireless network with a base station

and a number of nodes sharing time-sensitive information through unreliable communica-

tion links, as illustrated in Fig. 2-1. We formulate a discrete-time decision problem to find

a transmission scheduling policy that minimizes the expected weighted sum Age of Infor-

mation of the network. First, we obtain the optimal solution using Dynamic Programming
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and show that the computational complexity of such solution grows exponentially with the

size of the network. To overcome this problem, known as the curse of dimensionality, and

gain insight into the minimization of AoI, we introduce four low-complexity scheduling

policies: Maximum Age First, Randomized, Max-Weight, and Whittle’s Index, and derive

performance guarantees for each of them as a function of the network configuration. In

particular, we show that the Maximum Age First policy which activates the link associ-

ated with highest current age is optimal for symmetric networks. For general networks, we

show that both Randomized and Max-Weight are guaranteed to be within a factor of two

away from the minimum AoI possible, regardless of the network configuration. Numerical

results show that both Max-Weight and Whittle’s Index outperform the other scheduling

policies in every configuration simulated, and achieve near optimal performance. To the

best of our knowledge, this is the first work1 to:

• provide a transmission scheduling policy that minimizes AoI in wireless networks

with unreliable channels; and

• derive performance guarantees for scheduling policies that attempt to minimize AoI

in wireless networks with unreliable channels.

The remainder of this chapter is organized as follows. In Sec. 2.1, the network model

is presented and the Dynamic Programming solution is proposed. In Sec. 2.2, we derive

performance guarantees for the Maximum Age First, Randomized, Max-Weight and Whit-

tle’s Index policies. Numerical results are presented in Sec. 2.3. The chapter is concluded

in Sec. 2.4 with a discussion about generalizations of the AoI minimization problem.

2.1 System Model

Consider a single-hop wireless network with a base station (BS) and N nodes sharing time-

sensitive information through unreliable communication links, as illustrated in Fig. 2-1. Let

the time be slotted, with slot duration normalized to unity and slot index t ∈ {1,2, · · · ,T},

where T is the time-horizon of this discrete-time system. The broadcast wireless channel

allows at most one packet transmission per slot. In each time-slot t, the BS either idles

1This work was first published in [52] and [51].
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or schedules a transmission in a selected link i ∈ {1,2, · · · ,N}. Let ui(t) ∈ {0,1} be the

indicator function that is equal to 1 when the BS selects link i during slot t, and ui(t) = 0

otherwise. When ui(t) = 1 the corresponding source samples fresh information, generates

a new packet and transmits this packet over link i. Notice that packets are not enqueued.

Packets are generated on-demand2 and transmitted in the same slot. Since the BS can select

at most one link at any given slot t, we have

N

∑
i=1

ui(t)≤ 1, ∀t ∈ {1, · · · ,T} . (2.1)

The transmission scheduling policy governs the sequence of decisions {ui(t)}N
i=1 of the BS

over time.

Let ci(t) ∈ {0,1} represent the channel state associated with link i during slot t. When

the channel is ON, we have ci(t) = 1, and when the channel is OFF, we have ci(t) = 0. The

channel state process is assumed i.i.d. over time and independent across different links,

with P(ci(t) = 1) = pi,∀i, t.3

Let di(t) ∈ {0,1} be the indicator function that is equal to 1 when the transmission

in link i during slot t is successful, and di(t) = 0 otherwise. A successful transmission

occurs when a link is selected and the associated channel is ON, implying that di(t) =

ci(t)ui(t),∀i, t. Moreover, since the BS does not know the channel states prior to making

scheduling decisions, ui(t) and ci(t) are independent, and

E [di(t)] = piE [ui(t)] ,∀i, t . (2.2)

The scheduling policies considered in this chapter are non-anticipative, i.e. policies that

do not use future information in making scheduling decisions. Let Π be the class of non-

anticipative policies and let π ∈Π be an arbitrary admissible policy. Our goal is to develop

scheduling policies π that minimize the average AoI in the network. Next, we formulate

the AoI minimization problem.

2Stochastic packet generation and queueing are discussed in chapter 4.
3The assumption of fixed and known channel reliabilities {pi}N

i=1 is used in chapters 2, 3 and 4. This
assumption is not used in chapter 5 when the deployed system learns pi over time.
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Figure 2-1: Illustration of the single-hop wireless network. On the left, we have N nodes.
In the center, we have N links with their associated priority (or weight) wi and probability
of a successfull packet transmission pi. On the right, we have the base station running a
transmission scheduling policy.

As defined in Sec. 1.1, the Age of Information depicts how old the information is from

the perspective of the destination. Let hi(t) be the positive real number that represents the

AoI associated link i at the beginning of slot t. If the destination associated with link i does

not receive a packet during slot t, then hi(t + 1) = hi(t)+ 1, since the information at the

destination is one slot older. In contrast, if the destination receives a packet during slot t,

then hi(t + 1) = 1, because the received packet was generated at the beginning of slot t.

The evolution of hi(t) follows

hi(t +1) =

 1 , if di(t) = 1 ;

hi(t)+1 , otherwise.
(2.3)

The time-average AoI of link i during the first T slots is captured by E
[
∑

T
t=1 hi(t)

]
/T ,

where the expectation is with respect to the randomness in the channel state ci(t) and

scheduling decisions ui(t). For capturing the freshness of the information of a network em-

ploying scheduling policy π ∈ Π, we define the Expected Weighted Sum AoI (EWSAoI)

as

E [Jπ
T ] =

1
T N

E

[
T

∑
t=1

N

∑
i=1

wihπ
i (t)

∣∣∣~h(1)] , (2.4)

where ~h(1) = [h1(1), · · · ,hN(1)]T is the vector of initial AoI, and wi is the positive real

number that represents the priority (or weight) of link i. For notation simplicity, we omit
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~h(1) henceforth. We denote by AoI-optimal, the scheduling policy π∗ ∈ Π that achieves

minimum EWSAoI, namely

Finite-horizon AoI optimization

E[J∗T ] = min
π∈Π

{
1

T N

T

∑
t=1

N

∑
i=1

wiE [hπ
i (t)]

}
, (2.5a)

s.t.
N

∑
i=1

ui(t)≤ 1 ,∀t . (2.5b)

Throughout this chapter, we discuss both the finite-horizon problem in (2.5a)-(2.5b) and

the related infinite-horizon problem

Infinite-horizon AoI optimization

E[J∗] = min
π∈Π

{
lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

wiE [hπ
i (t)]

}
, (2.6a)

s.t.
N

∑
i=1

ui(t)≤ 1 ,∀t . (2.6b)

Next, we address the AoI optimization using Dynamic Programming (DP) and evaluate the

computational complexity of the solution.

2.1.1 Dynamic Programming Formulation

In this section, the finite-horizon AoI optimization in (2.5a)-(2.5b) is formulated and solved

using DP. The objective function in (2.5a) evolves in discrete steps and has an additive cost,

making it suitable for a DP formulation. The components of the DP formulation, namely

network state, control variable, state transition, and cost function, are described next.

• Network State. The vector~h(t) is the network state at the beginning of slot t.

• Control Variable. The set {ui(t)}N
i=1 are the control variables during slot t.

• State Transitions. The evolution of hi(t) is divided in two cases: i) when the

scheduling policy selects link i during slot t, namely ui(t) = 1, then the state transi-
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tion to slot t +1 depends on the channel condition as follows

P(hi(t +1) = hi(t)+1|ui(t) = 1,hi(t)) = 1− pi ; [channel OFF] (2.7a)

P(hi(t +1) = 1|ui(t) = 1,hi(t)) = pi , [channel ON] (2.7b)

and ii) when the scheduling policy does not select link i, namely ui(t) = 0, then the

state transition is deterministic

P(hi(t +1) = hi(t)+1|ui(t) = 0,hi(t)) = 1 . (2.8)

• Cost Function. The cost at the transition from slot t to slot t +1 is given by

gt(~h(t)) =
N

∑
i=1

wihi(t) . (2.9)

With the components of the DP formulation described, next we present the cost-to-go func-

tion. Substituting the cost gt(~h(t)) into the objective function in (2.5a) yields

E[J∗T ] =
1

T N
min
π∈Π

{
T

∑
t=1

E
[
gt(~h(t))

]}
. (2.10)

For a given ~w, the optimization problem in (2.10) is solved by applying the cost-to-go func-

tion Jt(~h(t)) iteratively, backwards in time. The initial value of the cost-to-go function is

JT+1(~h(T +1)) = 0, for all vectors~h(T +1), and the recursion for slot t ∈ {1,2, · · · ,T}

is given by

Jt(~h(t)) =min
ui(t)

E[gt(~h(t))+Jt+1(~h(t +1))] ;

=gt(~h(t))+min
ui(t)

E[Jt+1(~h(t +1))] . (2.11)

At each step t and for every possible state ~h(t), the value of Jt(~h(t)) is attained by

choosing the set of control variables {ui(t)}N
i=1 subject to ∑

N
i=1 ui(t)≤ 1, which minimizes

the RHS of (2.11). This recursion is known as Value Iteration [12]. By keeping track of
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the choices of {ui(t)}N
i=1 for every possible tuple (t,~h(t)), the AoI-optimal policy π∗ is

obtained. The output of the recursion (2.11) at t = 1 and for the initial vector~h(1) is the

AoI-optimal objective function E [J∗T ] in (2.5a).

A negative aspect of this approach is that evaluating the optimal scheduling decision

{ui(t)}N
i=1 for every possible tuple (t,~h(t)) can be computationally demanding, especially

for networks with a large number of nodes. The parameter hi(t) can take at least t dif-

ferent values, hi(t) ∈ {1,2, · · · ,hi(1)+ t− 1}. Hence, the set of possible vectors~h(t) has

cardinality at least tN . For each possible tuple (t,~h(t)), the Dynamic Program compares

the outcome of N +1 possible sets {ui(t)}N
i=1. For a time-horizon of T slots, this amounts

to O(NT N) operations. Computational complexity grows exponentially with the number of

nodes N in the network. To overcome this problem, known as the curse of dimensionality,

and gain insight into the minimization of the Age of Information, in the next section we

discuss low-complexity scheduling policies and evaluate their performance.

2.2 Scheduling Policies

In this section, we consider four low-complexity scheduling policies, namely Maximum

Age First, Stationary Randomized, Max-Weight, and Whittle’s Index, and derive perfor-

mance guarantees for each of them as a function of the network configuration. Unless

stated otherwise, henceforth in this section we consider the infinite-horizon problem in

(2.6a)-(2.6b) with T → ∞. The focus on the long-term behavior of the system allows us to

derive simpler and more insightful policies and performance guarantees.

The performance of an arbitrary admissible policy η ∈ Π in the limit as T goes to in-

finity is given by E[Jη ] = limT→∞E[Jη

T ] from (2.4) and the optimal performance is E[J∗] =

minη∈ΠE[Jη ] from (2.6a). Ideally, when expressions for E [J∗] and E [Jη ] are available, we

define the optimality ratio4 E [Jη ]/E [J∗] and say that policy η is (E [Jη ]/E [J∗])-optimal.

Naturally, the closer the optimality ratio is to unity, the better is the performance of policy

η in terms of Age of Information.

Alternatively, when expressions for E [J∗] and E [Jη ] are not available, we define the

4Optimality Ratio is also known as Approximation Ratio.
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ratio

ρ
η :=

Uη

B
LB

, (2.12)

where LB is a lower bound to the AoI-optimal performance and Uη

B is an upper bound to

the performance of policy η , namely

LB ≤ E [J∗]≤ E [Jη ]≤Uη

B . (2.13)

It follows from (2.13) that E [Jη ]/E [J∗]≤ ρη and we can say that policy η is ρη -optimal.

Hence, if policy η is 2-optimal, it means that its performance is guaranteed to be within a

factor of 2 away from the minimum AoI possible, i.e. E [J∗]≤ E [Jη ]≤ 2E [J∗].

Next, we obtain a lower bound LB as a function of the network configuration (N, pi,wi).

Then, we analyze each of the four scheduling policies of interest and derive closed-form

expressions for their upper bounds Uη

B and performance guarantees ρη . Table 2.1 summa-

rizes the key notation in this thesis.

Table 2.1: Description of key notation.

N number of nodes. Link index is i ∈ {1,2, · · · ,N}
T number of slots. Slot index is t ∈ {1,2, · · · ,T}
pi probability of successful transmission in link i
π admissible non-anticipative scheduling policy

hi(t) Age of Information associated with link i at the beginning of slot t
wi weight of link i. Represents the relative importance of link i

E[Jπ
T ] Expected Weighted Sum Age of Information performance of policy π

LB Lower Bound on limT→∞E[Jπ
T ] for any admissible policy π

Uπ
B Upper Bound on limT→∞E[Jπ

T ] for a particular policy π

ρπ performance guarantee associated with policy π

Di(T ) number of packet deliveries through link i up to and including slot T
ϒi(T ) number of packet transmissions through link i up to and including slot T
Ii[m] number of slots between consecutive deliveries by link i
Ri number of slots remaining after the last delivery by link i
M̄[.] operator that calculates the sample mean of a set of values
V̄[.] operator that calculates the sample variance of a set of values
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2.2.1 Universal Lower Bound

In this section, we find a lower bound LB to the minimum AoI achievable by any admissible

scheduling policy π ∈Π. The expression for LB depends on the statistics of the sets {wi}N
i=1

and {
√

wi/pi}N
i=1. We define the operators that calculate the sample mean and sample

variance of a set of values x as M̄[x] and V̄[x], respectively. The sample mean and sample

variance of {wi}N
i=1 are

M̄ [wi] =
1
N

N

∑
j=1

w j and V̄ [wi] =
1
N

N

∑
j=1

(
w j−M̄ [wi]

)2
. (2.14)

The sample mean and sample variance of {
√

wi/pi}N
i=1 are calculated analogously.

Theorem 2.1 (Lower Bound). For any wireless network with parameters (N, pi,wi)

and an infinite time-horizon, we have LB ≤ limT→∞E [Jπ
T ] , ∀π ∈Π, where

LB =
N
2

(
M̄
[√

wi

pi

])2

+
1
2
M̄ [wi] . (2.15)

Proof. First, we use a sample path argument to characterize the evolution of~h(t) over time.

Then, we derive an expression for the objective function of the infinite-horizon problem,

namely limT→∞ Jπ
T , and manipulate this expression to obtain the LB in (2.15). Fatou’s

lemma is employed to establish Theorem 2.1.

Consider an admissible scheduling policy π ∈ Π running on a network for the time-

horizon of T slots. Let Ω be the sample space associated with this network and let ω ∈ Ω

be a sample path. For this sample path, let Di(T ) be the total number of packets delivered

by link i up to and including slot T , let Ii[m] be the number of slots between the (m−1)th

and mth deliveries by link i, i.e. the inter-delivery times of link i, and let Ri be the number

of slots remaining after the last packet delivery by the same link. Then, the time-horizon
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can be written as follows

T =
Di(T )

∑
m=1

Ii[m]+Ri,∀i ∈ {1,2, · · · ,N} . (2.16)

The evolution of hi(t) is well-defined in each of the time intervals Ii[m] and Ri, as

illustrated in Fig. 2-2. During the slots associated with the interval Ii[m], the parameter

hi(t) evolves as 1,2, · · · , Ii[m]. During the slots associated with the interval Ri, the value of

hi(t) evolves as 1,2, · · · ,Ri. Hence, the objective function in (2.5a) can be rewritten as

Jπ
T =

1
T N

T

∑
t=1

N

∑
i=1

wi hi(t) =
1
N

N

∑
i=1

wi

T

[
T

∑
t=1

hi(t)

]

=
1
N

N

∑
i=1

wi

T

[
Di(T )

∑
m=1

(Ii[m]+1)Ii[m]

2
+

(Ri +1)Ri

2

]
, (2.17)

and, using (2.16) to substitute the sum of the linear terms Ii[m] and Ri by T , we get

Jπ
T =

1
2N

N

∑
i=1

wi

T

[
Di(T )

∑
m=1

I2
i [m]+R2

i +T

]

=
1

2N

N

∑
i=1

wi

[
Di(T )

T

(
1

Di(T )

Di(T )

∑
m=1

I2
i [m]

)
+

R2
i

T
+1

]
. (2.18)

Using the operator M̄[.], let the sample mean of Ii[m] and I2
i [m] for a fixed link i be

M̄[Ii] =
1

Di(T )

Di(T )

∑
m=1

Ii[m] and M̄[I2
i ] =

1
Di(T )

Di(T )

∑
m=1

I2
i [m] . (2.19)

and, using V̄[.], let the sample variance for a fixed link i be

V̄[Ii] =
1

Di(T )

Di(T )

∑
m=1

(
Ii[m]−M̄[Ii]

)2
. (2.20)

Notice that the sample variance is positive valued and V̄[Ii] = M̄[I2
i ]−

(
M̄[Ii]

)2. For sim-

plicity of notation, the time-horizon T is omitted in both operators.
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Combining (2.16) and (2.19) yields

T
Di(T )

=
∑

Di(T )
m=1 Ii[m]+Ri

Di(T )
= M̄[Ii]+

Ri

Di(T )
. (2.21)

Substituting (2.19) and (2.21) into the objective function in (2.18) gives

Jπ
T =

1
2N

N

∑
i=1

wi

[[
M̄[Ii]+

Ri

Di(T )

]−1

M̄[I2
i ]+

R2
i

T
+1

]
w.p.1 . (2.22)

Figure 2-2: Evolution of hi(t) over the time-horizon of T = 14 slots for a target link i. On
the top, successful packet transmissions over link i are represented by blue boxes. Notice
that Di(T ) = 4 packet deliveries and that T = Ii[1]+ Ii[2]+ Ii[3]+ Ii[4]+Ri. On the bottom,
evolution of hi(t) according to (2.3). Notice the sawtooth pattern. During any interval Ii[m]
the AoI always grows from 1 to Ii[m].

To simplify (2.22), consider the infinite-horizon problem with T → ∞ and assume that

the admissible class Π does not contain policies that starve links. A policy π is said to

starve link i if, with a positive probability, it stops transmitting packet via link i after slot

T ′<∞. Notice that if π starves link i, then the expected number of slots after the last packet

delivery grows indefinitely E [Ri]→ ∞ and, as a result, the objective function E [Jπ
T ]→ ∞.

Therefore, policies that starve links are excluded from the class of admissible policies Π

without loss of optimality.

Since policies in Π select every link i repeatedly and each link activation results in a

successful packet delivery with positive probability pi, it follows that Ii[m] and Ri are finite
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with probability one. Thus, in the limit as T → ∞, we have R2
i /T → 0, Di(T )→ ∞ and

Ri/Di(T )→ 0. Applying those limits to Jπ
T in (2.22) gives the objective function of the

infinite-horizon AoI problem

lim
T→∞

Jπ
T =

1
2N

N

∑
i=1

wi

[
M̄[I2

i ]

M̄[Ii]
+1
]

w.p.1 . (2.23)

This insightful expression depicts the relationship between AoI and the moments of the

inter-delivery time Ii[m].

Denote the total number of packets transmitted by link i up to and including slot T as

ϒi(T )=∑
T
t=1 ui(t). Since at most one link can be selected at any given slot, i.e. ∑

N
i=1 ui(t)≤

1,∀t, we have
N

∑
i=1

ϒi(T ) =
T

∑
t=1

N

∑
i=1

ui(t)≤ T w.p.1 . (2.24)

Moreover, by the strong law of large numbers, we know that in the limit as T →∞ the ratio

of the number of packet deliveries by the number of packet transmissions is

lim
T→∞

Di(T )
ϒi(T )

= pi w.p.1 . (2.25)

With the definition of ϒi(T ) and the operator V̄[Ii], we obtain LB by manipulating the

objective function of the infinite-horizon AoI problem in (2.23) as follows

lim
T→∞

Jπ
T =

1
2N

N

∑
i=1

wi

[
V̄[Ii]

M̄[Ii]
+M̄[Ii]+1

]
(a)
≥ 1

2N

N

∑
i=1

wiM̄[Ii]+
1

2N

N

∑
i=1

wi

(b)
= lim

T→∞

1
2N

N

∑
i=1

wi
T

Di(T )
+

1
2N

N

∑
i=1

wi

(c)
≥ lim

T→∞

1
2N

(
N

∑
j=1

ϒ j(T )

)(
N

∑
i=1

wi

Di(T )

)
+

1
2N

N

∑
i=1

wi

(d)
≥ lim

T→∞

1
2N

(
N

∑
i=1

√
wiϒi(T )
Di(T )

)2

+
1

2N

N

∑
i=1

wi

(e)
=

1
2N

(
N

∑
i=1

√
wi

pi

)2

+
1

2N

N

∑
i=1

wi w.p.1 , (2.26)
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where (a) uses the fact that V̄[Ii] ≥ 0, (b) uses (2.16), (c) uses the inequality in (2.24),

(d) uses Cauchy-Schwarz inequality and (e) uses the equality in (2.25). Notice that (2.26)

holds for all π ∈Π and that it gives the expression for LB found in (2.15).

Finally, since Jπ
T in (2.17) is positive for every π ∈ Π and for every T , we employ

Fatou’s lemma to (2.26) and establish that limT→∞E [Jπ
T ] ≥ E [limT→∞ Jπ

T ] ≥ LB,∀π ∈ Π.

�

The sequence of inequalities in (2.26) that led to limT→∞E [Jπ
T ] ≥ LB,∀π ∈ Π could

have rendered a loose lower bound. However, in the next section, we use LB to derive a

performance guarantee ρMAF for the Maximum Age First policy and show that ρMAF → 1

for symmetric networks with large N, i.e. under these conditions the value of LB is as

tight as possible. Furthermore, the numerical results in Sec. 2.3 suggest that the lower

bound is tight in a variety of network configurations. In the upcoming sections, we derive

performance guarantees for Maximum Age First, Randomized, Max-Weight, and Whittle’s

Index policies.

2.2.2 Maximum Age First Policy

In this section, we study the Maximum Age First (MAF) policy and show that under some

conditions on the underlying network it is AoI-optimal. Moreover, for general networks,

we obtain a closed-form expression for the performance guarantee ρMAF as a function of

(N,wi, pi). We introduced the MAF policy in [52] with the name of Greedy policy.

Definition 2.2 (Maximum Age First policy). The MAF policy selects, in each slot t,

the link i with highest value of hi(t), with ties being broken arbitrarily5.

Next, we discuss a few properties of the MAF policy that lead to the optimality result

in Theorem 2.7.

Remark 2.3. The MAF policy switches scheduling decisions only after a successful packet

transmission.
5Unless stated otherwise, we assume that ties are broken in favor of the link with the lowest index i.
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In slot t, the MAF policy selects link j = argmaxi{hi(t)}. Assume that this packet

transmission fails. Then, in the next slot, the MAF policy selects argmaxi{hi(t + 1)} =

argmaxi{hi(t)+ 1} which is again j. It is easy to see that the MAF policy will select the

same link j, uninterruptedly, until the corresponding packet is successfully delivered.

Remark 2.4 (Round Robin). Without loss of generality, reorder the index i in descending

order of~h(1), with link 1 having the highest hi(1) and link N the lowest hi(t). The MAF

policy delivers packets according to the index sequence (1,2, · · · ,N,1,2, · · ·) until the end

of the time-horizon T , i.e. MAF follows a Round Robin pattern.

Remark 2.4 follows directly from Remark 2.3 and it provides a complete description of

the behavior of MAF.

Remark 2.5 (Steady-State of MAF for error-free channels). Consider a wireless network

with error-free channels, pi = 1,∀i. The MAF policy drives this network to a steady-state

in which the sum of the elements of~h(t) is constant and given by

N

∑
i=1

hi(t) = 1+2+ · · ·+N =
N (N +1)

2
,∀t ≥ N +1 . (2.27)

Remark 2.5 follows directly from Remark 2.4. Figure 2-3 illustrates a network employ-

ing the MAF policy. It is easy to see that the steady-state is achieved at the beginning of

slot N +1 and that the sum in (2.27) is independent of the initial AoI vector~h(1).

Figure 2-3: Evolution of~h(t) when the MAF policy is employed in a network with N = 3
nodes, error-free channels, pi = 1,∀i, and~h(1) = [7,5,2]T . In each slot, the MAF policy
selects the link with highest hi(t). The selected link is represented in bold green. All
elements in~h(t) change according to (2.3): green elements are updated to 1 while black
elements are incremented by 1. In this figure, the Round Robin pattern is evident.
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In Theorem 2.7, we establish that MAF is AoI-optimal when the underlying network

is symmetric, namely all links have the same channel reliability pi = p ∈ (0,1] and weight

wi = w≥ 0. Prior to the main result, we establish in Lemma 2.6 that MAF is AoI-optimal

for a symmetric network with error-free channels.

Lemma 2.6 (Optimality of MAF for error-free channels). Consider a symmetric wire-

less network with error-free channels pi = 1 and weights wi = w > 0,∀i. Among the

class of admissible policies Π, the MAF policy attains the minimum sum AoI for any

given time-horizon T , namely

JMAF
T ≤ Jπ

T =
w

T N

T

∑
t=1

N

∑
i=1

hπ
i (t),∀π ∈Π,∀T ≥ 1 . (2.28)

The complete proof of Lemma 2.6 is in [51, Appendix B]. Intuitively, MAF mini-

mizes ∑
N
i=1 hi(t) at every slot t by reducing the highest element of~h(t) to unity. Together,

Lemma 2.6 and Remark 2.5 show that, when channels are error-free, MAF drives the net-

work to a steady-state that is AoI-optimal. Next, we employ Lemma 2.6 to show that the

MAF policy is AoI-optimal for any symmetric network.

Theorem 2.7 (Optimality of MAF). Consider a symmetric wireless network with chan-

nel reliabilities pi = p ∈ (0,1] and weights wi = w > 0,∀i. Among the class of admis-

sible policies Π, the MAF policy attains the minimum expected sum AoI for any given

time-horizon T , namely

E
[
JMAF

T

]
≤ E [Jπ

T ] =
w

T N

T

∑
t=1

N

∑
i=1

E [hπ
i (t)] ,∀π ∈Π,∀T ≥ 1 . (2.29)

Proof. To show that the MAF policy minimizes the EWSAoI of any symmetric wireless

network, we generalize Lemma 2.6 using a stochastic ordering argument [96] that com-

pares the evolution of ~h(t) when MAF is employed to that when an arbitrary policy π
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is employed. For the sake of simplicity and without loss of optimality, in this proof we

assume that π is work-conserving. There is no loss of optimality since for every non work-

conserving policy, there is at least one work-conserving policy that is strictly dominant.

Denote the random variable that represents the sum of the elements of ~h(t) when π

is employed by SHπ
t = ∑

N
i=1 hπ

i (t). Using this notation and the symmetry assumptions of

Theorem 2.7, the AoI optimization for a finite time-horizon T in (2.5a) becomes

E [J∗T ] =
1

T N
min
π∈Π

E

[
T

∑
t=1

N

∑
i=1

w hπ
i (t)

]
=

w
T N

min
π∈Π

E

[
T

∑
t=1

SHπ
t

]
. (2.30)

Next, we introduce the concept of stochastic ordering. Denote the stochastic process

associated with the sequence {SHπ
t }T

t=1 as SHπ and its sample path as shπ . Let D be the

space of all sample paths shπ . Define by F the set of measurable functions f : D→ R+

such that f (shMAF)≤ f (shπ) for every shMAF ,shπ ∈ D which satisfy shMAF
t ≤ shπ

t ,∀t.

Definition 2.8. (Stochastic ordering) We say that SHMAF is stochastically smaller than

SHπ and write SHMAF ≤st SHπ if P{ f (SHMAF)> z} ≤ P{ f (SHπ)> z},∀z ∈R,∀ f ∈

F .

Since f (SHπ) is positive, SHMAF ≤st SHπ implies6 E[ f (SHMAF)] ≤ E[ f (SHπ)],∀ f ∈

F . Knowing that one function that satisfies the conditions in F is f (SHπ) = ∑
T
t=1 SHπ

t ,

it follows that if SHMAF ≤st SHπ ,∀π ∈ Π, then E[∑T
t=1 SHMAF

t ] ≤ E[∑T
t=1 SHπ

t ],∀π ∈ Π,

which is equivalent to the EWSAoI minimization in (2.30). Therefore, for establishing the

optimality of MAF , it is sufficient to establish that SHMAF is stochastically smaller than

SHπ ,∀π ∈Π.

Stochastic ordering can be demonstrated using its definition directly. However, this is

often complex for it involves comparing the probability distributions of SHMAF and SHπ .

Instead, we use the following result from [96], which is also used in works such as [13,

24, 90]: for verifying that SHMAF ≤st SHπ , it is sufficient to show that there exists two

stochastic processes S̃H
MAF

and S̃H
π

such that

6Recall that for any positive valued X , it follows that E[X ] =
∫

∞

x=0(1−P{X ≤ x})dx =
∫

∞

x=0P{X > x}dx.
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(i) SHπ and S̃H
π

have the same probability distribution;

(ii) S̃H
MAF

and S̃H
π

are on a common probability space;

(iii) SHMAF and S̃H
MAF

have the same probability distribution; and

(iv) S̃H
MAF
t ≤ S̃H

π

t , with probability 1, ∀t.

This result allows us to establish stochastic ordering between SHMAF and SHπ by properly

designing the auxiliary processes S̃H
MAF

and S̃H
π

. This design is achieved by utilizing

stochastic coupling.

Stochastic coupling is a method utilized for comparing stochastic processes by impos-

ing a common underlying probability space. We use stochastic coupling to construct S̃H
π

and S̃H
MAF

based on SHπ and SHMAF , respectively.

Let the process S̃H
π

be identical to SHπ . Their (common) probability space is de-

termined by the sequence of scheduling decisions ui(t) of policy π and the sequence of

channel states ci(t). Now, let us construct S̃H
MAF

on the same probability space as S̃H
π

.

For that, we couple S̃H
MAF

to S̃H
π

by dynamically connecting the channel state of MAF

to the channel state of policy π as follows. Suppose that in slot t, policy π schedules link

j while MAF schedules link i, then, for the duration of that slot, we assign ci(t)← c j(t).

As a result, if policy π’s transmission was successful, i.e. c j(t) = 1, then we impose that

MAF’s transmission is also successful, i.e. ci(t) = 1. This dynamic assignment imposes

that, at every slot t ∈ {1,2, · · · ,T}, the channel state of MAF is identical to the channel

state of π . Notice that this assignment is only possible because the random variable ci(t) is

i.i.d. with respect to the links and slots, which is the same reason for S̃H
MAF

and SHMAF

having the same probability distribution.

Returning to our four conditions, it follows directly from the coupling method described

above that (i), (ii) and (iii) are satisfied. Thus, the only condition that remains to be shown

is

(iv) S̃H
MAF
t ≤ S̃H

π

t ,with probability 1, ∀t.

Coupling between S̃H
π

and S̃H
MAF

is the key property to establish (iv). Assume that

policy π is employed and consider a sample path s̃h
π

spanning the entire time-horizon.



50 2. AGE OF INFORMATION IN WIRELESS NETWORKS

Use the sequence of channel states from the links selected by π during the evolution of

s̃h
π

to create the coupled sample path s̃h
MAF

, as illustrated in Figure 2-4. Notice that the

scheduling decisions taken during slots in which the channel state is OFF cannot change

the relationship (≤ or ≥) between s̃h
π

t and s̃h
MAF
t . As a result, they can be removed from

the analysis and we can focus on slots with error-free channels. Lemma 2.6 established

that, in a network with error-free channels, we have s̃h
MAF
t ≤ s̃h

π

t , for every slot t and for

every policy π ∈ Π. Since this argument follows for every sample path s̃h
π

, we establish

condition (iv) and the stochastic ordering argument. �

Figure 2-4: Evolution of s̃h
π

and s̃h
MAF

for a network with N = 3 nodes, T = 5 slots, initial
AoI~h(1) = [4,3,1]T and unreliable channels. Recall that a channel is ON when ci(t) = 1
and OFF when ci(t) = 0. Successful transmissions are represented in green and failed
transmissions in red. On the top, channel states associated with the sequence of scheduling
decisions of the arbitrary policy π . Notice that, due to coupling, the MAF policy has
identical channel states. On the middle, the evolution of~h(t) when policy π is employed.
On the bottom, the evolution of~h(t) when MAF is employed. Comparing the sum of~h(t)

over time for both policies, we have s̃h
π
= {8;11;10;13;12} and s̃h

MAF
= {8;11;9;12;9},

and we see that s̃h
MAF
t ≤ s̃h

π

t ,∀t.

Theorem 2.7 establishes that the MAF policy, which selects link j = argmaxi {hi(t)}

in every slot t, is AoI-optimal when the network is symmetric. For general networks, with

links possibly having different channel reliabilities pi and weights wi, scheduling decisions

based exclusively on~h(t) may not be AoI-optimal.
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Next, we derive a closed-form expression for the performance guarantee of MAF ρMAF .

The expression for ρMAF depends on the statistics of the set of values {1/pi}N
i=1, in partic-

ular of its coefficient of variation. Let the sample mean and sample variance of {1/pi}N
i=1

be

M̄
[

1
pi

]
=

1
N

N

∑
j=1

1
p j

and V̄
[

1
pi

]
=

1
N

N

∑
j=1

(
1
p j
−M̄

[
1
pi

])2

. (2.31)

Then, the coefficient of variation is given by

CV =

√
V̄
[

1
pi

]
M̄
[

1
pi

] . (2.32)

The coefficient of variation is a measure of how spread out are the values of 1/pi. The

value of CV is large when {1/pi}N
i=1 are disperse and CV = 0 if and only if pi = p for all

links.

Theorem 2.9 (Performance of MAF policy). Consider a wireless network with pa-

rameters (N, pi,wi) and an infinite time-horizon. The MAF policy is ρMAF -optimal,

where

ρ
MAF =

(
N +1+C2

V
2

)
M̄
[

1
p j

]
M̄ [wi]

N
2

(
M̄
[√

wi

pi

])2

+
1
2
M̄ [wi]

. (2.33)

Proof. The performance guarantee for MAF is given by ρMAF = E[JMAF ]/LB, where the

denominator is the universal lower bound in (2.15) and the numerator is the infinite-horizon

objective function E[JMAF ] = limT→∞E[JMAF
T ] which is derived next.

To analyze the evolution of hi(t) when the MAF policy is employed, we assume for this

proof (without loss of generality) that the link index i is in descending order of~h(1), with

link 1 having the highest hi(1) and link N the lowest hi(t), as in Remark 2.4. Then, the
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properties in Remarks 2.3 and 2.4 can be summarized as follows:

(i) MAF selects the same link i, uninterruptedly, until the corresponding packet is suc-

cessfully delivered; and

(ii) MAF delivers packets according to the index sequence (1,2, · · · ,N,1,2, · · ·) until the

end of the time-horizon T .

Based on property (i), define Xi[m] as the number of successive transmission attempts

by link i that precede the mth packet delivery to the same link, with Xi[0] = 0,∀i. For a given

i, the random variables Xi[m] are i.i.d. with geometric distribution. Moreover, transmissions

to different links are independent. Hence, we have

E[Xi[m]] =
1
pi

(2.34a)

E[Xi[m]X j[m−1]] =
1

pi p j
(2.34b)

E
[
X2

i [m]
]
=

2− pi

p2
i

. (2.34c)

According to property (ii), packets are delivered following a Round Robin pattern.

Thus, as illustrated in Fig. 2-5, the total number of slots in the interval between the (m−1)th

and mth packet deliveries by a target link i when the MAF policy is employed can be written

as

Ii[m] =
N

∑
j=i+1

X j[m−1]+
i

∑
j=1

X j[m] . (2.35)

By employing (2.34a)-(2.34c), the first and second moments of Ii[m] can be expressed as

E[Ii[m]] =
N

∑
i=1

1
pi

; (2.36a)

E
[
I2
i [m]

]
=

N

∑
j=1

2− p j

p2
j

+2
N

∑
j=1

N

∑
k= j+1

1
p j pk

. (2.36b)

Evidently, when the MAF policy is employed, the sequence of packet deliveries via link

i is a renewal process with i.i.d. inter-delivery times Ii[m]. Therefore, using the general-

ization of the elementary renewal theorem for renewal-reward processes [23, Sec. 5.7], we
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Figure 2-5: Illustration of the time period between the (m-1)th and mth packet deliveries
by link i when the MAF policy is employed in a network with N = 3 nodes. A blue box with
index j represents a packet delivery by link j. Notice the Round Robin pattern described
in Remark 2.4.

have

lim
T→∞

1
T

T

∑
t=1

E[hMAF
i (t)] =

E[reward]
E[interval]

=
E[1+2+ · · ·+ Ii[m]]

E[Ii[m]]
=

E[Ii[m]2]

2E[Ii[m]]
+

1
2
. (2.37)

Applying (2.36a)-(2.36b) into (2.37) yields:

lim
T→∞

1
T

T

∑
t=1

E[hMAF
i (t)] =

N

(
1
N

N

∑
j=1

1
p j

)2

+
1
N

N

∑
j=1

1
p2

j

2
N

N

∑
i=1

1
pi

, (2.38)

and then substituting (2.31) and (2.32), we obtain

lim
T→∞

1
T

T

∑
t=1

E[hMAF
i (t)] =

1
2
M̄
[

1
p j

](
N +1+C2

V
)
. (2.39)

Employing (2.39) into the objective function in (2.5a), we get

E[JMAF ] =
1
N

N

∑
i=1

wi lim
T→∞

1
T

T

∑
t=1

E
[
hMAF

i (t)
]
=

(
N +1+C2

V
2

)
M̄
[

1
p j

]
M̄ [wi] . (2.40)
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Dividing (2.40) by the lower bound in (2.15) yields the performance guarantee ρMAF in

(2.33). �

Next, we use the performance guarantee in (2.33) to obtain the necessary and sufficient

conditions for the optimality of the MAF policy when N→ ∞.

Corollary 2.10. In the limit as N→∞, the performance guarantee of MAF ρMAF → 1

if and only if the network is symmetric.

Proof. In the limit as N→ ∞, the performance guarantee of MAF can be written as

ρ
MAF =

(
N +C2

V
2

)
M̄
[

1
p j

]
M̄ [wi]

N
2

(
M̄
[√

wi

pi

])2 . (2.41)

Consider two inequalities: (i) Cauchy-Schwarz

(
M̄
[√

wi

pi

])2

≤ M̄
[

1
p j

]
M̄ [wi] ; (2.42)

and (ii) Positive coefficient of variation: CV ≥ 0. It is evident from (2.41) that ρMAF = 1

if and only if both inequalities (i) and (ii) hold with equality and this is true if and only if

wi = w and pi = p for all links. �

The two main results in this section are Theorem 2.7, which established that MAF

is AoI-optimal when the network is symmetric, and Theorem 2.9, which characterized

the performance guarantee of MAF for general networks. Corollary 2.10 shows that (as

expected) when N → ∞ and the network is symmetric, we have ρMAF → 1. Notice that

ρMAF → 1 implies that E[JMAF ]→ LB, which suggests that the lower bound LB is tight.

By leveraging the knowledge of hi(t), but disregarding the values of wi and pi, the MAF

policy achieves optimal AoI performance in symmetric networks. In the next section, we

discuss a class of scheduling policies that use the knowledge of wi and pi, but neglect hi(t).
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2.2.3 Stationary Randomized Policy

Consider the class of Stationary Randomized policies in which scheduling decisions are

made randomly, according to fixed probabilities βi/∑
N
j=1 β j for positive values of {βi}N

i=1.

Definition 2.11 (Randomized policy). The Randomized policy selects, in each slot t,

link i with probability βi/∑
N
j=1 β j, for every link i.

Denote the Randomized policy as R. Observe that this simple policy is stationary and

it does not use information about the current AoI hi(t). We assume that R has knowledge7

of (N, pi,wi) and may use these parameters to tune βi. Next, we derive a closed-form ex-

pression for the performance guarantee ρR and find a Randomized policy that is 2-optimal

for all network configurations (N, pi,wi).

Theorem 2.12 (Performance of Randomized policy). Consider a wireless network

with parameters (N, pi,wi) and an infinite time-horizon. The Randomized policy with

positive values of {βi}N
i=1 is ρR-optimal, where

ρ
R = 2

M̄ [βi]M̄
[

wi

piβi

]
(
M̄
[√

wi

pi

])2

+
1
N
M̄ [wi]

. (2.43)

Proof. The performance guarantee is defined as ρR = E[JR]/LB, where the denominator

is the universal lower bound in (2.15) and the numerator is the infinite-horizon objective

function E[JR] = limT→∞E[JR
T ] which is derived next.

Recall that ui(t) indicates that link i was selected in slot t and di(t) = ci(t)ui(t) indi-

cates a successful packet transmission in the same slot. When the Randomized policy is
7The assumption of fixed and known channel reliabilities {pi}N

i=1 is used in chapters 2, 3 and 4. This
assumption is not used in chapter 5 when the deployed system learns pi over time.



56 2. AGE OF INFORMATION IN WIRELESS NETWORKS

employed, we have E[ui(t)] = βi/∑
N
j=1 β j,∀t and

E [di(t)] = E [di] =
βi

∑
N
j=1 β j

pi,∀t . (2.44)

Clearly, the sequence of packet deliveries by link i is a renewal process with geomet-

ric inter-delivery times Ii[m] with mean (E [di])
−1. Thus, using the generalization of the

elementary renewal theorem for renewal-reward processes [23, Sec. 5.7] yields

lim
T→∞

1
T

T

∑
t=1

E[hR
i (t)] =

E[Ii[m]2]

2E[Ii[m]]
+

1
2
=

1
E[di]

, (2.45)

and substituting (2.44) and (2.45) into the objective function in (2.5a) gives

E
[
JR]= 1

N

N

∑
i=1

wi

E [di]
=

1
N

N

∑
j=1

β j

N

∑
i=1

wi

piβi
= NM̄ [βi]M̄

[
wi

piβi

]
. (2.46)

Finally, dividing (2.46) by the lower bound in (2.15) gives ρR in (2.43). �

Corollary 2.13. The Stationary Randomized policy with βi =
√

wi/pi,∀i has ρR < 2

for all network configurations (N, pi,wi).

Proof. The assignment βi =
√

wi/pi,∀i ∈ {1, · · · ,N} is the necessary condition for the

Cauchy-Schwarz inequality

(
M̄
[√

wi

pi

])2

≤ M̄ [βi]M̄
[

wi

piβi

]
, (2.47)

to hold with equality. Applying this condition to (2.43) results in ρR < 2. Notice that

βi =
√

wi/pi minimizes the RHS of (2.47) and the expression in (2.46). �

Theorem 2.12 gives a closed-form expression for ρR and Corollary 2.13 shows that,

by using only the knowledge of wi and pi, a Randomized policy can achieve 2-optimal

performance in all network setups (N, pi,wi). Next, we develop a Max-Weight policy that

leverages the knowledge of wi, pi, and hi(t) in making scheduling decisions.
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2.2.4 Max-Weight Policy

In this section, we use concepts from Lyapunov Optimization [85] to derive a Max-Weight

policy. The Max-Weight policy is obtained by minimizing the drift of a Lyapunov Function

of the network state at every slot t. Consider the linear Lyapunov Function

L(~h(t)) =
1
N

N

∑
i=1

α̃ihi(t) , (2.48)

where α̃i > 0 are auxiliary parameters used to tune the performance of the Max-Weight

policy, and consider the one-slot Lyapunov Drift

∆(~h(t)) = E
[

L(~h(t +1))−L(~h(t))
∣∣∣~h(t)] . (2.49)

The Lyapunov Function L(~h(t)) depicts how large is the AoI of the network during slot t,

while the Lyapunov Drift ∆(~h(t)) represents the growth of L(~h(t)) from one slot to the

next. Intuitively, by minimizing the drift, the Max-Weight policy reduces the value of

L(~h(t)) and, consequently, keeps the AoI of the network low.

To find the policy that minimizes the one-slot drift ∆(~h(t)), we first need to analyze

the RHS of (2.49). Consider a scheduling policy π making a scheduling decision during

slot t based on its knowledge of~h(t) and α̃i. Recall that di(t) indicates a packet delivery by

link i during slot t. An alternative way to represent the evolution of hi(t) defined in (2.3)

is hi(t +1) = di(t)+ (hi(t)+1)[1−di(t)]. Taking the conditional expectation of hi(t +1)

yields

E
[
hi(t +1)−hi(t)|~h(t)

]
=−E

[
di(t)|~h(t)

]
hi(t)+1 . (2.50)

Substituting (2.48) into (2.49) and then using (2.50) gives the following expression for the

Lyapunov Drift

∆(~h(t)) =− 1
N

N

∑
i=1

E
[
di(t)|~h(t)

]
α̃ihi(t)+

1
N

N

∑
i=1

α̃i . (2.51)
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Recall that E
[
di(t)|~h(t)

]
= piE

[
ui(t)|~h(t)

]
. Observe that the choice of ui(t) affects

only the first term on the RHS of (2.51). During slot t, the scheduling policy that maxi-

mizes the sum ∑
N
i=1E

[
ui(t)|~h(t)

]
piα̃ihi(t) also minimizes ∆(~h(t)). The Max-Weight pol-

icy minimizes the drift at every slot t. Denote the Max-Weight policy as MW .

Definition 2.14 (Max-Weight policy). The MW policy selects, in each slot t, the link i

with highest value of piα̃ihi(t), with ties being broken arbitrarily.

Remark 2.15. The Max-Weight policy is AoI-optimal for symmetric wireless networks

with parameters wi = w, pi = p and α̃i = α̃,∀i.

Observe that when the network is symmetric, prioritizing according to piα̃ihi(t) is iden-

tical to prioritizing according to hi(t), i.e. Max-Weight is identical to MAF. Thus, from

Theorem 2.7 (Optimality of MAF), we conclude that Max-Weight is AoI-optimal.

Theorem 2.16 (Performance of Max-Weight policy). Consider a wireless network

with parameters (N, pi,wi) and an infinite time-horizon. The Max-Weight policy with

α̃i =
√

wi/pi has ρMW < 2 for all network configurations (N, pi,wi).

Proof. The performance guarantee is defined as ρMW =UMW
B /LB, where the denominator

is the universal lower bound in (2.15) and the numerator is an upper bound to the infinite-

horizon objective function UMW
B ≥ limT→∞E[JMW

T ] which is derived next by manipulating

the expression of the one-slot Lyapunov drift in (2.51).

Recall that the Max-Weight policy minimizes ∆(~h(t)) by choosing ui(t) such that the

sum ∑
N
i=1E

[
di(t)|~h(t)

]
α̃ihi(t) is maximized. Employing any other policy π ∈ Π yields a

lower (or equal) sum. Consider a Stationary Randomized policy as defined in Sec. 2.2.3.

It chooses ui(t) randomly, independently of the value of~h(t), and yields E
[
di(t)|~h(t)

]
=
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E [di]. Substituting E [di] into the equation of the one-slot Lyapunov Drift gives

∆(~h(t))≤− 1
N

N

∑
i=1

E [di] α̃ihi(t)+
1
N

N

∑
i=1

α̃i . (2.52)

Now, taking the expectation with respect to~h(t) yields

E
[
L(~h(t +1))−L(~h(t))

]
≤− 1

N

N

∑
i=1

E [di] α̃iE [hi(t)]+
1
N

N

∑
i=1

α̃i . (2.53)

Summing over t ∈ {1,2, · · · ,T} and dividing by T results in

E
[
L(~h(T +1))

]
T

−
E
[
L(~h(1))

]
T

≤− 1
N

N

∑
i=1

E [di] α̃i
1
T

T

∑
t=1

E [hi(t)]+
1
N

N

∑
i=1

α̃i . (2.54)

Manipulating the expression and knowing that L(~h(T +1)) is always positive gives

1
N

N

∑
i=1

E [di] α̃i
1
T

T

∑
t=1

E [hi(t)]≤
E
[
L(~h(1))

]
T

+
1
N

N

∑
i=1

α̃i . (2.55)

Knowing that L(~h(1)) is finite, assigning α̃i = wi/E [di] and taking the limit as T → ∞,

gives

lim
T→∞

1
T N

N

∑
i=1

T

∑
t=1

wiE [hi(t)]≤
1
N

N

∑
i=1

wi

E [di]
. (2.56)

The LHS of (2.56) is the definition of EWSAoI for the Max-Weight policy and the RHS is

the upper bound UMW
B . Notice that the RHS is identical to the EWSAoI for the Stationary

Randomized policy E
[
JR] in (2.46). Hence, we can use Corollary 2.13 to conclude that

ρMW < 2 for the Max-Weight policy with α̃i =
√

wi/pi/(∑
N
j=1
√

w j/p j). Notice that the

term ∑
N
j=1
√

w j/p j is a constant that appears in every α̃i. Thus, it can be removed from α̃i

without affecting the Max-Weight policy. �

The choice in (2.48) for a linear Lyapunov Function with auxiliary parameters α̃i al-

lowed us to obtain the performance guarantee ρMW < 2. Choosing a different Lyapunov
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Function yields a different Max-Weight policy with a different performance guarantee.

The standard choice of Lyapunov Function is quadratic [85, Chapter 3]. The quadratic

Lyapunov Function is studied in [51, Sec. IV.D]. This choice results in a somewhat similar

Max-Weight policy with a performance guarantee ρMW ′ < 4.

In contrast to the MAF and Randomized policies, the Max-Weight policy uses all avail-

able information, namely α̃i =
√

wi/pi and hi(t), in making scheduling decisions. As ex-

pected, numerical results in Sec. 2.3 demonstrate that Max-Weight outperforms both MAF

and Randomized in every network setup simulated. In fact, the performance of Max-Weight

is comparable to the universal lower bound LB.

However, by comparing the performance guarantees derived for each policy, namely

ρMAF , ρR, and ρMW , it might seem that Max-Weight does not provide better performance.

The reason for this is the challenge to obtain a tight upper bound UMW
B for Max-Weight. As

opposed to MAF and Randomized, the performance of Max-Weight cannot be evaluated

using Renewal Theory and does not have properties that simplify the analysis, such as

packets being delivered following a Round Robin pattern or links being selected according

to fixed probabilities.

Next, we consider the AoI minimization problem from a different perspective and pro-

pose an Index policy [110], also known as Whittle’s Index policy. This policy is surpris-

ingly similar to the Max-Weight policy and also yields a strong performance.

2.2.5 Whittle’s Index Policy

Whittle’s Index policy is the optimal solution to a relaxation of the Restless Multi-Armed

Bandit (RMAB) problem. This low-complexity heuristic policy has been extensively used

in the literature [78,90,93] and is known to have a strong performance in a range of applica-

tions [73,109]. The challenge associated with this approach is that the Index policy is only

defined for problems that are indexable, a condition which is often difficult to establish. A

detailed introduction to the relaxed RMAB problem can be found in [25, 110].

To find the Whittle’s Index, we transform the AoI optimization (2.6a)-(2.6b) into a re-

laxed Restless Multi-Armed Bandit (RMAB) problem. This is possible because the AoI

associated with each link in the network evolves as a restless bandit. To obtain the re-
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laxed RMAB problem, we first substitute the T interference constraints ∑
N
i=1 ui(t) ≤ 1,∀t

in (2.6b) by the single time-averaged constraint

1
T N

T

∑
t=1

N

∑
i=1

E[ui(t)]≤
1
N

. (2.57)

Then, we relax this time-averaged constraint, by placing (2.57) into the objective function

(2.6a) together with the associated Lagrange Multiplier C ≥ 0 and, as a result, we obtain

the relaxed RMAB problem.

Relaxed RMAB problem

min
π∈Π

{
lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

(wiE [hπ
i (t)]+C E [uπ

i (t)])

}
− C

N
, (2.58a)

s.t. C ≥ 0 . (2.58b)

Notice that the relaxed RMAB problem is separable and thus can be solved for each

individual link. The relaxed RMAB problem associated with each link is called the De-

coupled Model. The solution to the Decoupled Model lays the foundation for the design

of the Index policy. Next, we solve the Decoupled Model, establish that the relaxed AoI

optimization is indexable and obtain a closed-form expression for the Whittle’s Index.

Decoupled Model
The Decoupled Model adheres to the network model in Sec. 2.1 with N = 1, except for

the addition of a service charge. The service charge is a fixed cost per transmission C ≥ 0

that is incurred by the network every time the BS selects a link, i.e. u(t) = 1. Observe

that a scheduling policy running on a network with a single link can only choose between

selecting this link or idling.

Decoupled Model

min
π∈Π

{
lim

T→∞

1
T

T

∑
t=1

(wE [hπ(t)]+C E [uπ(t)])

}
, (2.59a)

s.t. C ≥ 0 . (2.59b)
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The Decoupled Model is formulated as a Dynamic Program (DP). The components of

the DP are: the network state h(t), the control variable u(t), the state transitions and the

cost function. The state transitions are divided in two cases: i) when the scheduling policy

transmits, namely u(t) = 1, then the state transition from slot t to slot t +1 depends on the

channel condition as follows

P(h(t +1) = h(t)+1|u(t) = 1,h(t)) = 1− p ; [channel OFF] (2.60a)

P(h(t +1) = 1|u(t) = 1,h(t)) = p , [channel ON] (2.60b)

and ii) when the scheduling policy idles, namely u(t) = 0, then the state transition is deter-

ministic

P(h(t +1) = h(t)+1|u(t) = 0,h(t)) = 1 . (2.61)

The cost function at the transition from slot t to slot t +1 is given by

gt(h(t),u(t)) = wh(t)+Cu(t) . (2.62)

With the four components of the DP formulation described, next we present Bellman equa-

tions and the differential cost-to-go function.

Consider the Decoupled Model in steady-state with network state h and control variable

u. Then, Bellman equations are given by

S(1) = 0 and (2.63a)

S(h)+λ = min
u∈{0,1}

{ wh+S(h+1) ; wh+C+(1− p)S(h+1)+ pS(1) } , (2.63b)

for all h ∈ {1,2, · · ·}, where λ is the optimal average cost and S(h) is the differential cost-

to-go function. Notice that the first part of the minimization in (2.63b) is associated with

idling, i.e. choosing u= 0, and the second part is associated with transmitting, i.e. choosing

u = 1, with ties being broken in favor to idling.

The stationary scheduling policy that solves Bellman equations and the Decoupled
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Model8 is given in Proposition 2.17.

Proposition 2.17 (Threshold policy). The stationary scheduling policy that solves

Bellman equations (2.63a)-(2.63b) is a threshold policy that, in each slot t, transmits

when h > H−1 and idles when 1≤ h≤ H−1. For positive fixed values of C > 0, the

expression for the threshold is

H =

3
2
− 1

p
+

√(
1
p
− 1

2

)2

+
2C
wp

 . (2.64)

The complete proof of Proposition 2.17 is provided in Appendix 2.A. Intuitively, we

expect that the optimal scheduling decision is to idle during slots in which h is low (avoiding

the service charge C) and to transmit when h is high (attempting to reduce the value of h).

Moreover, if the optimal decision is to transmit when the state is h = H, for a given H, then

it is natural to expect that for all h > H the optimal decision is also to transmit, which is

characteristic of threshold policies.

The outline of the proof in Appendix 2.A follows: 1) assume that the optimal policy is

a threshold policy with an unknown H; 2) using this assumption, find a solution to Bellman

equations (2.63a)-(2.63b); 3) show that the solution and the assumption are consistent; and

4) obtain the threshold H in (2.64), which is the minimum integer H for which the optimal

decision is to transmit. Next, we define the condition for indexability and establish that the

relaxed AoI optimization is indexable.

Indexability and Closed-form Index
Consider the Decoupled Model and its associated optimal threshold policy. For a given

value of C, let I (C) = {h ∈ N|h < H} be the set of states h in which the threshold policy

8The Decoupled Model is an Expected Average Cost problem over an infinite-horizon and with countably
infinite state space. In general, these problems are challenging to address. For the Decoupled Model in
(2.59a)-(2.59b), it can be shown that [12, Proposition 5.6.1] is satisfied under some additional conditions on
Π. The results in [12, Proposition 5.6.1] and Proposition 2.17 are sufficient to establish the optimality of the
stationary scheduling policy.
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idles. The definition of indexability is given next.

Definition 2.18 (Indexability). The Decoupled Model is indexable if the set I (C)

increases monotonically from /0 to N, as the value of C increases from 0 to +∞. The

AoI optimization (2.5a) with a relaxed interference constraint (2.57) is indexable if the

Decoupled Model is indexable for all links i.

The indexability of the Decoupled Model follows directly from the expression of H in

(2.64). Clearly, the threshold H is monotonically increasing with C. Substituting C = 0

yields H = 1, which implies I (C) = /0, and the limit C → +∞ gives H → +∞, which

implies I (C) =N. Since this is true for the Decoupled Model associated with every link i,

we conclude that the relaxed AoI optimization is indexable. Given indexability, we define

Whittle’s Index next.

Definition 2.19 (Index). Denote by C(h) the Whittle’s Index in state h. Then, C(h) is

the infimum value of C that makes both scheduling decisions (transmit or idle) equally

desirable to the optimal policy in state h.

Consider Proposition 2.17. For both scheduling decisions to be equally desirable in

state h, the threshold should be H = h+ 1. Substituting (2.64) we can solve this equation

for C which gives the following closed-form expression for the Index

C(h) =
wph

2

[
h+

2
p
−1
]
. (2.65)
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Whittle’s Index Policy
After establishing indexability and obtaining the expression for the Index, we return to our

original problem in Sec. 2.1, with the BS scheduling links i ∈ {1,2, · · · ,N} over time. We

denote the Whittle’s Index policy for the wireless network as WI.

Definition 2.20 (Whittle’s Index policy). The WI policy selects, in each slot t, the link

i with highest value of

Ci(hi(t)) =
wi pihi(t)

2

[
hi(t)+

2
pi
−1
]
, (2.66)

with ties being broken arbitrarily.

Notice that in the original problem in Sec. 2.1, no service charge is incurred by the

network for scheduling packet transmissions. The index Ci(hi(t)) is utilized to prioritize

links. By construction, the index Ci(hi(t)) represents the service charge that the network

would be willing to pay in order to transmit a packet using link i during slot t. Intuitively,

by selecting the link with highest Ci(hi(t)), the Whittle’s Index policy is transmitting the

most valuable packet.

Notice that the Whittle’s Index policy is similar to the Max-Weight policy despite the

fact that they were developed using different methods. Whittle’s Index and Max-Weight9

policies prioritize link i according to

wi pih2
i (t)+wi pi

(
2
pi
−1
)

and wi pih2
i (t) , respectively.

Moreover, both WI and MW are equivalent to the MAF policy when the network is sym-

metric, implying that WI and MW are AoI-optimal when wi = w and pi = p. Next, we

derive the performance guarantee ρWI for the Whittle’s Index policy in general networks,

with possibly different values of wi and pi.

9Max-Weight with α̃i =
√

wi/pi prioritize link i according to α̃i pihi(t), which is equivalent to wi pih2
i (t).
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Theorem 2.21 (Performance of Whittle’s Index policy). Consider a wireless network

with parameters (N, pi,wi) and an infinite time-horizon. The Whittle’s Index policy is

ρWI-optimal, where

ρ
WI = 4

(
M̄

[√
wi

pi

(√
2

pi
+

1√
2

)])2

(
M̄
[√

wi

pi

])2

+
1
N
M̄ [wi]

. (2.67)

The complete proof of Theorem 2.21 is provided in [51, Appendix H]. The key idea of

the proof is to transform the Whittle’s Index policy into a Max-Weight policy and then use

arguments similar to the ones in the proof of Theorem 2.16 (Performance of Max-Weight

policy). Next, we evaluate the performance of the low-complexity scheduling policies

discussed in this section using MATLAB simulations.

2.3 Simulation Results

In this section, we evaluate the performance of the scheduling policies in terms of the Ex-

pected Weighted Sum Age of Information in (2.4). We compare five scheduling policies:

i) Maximum Age First policy; ii) Randomized policy with βi =
√

wi/pi ; iii) Max-Weight

policy with α̃i =
√

wi/pi ; iv) Whittle’s Index policy and v) Dynamic Program. The numer-

ical results associated with the first four policies are simulations, while the results associ-

ated with the Dynamic Program are computations of the EWSAoI obtained by applying the

recursion in (2.11). By definition, the Dynamic Program yields the optimal performance.

Figures. 2-6, 2-7 and 2-8 evaluate the scheduling policies in a variety of network set-

tings. In Fig. 2-6, we consider a two-user symmetric network with a total of T = 500 slots

and both links having the same weight w1 = w2 = 1 and channel reliability p1 = p2 = p ∈

{1/15, · · · ,14/15}. In Fig. 2-7, we consider a two-user general network with a total of T =

500 slots, both links having the same channel reliability p1 = p2 = p ∈ {1/15, · · · ,14/15}
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but different weights w1 = 10 and w2 = 1. In Fig. 2-8, we consider larger networks. Due

to the high computation complexity associated with the Dynamic Program, we show the

Lower Bound LB from (2.15) instead. We consider a network with an increasing number of

links N ∈ {5,10, · · · ,45,50}, a total of T = 100,000 slots, channel reliability pi = i/N, ∀i

and all links having the same weight wi = 1. The initial AoI vector is~h1 = [1,1, · · · ,1]T in

all simulations.

Figure 2-6: Two-user symmetric network with T = 500,wi = 1, pi = p, ∀i. The simulation
result for each policy and for each value of p is an average over 1,000 runs.

Our results in Figs. 2-6, 2-7 and 2-8 show that the performances of the Max-Weight

and Whittle’s Index policies are comparable to the optimal performance in every network

setting considered. The results in Fig. 2-6 support the optimality of the Maximum Age

First, Max-Weight, and Whittle’s Index policies for any symmetric network. Figs. 2-7

and 2-8 suggest that, in general, the Max-Weight and Whittle’s Index policies outperform

Maximum Age First and Randomized. An important feature of Maximum Age First, Ran-

domized, Max-Weight, and Whittle’s Index policies is that they require low computational

resources even for networks with a large number of nodes.
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Figure 2-7: Two-user general network with T = 500,w1 = 10,w2 = 1, pi = p, ∀i. The
simulation result for each policy and for each value of p is an average over 1,000 runs.

Figure 2-8: Network with T = 100,000,wi = 1, pi = i/N, ∀i. The simulation result for
each policy and for each value of N is an average over 10 runs.

2.4 Summary

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate fresh packets on demand and transmit them via unreliable communication links.

We formulated the problem of optimizing transmission scheduling decisions with respect
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to the Expected Weighted Sum AoI in the network.

First, we obtained the AoI-optimal policy using Dynamic Programming. We showed

that the computational complexity of such solution grows exponentially with the number

of sources N, making it suitable for small networks. For large networks, we developed

four low-complexity scheduling policies and derived performance guarantees for each of

them as a function of network parameters, in particular the network size N, the channel

reliabilities {pi}N
i=1 and the weights {wi}N

i=1. A summary of the main results follows:

• Maximum Age First policy is AoI-optimal for the case of symmetric networks, when

all links have the same channel reliability pi = p and weight wi =w. The performance

guarantee for general networks is given in Theorem 2.9;

• Stationary Randomized policy with βi =
√

wi/pi is 2-optimal for any network con-

figuration (N, pi,wi);

• Max-Weight policy with α̃i =
√

wi/pi is AoI-optimal for symmetric networks and

2-optimal for general networks; and

• Whittle’s Index policy is AoI-optimal for symmetric networks. The performance

guarantee for general networks is given in Theorem 2.21.

Simulation results show that both Max-Weight and Whittle’s Index policies outperform

the other scheduling policies in every configuration simulated, and achieve near optimal

information freshness.

In [51, 52], we generalize the results in this chapter to the case of nodes generating

packets periodically. In chapter 4 of this thesis, we generalize the results in this chapter to

the case of nodes generating packets stochastically.
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Appendices

2.A Proof of Proposition 2.17 (Threshold Policy)

Proposition 2.17 (Threshold Policy). The stationary scheduling policy that solves Bell-

man equations (2.63a)-(2.63b) is a threshold policy that, in each slot t, transmits when

h > H − 1 and idles when 1 ≤ h ≤ H − 1. For positive fixed values of C > 0, the

expression for the threshold is

H =

3
2
− 1

p
+

√(
1
p
− 1

2

)2

+
2C
wp

 .

Proof. Consider the Decoupled Model in (2.59a)-(2.59b). During slot t, the scheduling

policy π must decide between transmitting and idling. If π transmits, the network incurs

a service charge C and the value of h reduces to unity with probability p and increases to

h+1 with probability 1− p. On the other hand, if π idles, the value of h increases to h+1

and there is no service charge. Intuitively, we expect that the optimal scheduling decision

is to transmit when h is high and idle when h is low. In particular, if the optimal scheduling

decision is to transmit when h = H, we expect that it is optimal to transmit for all h ≥ H.

This behavior is characteristic of threshold policies.

We start the proof by assuming that the optimal policy π∗ is a threshold policy that idles

when 1≤ h≤H−1 and transmits when h > H−1, for a given value of H ≥ 1. Then, using

this assumption, we solve Bellman equations (2.63a)-(2.63b) and show that the solution is

consistent with the assumption. For convenience, we rewrite Bellman equations below as

S(1) = 0 and (2.68a)

S(h) = S(h+1)−λ +wh+ min
u∈{0,1}

{ 0 ; C− pS(h+1) } . (2.68b)

First, we analyze the case h≥H. According to (2.68b), the condition for the threshold
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policy π∗ to transmit in a slot with state h≥ H is

S(h+1)>
C
p
. (2.69)

Assuming that condition (2.69) holds, it follows from (2.68b) that

S(h) =−λ +wh+C+(1− p)S(h+1) .

Since this expression is valid for all h≥ H, we can substitute S(h+1) above and get

S(h) =−λ +wh+C+(1− p) [−λ +w(h+1)+C]+ (1− p)2S(h+2) .

Repeating this procedure n times, yields

S(h) =[wh+C−λ ][1+(1− p)+ · · ·+(1− p)n]+

+w[(1− p)+2(1− p)2 + · · ·+n(1− p)n]+

+(1− p)n+1S(h+n+1) ,

and in the limit as n→ ∞ we have

S(h) =
wh+C−λ

p
+

w(1− p)
p2 , for h≥ H . (2.70)

Notice from (2.70) that (1− p)n+1S(h+n+1)→ 0 as n→ ∞.

Next, we analyze the case 1≤ h≤H−1. According to (2.68b), the condition for the

threshold policy π∗ to idle in a slot with state h ∈ {1, · · · ,H−1} is

S(h+1)≤ C
p
. (2.71)

Assuming that condition (2.71) holds, it follows from (2.68b) that

S(h) = S(h+1)−λ +wh .
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In particular, for h = H−1, we have:

S(H−1) = S(H)−λ +w(H−1) ,

where S(H) is given in (2.70). Next, for h = H−2, we have:

S(H−2) = S(H−1)−λ +w(H−2)

= S(H)−2λ +2wH−w(1+2) .

Repeating this process n times, yields

S(H−n) = S(H)−nλ +nwH−w(1+2+ · · ·+n)

= S(H)−nλ +nwH− w(n+1)n
2

, for n ∈ {1, · · · ,H−1} . (2.72)

and substituting n = H−h we have

S(h) = S(H)− (H−h)
[

λ −wH +
w(H−h+1)

2

]
, for h ∈ {1, · · · ,H−1} . (2.73)

In (2.70) and (2.73), we have expressions for the differential cost-to-go S(h) as a func-

tion of the threshold H and the optimal average cost λ . To find H and λ , we analyze S(h)

at two points: 1) when h is in the vicinity of the threshold; and 2) when h = 1.

Analysis of S(h) in the vicinity of the threshold. Policy π∗ idles when h = H−1 and

transmits when h = H. Merging the conditions in (2.69) and (2.71) with the appropriate

values of h yields

S(H)≤ C
p
< S(H +1) . (2.74)

From the monotonicity of S(h) in (2.70), it follows that there exists h′ = H + γ with

H ∈ {1,2,3, · · ·} and γ ∈ [0,1) for which

S(h′ = H + γ) =
C
p
. (2.75)
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Substituting (2.70) into (2.75) yields

C
p
=

w(H + γ)+C−λ

p
+

w(1− p)
p2

λ = w(H + γ)−w+
w
p
. (2.76)

Analysis of S(h) when h = 1. From Bellman equations in (2.63a) we have S(1) = 0.

Substituting the expression for S(h) in (2.73) gives

S(H)− (H−1)
[

λ −wH +
wH
2

]
= 0 .

and substituting S(H) from (2.70) yields

C+wH−λ

p
+

w(1− p)
p2 = (H−1)

[
λ −wH +

wH
2

]
, (2.77)

and substituting λ from (2.76) gives

C−wγ

p
= (H−1)

[
wγ−w+

w
p
+

wH
2

]
. (2.78)

Manipulating this quadratic equation on H gives the unique positive solution

H =
3
2
− 1

p
− γ +

√
2C
wp

+

(
1
p
− 1

2

)2

− γ (1− γ) . (2.79)

It is easy to see from (2.79) that the derivative dH/dγ < 0 when γ ∈ [0,1), implying that H

is monotonically decreasing. Hence, in the range γ ∈ [0,1), the value of H decreases from

H(γ = 0) =
3
2
− 1

p
+

√
2C
wp

+

(
1
p
− 1

2

)2

; to

H(γ = 1) =
1
2
− 1

p
+

√
2C
wp

+

(
1
p
− 1

2

)2

.

Since H(0)−H(1) = 1, there exists a unique γ∗ ∈ [0,1) such that H(γ∗) is integer-valued
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and the expression for the threshold H is given by

H = H(γ∗) =

3
2
− 1

p
+

√
2C
wp

+

(
1
p
− 1

2

)2
 . (2.80)

With the expression of H, we can obtain the optimal average cost by isolating λ in

(2.77) as follows

λ =
w
p
+

C
p
+

wH(H−1)
2

H +
(1− p)

p

. (2.81)

Finally, with the closed-form expressions for the differential cost-to-go S(h), threshold

H and optimal average cost λ , it is possible to validate the consistency between the solution

and the (initial) assumption of a threshold policy. For the solution of Bellman equations

(2.68a)-(2.68b) to be a threshold policy that idles when h ∈ {1, · · · ,H− 1} and transmits

when h≥ H, the following condition should hold:

S(h(−)+1)≤ C
p
< S(h(+)+1) ,

for all h(−) ∈ {1, · · · ,H−1} and h(+) ∈ {H,H +1, · · ·}. Since S(h) in (2.70) and (2.73) is

monotonically increasing it is sufficient to show that

S(H)≤ C
p
< S(H +1) . (2.82)

Recall from (2.75) that for H in (2.80) there exists γ ∈ [0,1) such that

S(H + γ) =
C
p
.

From the monotonicity of S(h) in (2.70), it follows that condition (2.82) is satisfied. Thus,

the solution to Bellman equations is consistent. �



Chapter 3

Throughput Constrained AoI

Optimization

T he scheduling policies discussed in chapter 2 attempt to minimize AoI by dynam-

ically allocating resources to the different links in the network. Depending on the

network configuration and scheduling policy, some links can be activated frequently, while

others less often. The frequency at which information is delivered to the destination is of

particular importance in sensor networks. Clearly, a sensor that measures the quantity of

fuel requires a lower update frequency (i.e. throughput) than a sensor that is measuring the

proximity to obstacles in order to avoid collisions. For capturing this attribute, we asso-

ciate a minimum throughput requirement with each node in the network. Hence, in addition

to providing information freshness, the scheduling policies should also fulfill throughput

constraints from the individual nodes.

It is important to emphasize that high throughput does not guarantee low AoI. Low

packet delay and service regularity are also necessary to achieve low AoI. In this chapter,

we consider the problem of minimizing the AoI in the network while simultaneously satis-

fying throughput requirements from the individual nodes. First, we derive a lower bound

on the AoI performance achievable by any given network. Then, we develop two low-

complexity transmission scheduling policies, namely Randomized and Drift-Plus-Penalty,

and show that both are guaranteed to be within a factor of two away from the lower bound,
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while simultaneously satisfying any feasible throughput requirements. To the best of our

knowledge, this is the first work1 to consider AoI-based policies that provably satisfy

throughput constraints of multiple destinations simultaneously.

The remainder of this chapter is organized as follows. In Sec. 3.1, we formulate the

throughput constrained AoI optimization problem. In Sec. 3.2.1 we derive an analytical

lower bound on the AoI optimization. In Sec. 3.2.2, we find the scheduling policy that

solves the AoI optimization over the class of Stationary Randomized policies. In Sec. 3.2.3,

we develop the Drift-Plus Penalty policy and obtain performance guarantees in terms of AoI

and throughput. In Sec. 3.3, both policies are simulated and compared to the state-of-the-art

in the literature. A summary of results is provided in Sec. 3.4.

3.1 System Model

Consider a single-hop wireless network with a base station (BS) and N nodes sharing time-

sensitive information through unreliable communication links, as described in Sec. 2.1 and

illustrated in Fig. 2-1. The transmission scheduling policy π ∈ Π controls the decision

{ui(t)}N
i=1 of the BS in each slot t. Recall that ui(t) ∈ {0,1} is 1 when the BS selects link i

during slot t, ci(t) ∈ {0,1} is 1 when the channel associated with link i is ON, and di(t) ∈

{0,1} is 1 when a packet is successfully transmitted via link i. The interference constraint

associated with the wireless channel imposes that ∑
N
i=1 ui(t)≤ 1, ∀t ∈ {1, · · · ,T}, meaning

that, at any given slot t, the scheduling policy can select at most one link for transmission.

The channel state process is i.i.d. over time and independent across different links, with

P(ci(t) = 1) = pi,∀i, t. It follows from di(t) = ci(t)ui(t) that E [di(t)] = piE [ui(t)].

Let qi be a strictly positive real value that represents the minimum throughput require-

ment of link i. Using the random variable dπ
i (t), we define the long-term throughput of link

i when policy π is employed as

q̂π
i := lim

T→∞

1
T

T

∑
t=1

E[dπ
i (t)] . (3.1)

1This work was first published in [49] and [50].
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Then, we express the minimum throughput constraint of each link as q̂π
i ≥ qi ,∀i∈{1, · · · ,N}.

We assume that {qi}N
i=1 is a feasible set of minimum throughput requirements, i.e.

there exists a policy π ∈Π that satisfies all T interference constraints and all N throughput

constraints simultaneously.

Remark 3.1. The inequality
N

∑
i=1

qi

pi
≤ 1 , (3.2)

is a necessary and sufficient condition for the feasibility of {qi}N
i=1.

Proof. The necessary condition is shown by substituting E [dπ
i (t)] = piE [uπ

i (t)] into (3.1),

manipulating the expression and summing over all i. Then, by applying the interference

constraints, yields

N

∑
i=1

qi

pi
≤

N

∑
i=1

q̂π
i

pi
= lim

T→∞

1
T

N

∑
i=1

T

∑
t=1

E[uπ
i (t)]≤ 1 . (3.3)

Sufficiency is shown by constructing a policy that fulfills the throughput requirements

{qi}N
i=1 when (3.2) is satisfied. One example of such policy is given in Sec. 3.2.2 �

Throughout this chapter, we assume that (3.2) is satisfied with strict inequality. With the

definitions of AoI in Sec. 2.1 and throughput in Sec. 3.1, we present the AoI optimization

problem subject to the minimum throughput requirements.

Throughput constrained AoI optimization

E[J∗] = min
π∈Π

{
lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

wiE [hi(t)]

}
(3.4a)

s.t. q̂π
i ≥ qi ,∀i ; (3.4b)

∑
N
i=1 ui(t)≤ 1 ,∀t . (3.4c)

The scheduling policy that results from (3.4a)-(3.4c) is referred to as AoI-optimal. To

compare the performance of different scheduling policies, we employ the optimality ra-

tio ρπ = Uπ
B /LB, where LB is an universal lower bound to the optimization problem in

(3.4a)-(3.4c) and Uπ
B is an upper bound to the performance of the admissible policy π ∈Π.

Admissible policies are non-anticipative and satisfy both constraints (3.4b) and (3.4c).
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3.2 Scheduling Policies

In this section, we obtain a lower bound LB to the AoI optimization (3.4a)-(3.4c). Then,

we propose two low-complexity scheduling policies with strong AoI performances that

provably satisfy the throughput constraints for every feasible set {qi}N
i=1. To evaluate the

AoI performance of each policy, we find their corresponding optimality ratio ρπ . Moreover,

in Sec. 3.3, we simulate and compare these policies to the state-of-the-art in the literature.

3.2.1 Universal Lower Bound

In this section, we derive a lower bound to the optimization problem in (3.4a)-(3.4c).

Theorem 3.2 (Lower Bound). The optimization problem in (3.5a)-(3.5c) provides a

lower bound LB to the AoI optimization (3.4a)-(3.4c), namely LB ≤ E[J∗] for every

network setup (N, pi,qi,wi).

Lower Bound

LB = min
π∈Π

{
1

2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)}

(3.5a)

s.t. q̂π
i ≥ qi ,∀i ; (3.5b)

∑
N
i=1 ui(t)≤ 1 ,∀t . (3.5c)

Proof Outline. From (2.26), which was derived for the proof of Theorem 2.1, we know that

the RHS in (3.4a) can be written as

lim
T→∞

Jπ
T = lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

wihi(t) =

=
1

2N

N

∑
i=1

wi

[
M̄[I2

i ]

M̄[Ii]
+1
]
≥ 1

2N

N

∑
i=1

wi
[
M̄[Ii]+1

]
w.p.1 . (3.6)
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Intuitively, we know that the inter-delivery time M̄[Ii] is inversely proportional to the

throughput q̂π
i what gives (3.5a). The complete proof is in Appendix 3.A. �

Notice that the lower bound in (3.5a)-(3.5c) depends only on the long-term throughput

associated with policy π . In turn, the throughput q̂π
i ∈ (0,1] depends only on the total num-

ber of packets delivered to node i during the time-horizon T . The unique solution to this

minimization problem is given by Corollary 3.6 and Algorithm 1. In the next section, we

use this lower bound to obtain a tight optimality ratio, ρR < 2, for a Stationary Randomized

policy.

3.2.2 Stationary Randomized Policy

Denote by ΠR the class of Stationary Randomized Policies and let R∈ΠR be a Randomized

policy that makes scheduling decisions randomly, according to fixed probabilities {µi}N
i=1,

where µi = E[ui(t)] ∈ (0,1],∀i,∀t, and µidle = 1−∑
N
i=1 µi.

Definition 3.3 (Randomized policy). The Randomized policy selects, in each slot t,

link i with probability µi, or idles with probability µidle.

Observe that each policy in ΠR is fully characterized by the set of scheduling probabil-

ities {µi}N
i=1.Next, we find the Optimal Stationary Randomized policy R∗ that solves the

AoI optimization (3.4a)-(3.4c) over the class ΠR ⊂ Π and derive the associated optimality

ratio ρR.

Remark 3.4. Consider a policy R ∈ ΠR with scheduling probabilities {µi}N
i=1. The long-

term throughput and the expected time-average AoI of link i can be expressed as

q̂R
i = piµi ; (3.7)

lim
T→∞

1
T

T

∑
t=1

E[hR
i (t)] =

1
piµi

. (3.8)
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Proof. In any given slot t, the BS receives a packet from link i if this link is scheduled and

the corresponding packet transmission is successful. It follows that E[dR
i (t)] = piµi,∀i, t.

Hence, by the definition of throughput in (3.1) and the renewal-reward result in (2.45), we

obtain (3.7) and (3.8), respectively. �

Substituting both expressions from Remark 3.4 into the AoI optimization (3.4a)-(3.4c)

gives the equivalent optimization problem over the class ΠR presented below.

Optimization over Randomized policies

E[JR∗] = min
R∈ΠR

{
1
N

N

∑
i=1

wi

piµi

}
(3.9a)

s.t. piµi ≥ qi ,∀i ; (3.9b)

∑
N
i=1 µi ≤ 1 . (3.9c)

Notice that under the class ΠR, conditions (3.9c) and (3.4c) are equivalent. The Optimal

Stationary Randomized policy R∗ is characterized by the set {µ∗i }N
i=1 that solves (3.9a)-

(3.9c).

Theorem 3.5 (Optimality Ratio for R∗). The optimality ratio of R∗ is such that ρR < 2,

i.e. the Optimal Stationary Randomized policy is 2-optimal for any wireless network.

Proof. Let q̂L
i be the throughput associated with the policy that solves the Lower Bound

(3.5a)-(3.5c). Consider the policy R ∈ ΠR with long-term throughput q̂R
i = piµi = q̂L

i for

each link i. Since q̂R
i = q̂L

i , it follows that R satisfies all throughput constraints. Comparing

LB in (3.5a) with the objective function associated with R, namely E[JR], yields

E[JR]

2
< LB → ρ

R =
E[JR∗]

E[J∗]
≤ E[JR]

LB
< 2 , (3.10)

where E[J∗] comes from (3.4a) and E[JR∗] from (3.9a). Recall that LB ≤ E[J∗]≤ E[JR∗]≤

E[JR]. �
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Corollary 3.6. The Optimal Stationary Randomized policy R∗ is also the solution for

the Lower Bound problem (3.5a)-(3.5c).

Proof. Using the same argument as in the proof of Theorem 3.5, in particular q̂R
i = piµi =

q̂L
i , it follows that the scheduling policy that solves the Optimization over Randomized

policies (3.9a)-(3.9c) also solves the Lower Bound (3.5a)-(3.5c). �

Theorem 3.7 (Optimal Stationary Randomized policy). The scheduling probabilities

{µ∗i }N
i=1 that result from Algorithm 1 are the unique solution to (3.9a)-(3.9c) and, thus,

characterize the Optimal Stationary Randomized policy R∗.

Algorithm 1 Unique solution to Karush–Kuhn–Tucker (KKT) conditions

1: γi← wi pi/Nq2
i ,∀i ∈ {1,2, · · · ,N}

2: γ ←maxi{γi}
3: µi← (qi/pi)max{1;

√
γi/γ } ,∀i

4: S← µ1 +µ2 + · · ·+µN
5: while S < 1 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update µi and S
8: end while
9: µ∗i = µi,∀i, and γ∗ = γ

10: return (µ∗1 ,µ
∗
2 , · · · ,µ∗N ,γ∗)

Proof. To find the set of scheduling probabilities {µ∗i }N
i=1 that solve the optimization prob-

lem (3.9a)-(3.9c), we analyze the KKT Conditions. Let {λi}N
i=1 be the KKT multipliers

associated with the relaxation of (3.9b) and γ be the multiplier associated with the relax-

ation of (3.9c). Then, for λi ≥ 0,∀i, γ ≥ 0 and µi ∈ [qi/pi,1],∀i, we define

L (µi,λi,γ) =
1
N

N

∑
i=1

wi

piµi
+

N

∑
i=1

λi (qi− piµi)+ γ

(
N

∑
i=1

µi−1

)
, (3.11)

and, otherwise, we define L (µi,λi,γ) = +∞. Then, the KKT Conditions are
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(i) Stationarity: ∇µiL (µi,λi,γ) = 0;

(ii) Complementary Slackness: γ

(
N

∑
i=1

µi−1

)
= 0;

(iii) Complementary Slackness: λi(qi− piµi) = 0,∀i;

(iv) Primal Feasibility: piµi ≥ qi ,∀i, and
N

∑
i=1

µi ≤ 1; and

(v) Dual Feasibility: λi ≥ 0,∀i, and γ ≥ 0.

Since qi is strictly positive, the function L (µi,λi,γ) is convex on the interval of interest

µi ∈ [qi/pi,1]. Therefore, if there exists a vector ({µ∗i }N
i=1,{λ ∗i }N

i=1,γ
∗) that satisfies all

KKT Conditions, then this vector is unique. As a result, the scheduling policy R∗ ∈ΠR that

optimizes (3.9a)-(3.9c) is also unique and is characterized by {µ∗i }N
i=1. Next, we find the

vector ({µ∗i }N
i=1,{λ ∗i }N

i=1,γ
∗).

To assess stationarity, ∇µiL (µi,λi,γ)= 0, we calculate the partial derivative of L (µi,λi,γ)

with respect to µi. It follows from the derivative that

wi

N piµ
2
i
+λi pi = γ ,∀i . (3.12)

From complementary slackness, γ(∑N
i=1 µi − 1) = 0, we know that either γ = 0 or

∑
N
i=1 µi = 1. Equation (3.12) shows that the value of γ can only be zero if λi = 0 and

µi→ ∞, which violates µi ∈ [qi/pi,1]. Hence, we obtain

γ > 0 and
N

∑
i=1

µi = 1 . (3.13)

Notice that ∑
N
i=1 µi = 1 implies in µidle = 0.

Based on dual feasibility, λi ≥ 0, we can separate links i ∈ {1, · · · ,N} into two cate-

gories: links with λi > 0 and links with λi = 0.

Category 1) links i with λi > 0. It follows from complementary slackness, λi(qi− piµi) = 0,

that

µi =
qi

pi
. (3.14)
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Plugging this value of µi into (3.12) gives the inequality λi pi = γ−γi > 0, where we defined

the constant

γi :=
wi pi

Nq2
i
. (3.15)

Category 2) links i with λi = 0. It follows from (3.12) that

γ = γi

(
qi

piµi

)2

→ µi =
qi

pi

√
γi

γ
. (3.16)

In summary, for any fixed value of γ > 0, the scheduling probability of link i is

µi =
qi

pi
max

{
1,
√

γi

γ

}
. (3.17)

Notice that for a decreasing value of γ , the probability µi remains fixed or increases. Our

goal is to find the value of γ∗ that gives {µ∗i }N
i=1 satisfying the condition ∑

N
i=1 µ∗i = 1.

Proposed algorithm to find γ∗: start with γ = max{γi}. Then, according to (3.17), all

links have µi = qi/pi and, by the feasibility condition in (3.2), it follows that

N

∑
i=1

µi =
N

∑
i=1

qi

pi
≤ 1 . (3.18)

Now, by gradually decreasing γ and adjusting {µi}N
i=1 according to (3.17), we can find

the unique γ∗ that fulfills ∑
N
i=1 µ∗i = 1. The solution γ∗ exists since γ → 0 implies in

∑
N
i=1 µi → ∞. The uniqueness of γ∗ follows from the monotonicity of µi with respect to

γ . This process is described in Algorithm 1 and illustrated in Fig. 3-1.

Algorithm 1 outputs the set of scheduling probabilities {µ∗i }N
i=1 and the parameter γ∗.

The set {λ ∗i }N
i=1 is obtained using (3.12). Hence, the unique vector ({µ∗i }N

i=1,{λ ∗i }N
i=1,γ

∗)

that solves the KKT Conditions is found. �

In order to fulfill the throughput constraints (3.9b), every scheduling policy in ΠR must

allocate at least µi≥ qi/pi to each link i. What differentiates policies in ΠR is how they dis-

tribute the remaining resources, 1−∑
N
i=1 qi/pi, between links. According to Algorithm 1,

the Optimal Stationary Randomized policy R∗ supplies additional resources, µ∗i > qi/pi,

to links with high value of γi, namely links with a high priority wi or a low value of qi/pi.
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Figure 3-1: Illustration of Algorithm 1 in a network with three links. On the left, the initial
configuration with γ = max{γi}. On the right, the outcome γ∗ implies that under policy R∗

link 2 will operate with minimum required scheduling probability µ2 = q2/p2, while the
other two links will operate with a scheduling probability that is larger than the minimum.

Notice that if a link with low qi/pi was given the minimum required amount of resources,

it would rarely transmit and its AoI would be high. In contrast, policy R∗ allocates the

minimum required, µ∗i = qi/pi, to links with low priority wi or high qi/pi.

Notice that in the limit as qi → 0,∀i, Algorithm 1 gives the same result as Corol-

lary 2.13. For arbitrarily low values of qi, γi are high and all links have

µi =
qi

pi
max

{
1;
√

γi

γ

}
=

qi

pi

√
γi

γ
=

√
wi

pi

√
1

Nγ
. (3.19)

Then, the sum of scheduling probabilities is ∑
N
i=1 µ∗i = 1 only when

µ
∗
i =

√
wi

pi

/ N

∑
j=1

√
w j

p j
,∀i . (3.20)

The scheduling probabilities in (3.20) are identical to the ones in Corollary 2.13.

The policies R∈ΠR discussed in this section are as simple as possible. They select links

randomly, according to fixed scheduling probabilities {µi}N
i=1 calculated offline by Algo-

rithm 1. Despite their simplicity, R∗ satisfies the throughput constraints for every feasible

set {qi}N
i=1 and is 2-optimal in terms of information freshness, regardless of the network

configuration (N, pi,qi,wi). In the following section, we develop scheduling policies that

take advantage of additional information, such as the current hi(t) of each link, for selecting

links in an adaptive manner.
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3.2.3 Drift-Plus-Penalty Policy

The Drift-Plus-Penalty policy is derived using a similar technique as the Max-Weight pol-

icy in Sec. 2.2.4. The main difference between these two policies is that the Drift-Plus-

Penalty is designed to reduce the sum of the Lyapunov Drift and a Penalty Function, while

the Max-Weight policy reduces only the Lyapunov Drift. As we will see, this difference

allows the Drift-Plus-Penalty policy to simultaneously achieve low AoI performance and

satisfy the throughput requirements. Prior to presenting the Drift-Plus-Penalty policy, we

introduce the notions of throughput debt, augmented network state, Lyapunov Function and

Lyapunov Drift. Notice that they differ from the definitions in Sec. 2.2.4.

Let xi(t) be the throughput debt associated with link i at the beginning of slot t. The

throughput debt evolves as

xi(t +1) = tqi−
t

∑
τ=1

di(τ) . (3.21)

The value of tqi can be interpreted as the minimum number of packets that link i should

have delivered by slot t +1 and ∑
t
τ=1 di(τ) is the total number of packets actually delivered

in the same interval. Define the operator (.)+ = max{(.),0} that computes the positive part

of a scalar. Then, the positive part of the throughput debt is given by x+i (t) = max{xi(t);0}.

A large debt x+i (t) indicates to the scheduling policy π ∈Π that link i is lagging behind in

terms of throughput. In fact, strong stability of the process x+i (t), namely

lim
T→∞

1
T

T

∑
t=1

E[x+i (t)]< ∞ , (3.22)

is sufficient to establish that the minimum throughput constraint, q̂π
i ≥ qi, is satisfied [85,

Theorem 2.8].

Denote by S(t) = (hi(t),x+i (t))
N
i=1 the augmented network state at the beginning of slot

t and define the Penalty Function as follows

P′(S(t)) :=
1
2

N

∑
i=1

α̃iE[hi(t +1)|S(t)] , (3.23)

where α̃i > 0 are auxiliary parameters used to tune the performance of the Drift-Plus-
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Penalty policy. Observe that P′(S(t)) is large when links have high AoI. Then, define the

Lyapunov Function

L′(S(t)) :=
V ′

2

N

∑
i=1

[
x+i (t)

]2
, (3.24)

where V ′ is a strictly positive real value that represents the importance of the throughput

constraints. Notice that, as opposed to the Lyapunov Function in (2.48), the expression in

(3.24) does not contain an AoI term. This is because the term with hi(t) is already present

in the Penalty Function. Similarly to (2.49), we define the one-slot Lyapunov Drift as

∆
′(S(t)) := E

[
L′ (S(t +1))−L′ (S(t)) |S(t)

]
. (3.25)

The Drift-Plus-Penalty policy is designed to minimize an upper bound on the sum

∆′(S(t))+P′(S(t)) at every slot t. To obtain this upper bound, we analyze both the Lya-

punov Drift and the Penalty Function. Substituting the Lyapunov Function (3.24) into the

Drift gives

∆
′(S(t)) =

V ′

2

N

∑
i=1

E
{
[x+i (t +1)]2− [x+i (t)]

2 |S(t)
}
. (3.26)

To find an expression for [x+i (t +1)]2− [x+i (t)]
2, we use the recursion

xi(t +1) = xi(t)−di(t)+qi , with xi(1) = 0 . (3.27)

Notice that (3.27) follows from (3.21). Squaring x+i (t +1), yields

[
x+i (t +1)

]2
= [max{xi(t)−di(t)+qi;0}]2

≤
[
max{x+i (t)−di(t)+qi;0}

]2
≤ [x+i (t)−di(t)+qi]

2 . (3.28)

Manipulating (3.28), gives

[x+i (t +1)]2− [x+i (t)]
2 ≤−2x+i (t)[di(t)−qi]+1 . (3.29)

Taking the conditional expectation of (3.29) and applying E [di(t)|S(t)] = piE [ui(t)|S(t)]
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from (2.2), gives

E
{
[x+i (t +1)]2− [x+i (t)]

2∣∣S(t)}≤−2x+i (t)(piE{ui(t)|S(t)}−qi)+1 . (3.30)

Substituting (3.30) into the Lyapunov Drift in (3.26), yields

∆
′(S(t))≤−V ′

N

∑
i=1

x+i (t)(piE{ui(t)|S(t)}−qi)+V ′N/2 . (3.31)

Next, we analyze the Penalty Function (3.23) by utilizing the evolution of hi(t) in (2.3)

P′(S(t)) :=
1
2

N

∑
i=1

α̃iE[hi(t +1)|S(t)]

=
1
2

N

∑
i=1

α̃i{hi(t)+1−hi(t)E[di(t)|S(t)]}

=
1
2

N

∑
i=1

α̃i{hi(t)+1− pihi(t)E[ui(t)|S(t)]} . (3.32)

Substituting (3.31) and (3.32) into the sum ∆′(S(t))+P′(S(t)) yields the expression for

the upper bound

∆
′(S(t))+P′(S(t))≤−

N

∑
i=1

E [ui(t) |S(t)]W ′i (t)+B′(t) , (3.33)

where W ′i (t) and B′(t) are given by

W ′i (t) =
α̃i pi

2
hi(t)+V ′pix+i (t) ; (3.34)

B′(t) =
N

∑
i=1

{
α̃i

2
[hi(t)+1]+V ′x+i (t)qi +

V ′

2

}
. (3.35)

The values of W ′i (t) and B′(t) can be easily calculated by any admissible policy and thus

can be used for making scheduling decisions. However, notice that the term B′(t) in (3.35)

is not affected by the choice of ui(t). The Drift-Plus-Penalty policy minimizes the upper

bound in (3.33) at every slot t. Denote the Drift-Plus-Penalty policy as DPP.
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Definition 3.8 (Drift-Plus-Penalty policy). The DPP policy selects, in each slot t, the

link i with highest value of W ′i (t), with ties being broken arbitrarily.

Theorem 3.9. The DPP policy satisfies any feasible set of minimum throughput re-

quirements {qi}N
i=1.

Theorem 3.10 (Optimality Ratio for DPP). For any wireless network with parameters

(N, pi,qi,wi), by choosing the constants α̃i = wi/µ∗i pi,∀i, the optimality ratio of DPP

is such that

ρ
DPP ≤ 2+

1
LB

[
V ′− 1

N

N

∑
i=1

wi

]
. (3.36)

Moreover, if V ′ ≤ ∑
N
i=1 wi/N, then the DPP policy is 2-optimal.

The proofs of Theorems 3.9 and 3.10 are provided in Appendices 3.B and 3.C, re-

spectively. Notice from the expression of W ′i (t) in (3.34) that increasing V ′ prioritizes the

throughput debt minimization over the AoI minimization. This effect is also captured in

the expression for ρDPP in (3.36), where a larger V ′ loosens the performance guarantee in

terms of information freshness.

The Lyapunov Function in (3.24) with a quadratic term in x+i (t) has a central role

in showing that the DPP policy satisfies any feasible requirements {qi}N
i=1. The Penalty

Function (3.23) with a linear term in hi(t) is central to show that the DPP policy is 2-

optimal. Recall that the MW policy in Sec. 2.2.4 was also designed around a linear term on

hi(t) and was shown to be 2-optimal. Comparing Theorems 2.16 and 3.10, we can clearly

see the similarities. In particular, notice that in the limit as qi→ 0,∀i, the throughput debt

becomes x+i (t) = 0,∀i, t. As a result, the DPP policy selects links according to W ′i (t) =

α̃i pihi(t)/2 which is equivalent to W ′i (t) =
√

wi pihi(t). Hence, the DPP policy becomes
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identical to the MW policy, as expected.

The Optimal Stationary Randomized policy R∗ selects links randomly, according to

fixed scheduling probabilities {µ∗i }N
i=1. In contrast, the Drift-Plus-Penalty policy DPP uses

feedback from the network, namely hi(t) and x+i (t), to guide scheduling decisions. We

expect the DPP policy to outperform R∗. In the next section, we simulate R∗ and DPP, and

compare their performance against the state-of-the-art in the literature.

3.3 Simulation Results

In this section, we simulate four transmission scheduling policies: 1) Optimal Randomized,

R∗; 2) Drift-Plus-Penalty, DPP; 3) Whittle’s Index, WI, without throughput constraints;

and 4) Largest Weighted-Debt First, LD. The first two policies are developed in Sec. 3.2

and the last two are proposed in Sec. 2.2.5 and [34], respectively. Policy WI was proposed

in Sec. 2.2.5 for minimizing the AoI in broadcast wireless networks without throughput

constraints. Policy LD selects, in each slot t, the node with highest value of xi(t)/pi, where

xi(t) is the throughput debt (3.21). It was shown in [34] that LD satisfies any set of feasible

throughput requirements {qi}N
i=1. Notice that LD does not account for AoI.

We simulate a network with N nodes, each having different parameters. Node i has

weight wi = (N +1− i)/N, channel reliability pi = i/N and minimum throughput require-

ment qi = ε pi/N, where ε ∈ [0,1) represents the hardness of satisfying the throughput

constraints q̂π
i ≥ qi. The larger the value of ε , the more challenging are the constraints.

Notice that ε < 1 is necessary for the feasibility of {qi}N
i=1. The value of V ′ represent the

importance of the throughput constraints for DPP. A lower value of V ′ reduces the priority

of the throughput debt and increases the priority of AoI minimization. Recall that for any

positive V ′, the DPP policy is guaranteed to satisfy any feasible throughput requirements

in the long run. Policies R∗, WI and LD are not affected by V ′.

Two performance metrics are used to evaluate scheduling policies. Figures 3-2, 3-4 and

3-6 measure the Expected Weighted Sum AoI, E[Jπ
T ], defined in (2.4) and compare it with

the lower bound LB in (3.5a). Figs. 3-3 and 3-5 measure the maximum normalized through-

put debt, defined as maxi{x+i (T +1)/T qi}. Figs. 3-2 and 3-3 show simulations of networks
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with increasing time-horizon, namely T ∈ {104,5× 104,105,5× 105,106,15× 106}, and

fixed N = 15, ε = 0.9, and V ′= 1. Each data point in Figs. 3-2 and 3-3 is an average over the

results of 108/T simulations. Figs. 3-4 and 3-5 show simulations of networks with increas-

ing size, namely N ∈ {5,10, · · · ,25,30}, and fixed ε = 0.9 and V ′ = N2. Fig. 3-6 shows

networks with varying throughput constraints, namely ε ∈ {0.7,0.75, · · · ,0.95,0.999}, and

fixed N = 30 and V ′ = N2. Each data point in Figs. 3-4, 3-5 and 3-6 is an average over the

results of 10 simulations and each simulation runs for a total of T = N×106 slots.

Figure 3-2: Network with increasing time-horizon T , N = 15, ε = 0.9, and V ′ = 1. The
simulation result for each policy and for each value of T is an average over 108/T runs.

Figs. 3-2 and 3-3 show the effects of low V ′ on DPP. A lower value of V ′ gives lower

priority to the throughput debt and, as a result, the network may take longer to achieve

the desired throughput, especially when the number of nodes N and/or ε are large. This

convergence time is illustrated in Fig. 3-3. The advantage of having low V ′ is the (slight)

improvement in EWSAoI. Examining DPP in Figs. 3-2 and 3-4, it can be seen that when

V ′ goes from 152 to 1, the EWSAoI of DPP decreases from 17.26 to 16.61, i.e. less than

5% improvement when V ′ decreases by a factor of 225.

As expected, simulations clearly support the theoretical results in Sec. 3.2. Specifically,

Figs. 3-2 to 3-6 show that: 1) the AoI performance of R∗ is a factor of 2 away from the lower

bound; 2) the AoI performance of DPP is comparable to the lower bound in every network

configuration simulated; 3) R∗, LD, and DPP satisfy the feasible throughput requirements,
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Figure 3-3: Network with increasing time-horizon T , N = 15, ε = 0.9, and V ′ = 1. The
simulation result for each policy and for each value of T is an average over 108/T runs.

Figure 3-4: Network with increasing size N, T = N× 106, ε = 0.9, and V ′ = N2. The
simulation result for each policy and for each value of N is an average over 10 runs.

while WI does not satisfy the throughput requirements; and 4) the AoI performance of WI

is superior to the lower bound, which is only possible because WI developed in Sec. 2.2.5

does not satisfy the throughput requirements. The performance of WI shows the impact of

the throughput requirements on the AoI performance. We conclude that DPP has superior

performance in terms of both AoI and throughput.
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Figure 3-5: Network with increasing size N, T = N× 106, ε = 0.9, and V ′ = N2. The
simulation result for each policy and for each value of N is an average over 10 runs.

Figure 3-6: Network with increasing ε , N = 30, T =N×106, and V ′=N2. The simulation
result for each policy and for each value of ε is an average over 10 runs.

3.4 Summary

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate fresh packets on demand and transmit them via unreliable communication links.

We addressed the problem of minimizing the Expected Weighted Sum AoI in the net-

work while simultaneously satisfying throughput requirements from the individual nodes.



3.4. SUMMARY 93

Throughput requirements can either capture an attribute of the nodes or be used to enforce

fair allocation of resources in the network.

First, we derived a lower bound on the AoI performance achievable by any given net-

work. Then, we developed two low-complexity transmission scheduling policies, namely

Stationary Randomized and Drift-Plus-Penalty, and showed that both are 2-optimal for

any network configuration, while simultaneously satisfying any feasible throughput re-

quirements. Simulation results show that the Drift-Plus-Penalty policy outperforms other

scheduling policies in every configuration simulated, and achieves near optimal informa-

tion freshness.

Remark 3.11 (Whittle’s Index policy for wireless networks with throughput constraints).

Using similar arguments as in Sec. 2.2.5, we can transform the throughput constrained AoI

optimization in (3.4a)-(3.4c) into a relaxed Restless Multi-Armed Bandit (RMAB) problem.

Unfortunately, it can be shown that due to the throughput constraints, q̂π
i ≥ qi, this relaxed

RMAB problem is not indexable. To overcome this challenge, we can relax the throughput

constraints in (3.4b), place them into the objective function of (3.4a)-(3.4c), and propose

a Whittle’s Index policy associated with the “doubly relaxed” problem. The drawback of

this approach is that the resulting Whittle’s Index policy does not guarantee that feasible

throughput constraints are satisfied. For this reason, the development of the Whittle’s Index

policy is not included in the body of this chapter. The Whittle’s Index policy is developed

and discussed in Appendix 3.D. Numerical results can be found in [50, Sec. IV].
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Appendices

3.A Proof of Theorem 3.2 (Lower Bound)

Theorem 3.2 (Lower Bound). The optimization problem in (3.5a)-(3.5c) provides a

lower bound LB to the AoI optimization (3.4a)-(3.4c), namely LB ≤ E[J∗] for every

network setup (N, pi,qi,wi).

Lower Bound

LB = min
π∈Π

{
1

2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)}

s.t. q̂π
i ≥ qi ,∀i ;

∑
N
i=1 ui(t)≤ 1 ,∀t .

Proof. Consider a scheduling policy π ∈ Π that satisfies all throughput and interference

constraints running on a network for the time-horizon of T slots. Let Ω be the sample space

associated with this network and let ω ∈Ω be a sample path. For a given sample path ω , the

total number of packets delivered by link i during the T slots is denoted Di(T ) = ∑
T
t=1 di(t)

and the inter-delivery time associated with each of those deliveries is denoted Ii[m]. In

particular, let Ii[m] be the number of slots between the (m−1)th and mth packet deliveries

from link i, ∀m ∈ {1, · · · ,Di(T )}2. After the last packet delivery from link i, the number of

remaining slots is Ri. Hence, the time-horizon can be written as

T =
Di(T )

∑
m=1

Ii[m]+Ri ,∀i ∈ {1,2, · · · ,N} . (3.37)

According to the evolution of hi(t) in (2.3), the slot that follows the (m− 1)th packet

delivery from link i has an AoI of hi(t)= 1. Since the mth packet is delivered only after Ii[m]

slots, we know that hi(t) evolves as {1,2, · · · , Ii[m]}. This pattern is repeated throughout

2Naturally, Ii[1] is the number of slots between the first packet delivery from link i and the first slot t = 1.
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the entire time-horizon, including the last Ri slots. As a result, the time-average Age of

Information of link i can be expressed as

1
T

T

∑
t=1

hi(t) =
1
T

[
Di(T )

∑
m=1

(Ii[m]+1)Ii[m]

2
+

(Ri +1)Ri

2

]

=
1
2

[
Di(T )

T

(
1

Di(T )

Di(T )

∑
m=1

I2
i [m]

)
+

R2
i

T
+1

]
, (3.38)

where the last equality uses (3.37) to replace the two linear terms by T .

Define the operator M̄[x] that computes the sample mean of any set x. In particular, let

the sample mean of Ii[m] and I2
i [m] be

M̄[Ii] =
1

Di(T )

Di(T )

∑
m=1

Ii[m] and M̄[I2
i ] =

1
Di(T )

Di(T )

∑
m=1

I2
i [m] . (3.39)

Substituting M̄[I2
i ] into (3.38) and then applying Jensen’s inequality, yields

1
T

T

∑
t=1

hi(t)≥
1
2

(
Di(T )

T

(
M̄[Ii]

)2
+

R2
i

T
+1
)

, (3.40)

combining (3.37) and (3.39), and then substituting the result into (3.40), gives

1
T

T

∑
t=1

hi(t)≥
1
2

(
1
T
(T −Ri)

2

Di(T )
+

R2
i

T
+1
)

. (3.41)

By minimizing the RHS of (3.41) analytically with respect to the variable Ri, we have

1
T

T

∑
t=1

hi(t)≥
1
2

(
T

Di(T )+1
+1
)

. (3.42)

Taking the expectation of (3.42) and applying Jensen’s inequality, yields

1
T

T

∑
t=1

E [hi(t)]≥
1
2

 1

E
[

Di(T )
T

]
+

1
T

+1

 . (3.43)
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Applying the limit T → ∞ to (3.43) and using the definition of throughput in (3.1), gives

lim
T→∞

1
T

T

∑
t=1

E [hi(t)]≥
1
2

(
1

q̂π
i
+1
)

. (3.44)

Combining (3.44) and the objective function in (3.4a), yields

lim
T→∞

E [Jπ
T ] = lim

T→∞

1
N

N

∑
i=1

wi

T

T

∑
t=1

E [hi(t)]

≥ 1
2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)

. (3.45)

Finally, substituting (3.45) into the AoI optimization (3.4a)-(3.4c) gives the Lower Bound

(3.5a)-(3.5c). �
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3.B Proof of Theorem 3.9

Theorem 3.9. The DPP policy satisfies any feasible set of minimum throughput re-

quirements {qi}N
i=1.

Proof. The expression of the upper bound in (3.33) is central to the analysis in this ap-

pendix and is rewritten below for convenience.

∆
′(S(t))+P′(S(t))≤−

N

∑
i=1

E [ui(t) |S(t)]W ′i (t)+B′(t) ,

where W ′i (t) and B′(t) are given by

W ′i (t) =
α̃i pi

2
hi(t)+V ′pix+i (t) ;

B′(t) =
N

∑
i=1

{
α̃i

2
[hi(t)+1]+V ′x+i (t)qi +

V ′

2

}
.

Recall that the Drift-Plus-Penalty policy is designed to minimize the RHS of (3.33).

Hence, a Stationary Randomized Policy R ∈ ΠR that, in each slot t, selects node i with

probability µi ∈ (0,1] yields a lower (or equal) RHS, i.e.

N

∑
i=1

E [ui(t) |S(t)]W ′i (t)≥
N

∑
i=1

µiW ′i (t) . (3.46)

Substituting (3.46) into the RHS of (3.33) gives

∆
′(S(t))+P′(S(t))≤−

N

∑
i=1

µiW ′i (t)+B′(t)

≤−
N

∑
i=1

V ′x+i (t)[µi pi−qi]+
1
2

N

∑
i=1

[V ′+ α̃i]+
1
2

N

∑
i=1

α̃ihi(t)[1−µi pi] , (3.47)
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and by substituting the expression of P′(S(t)) in (3.23) and rearranging the terms, we get

N

∑
i=1

V ′x+i (t)[µi pi−qi]+
1
2

N

∑
i=1

α̃ihi(t)µi pi ≤

≤ 1
2

N

∑
i=1

[V ′+ α̃i]−∆
′(S(t))− 1

2

N

∑
i=1

α̃iE[hi(t +1)−hi(t)|S(t)] . (3.48)

For simplicity of exposition, we divide inequality (3.48) into five terms LHS′1+LHS′2≤

RHS′1 +RHS′2 +RHS′3. Taking their expectation with respect to S(t), summing them over

t ∈ {1,2, · · · ,T} and then dividing them by T N, gives

LHS′1 =
1
N

N

∑
i=1

(µi pi−qi)
V ′

T

T

∑
t=1

E[x+i (t)] ; (3.49a)

LHS′2 =
1

2N

N

∑
i=1

(α̃iµi pi)
1
T

T

∑
t=1

E[hi(t)] ; (3.49b)

RHS′1 =
1

2N

N

∑
i=1

[V ′+ α̃i] ; (3.49c)

RHS′2 =
V ′

2NT

N

∑
i=1

E
{
[x+i (1)]

2− [x+i (T +1)]2
}

; (3.49d)

RHS′3 =
1

2NT

N

∑
i=1

α̃iE[hi(1)−hi(T +1)] . (3.49e)

Notice that the expression of the Lyapunov Drift (3.26) was utilized in RHS′2. Since hi(T +

1) and x+i (T + 1) are non-negative, the expression of RHS′2 +RHS′3 can be simplified as

follows

RHS′2+RHS′3 ≤
1

2NT

N

∑
i=1

E
{

V ′[x+i (1)]
2 + α̃ihi(1)

}
(3.50)

Recall that hi(1) = 1 and xi(1) = 0. Hence, in the limit T →∞, we have RHS′2+RHS′3 ≤ 0.

Since LHS′2 is non-negative, it follows that the inequality can be reduced to LHS′1 ≤

RHS′1 +RHS′2 +RHS′3. Applying the limit T → ∞ and using (3.50) yields

N

∑
i=1

(µi pi−qi) lim
T→∞

V ′

T

T

∑
t=1

E[x+i (t)]≤
1
2

N

∑
i=1

[V ′+ α̃i] (3.51)
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By rearranging the terms, it is easy to see that strong stability holds for any given node i,

i.e.

lim
T→∞

1
T

T

∑
t=1

E
[
x+i (t)

]
< ∞ , (3.52)

what establishes condition (3.22). �
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3.C Proof of Theorem 3.10 (Optimality Ratio for DPP)

Theorem 3.10 (Optimality Ratio for DPP). For any wireless network with parameters

(N, pi,qi,wi), by choosing the constants α̃i = wi/µ∗i pi,∀i, the optimality ratio of DPP

is such that

ρ
DPP ≤ 2+

1
LB

[
V ′− 1

N

N

∑
i=1

wi

]
.

Moreover, if V ′ ≤ ∑
N
i=1 wi/N, then the DPP policy is 2-optimal.

Proof. Consider the analysis in Appendix 3.B. In particular, the inequality LHS′1+LHS′2≤

RHS′1+RHS′2+RHS′3 presented in (3.49a)-(3.49e). Given that LHS′1 is non-negative, it fol-

lows that the inequality can be reduced to LHS′2 ≤ RHS′1 +RHS′2 +RHS′3. Then, applying

the limit T → ∞ and using (3.50) yields

N

∑
i=1

(α̃iµi pi) lim
T→∞

1
T

T

∑
t=1

E[hi(t)]≤
N

∑
i=1

[
V ′+ α̃i

]
(3.53)

Analogously to the proof of Theorem 3.5, let q̂L
i be the long-term throughput associated

with the policy that solves the Lower Bound optimization (3.5a)-(3.5c). Then, evaluating

LB from (3.5a) gives

LB =
1

2N

N

∑
i=1

wi

q̂L
i
+

1
2N

N

∑
i=1

wi . (3.54)

Now, for each node i, we impose the following scheduling probability µi = q̂L
i /pi and

constant α̃i = wi/q̂L
i . Then, evaluating (3.53) gives

E
[
JDPP]≤ 1

N

N

∑
i=1

wi

q̂L
i
+V ′ . (3.55)
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Comparing (3.54) and (3.55), yields

LB ≤ E
[
JDPP]≤ 2LB +

[
V ′− 1

N

N

∑
i=1

wi

]
; (3.56)

ρ
DPP ≤ 2+

1
LB

[
V ′− 1

N

N

∑
i=1

wi

]
. (3.57)

Recall from Corollary 3.6 that q̂L
i = µ∗i pi. Hence, we know that α̃i = wi/µ∗i pi,∀i. The

proof is complete. �
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3.D Whittle’s Index policy

In this appendix, we develop a Whittle’s Index policy by transforming the throughput

constrained AoI optimization (3.4a)-(3.4c) into a relaxed Restless Multi-Armed Bandit

(RMAB) problem. This is possible because the AoI associated with each link in the net-

work evolves as a restless bandit. To obtain the relaxed RMAB problem, we substitute the

T interference constraints ∑
N
i=1 ui(t)≤ 1,∀t, in (3.4c) by the single time-averaged constraint

1
T N

T

∑
t=1

N

∑
i=1

E[ui(t)]≤
1
N

. (3.58)

Then, we relax this time-averaged constraint, by placing (3.58) into the objective function

(3.4a) together with the associated Lagrange Multiplier C ≥ 0. The resulting optimization

problem is called relaxed RMAB and its solution lays the foundation for the design of

Whittle’s Index. A detailed description of this method can be found in [25, 110].

One of the challenges associated with this method is that Whittle’s Index is only defined

for problems that are indexable. Unfortunately, it can be shown that due to the throughput

constraints, q̂π
i ≥ qi, the relaxed RMAB resulting from the transformation of the throughput

constrained AoI optimization (3.4a)-(3.4c) is not indexable.

To overcome this challenge, we first relax the throughput constraints (3.4b), placing

them into the objective function of (3.4a)-(3.4c) as follows

Relaxed AoI Optimization

E
[
J̃∗
]
=min

π∈Π

{
lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

[
wiE [hi(t)] +θi

(
qi

pi
−E[ui(t)]

)]}
(3.59a)

s.t. θi ≥ 0 ,∀i ; (3.59b)
N

∑
i=1

ui(t)≤ 1 ,∀t . (3.59c)

Each Lagrange Multiplier θi is associated with a relaxation of q̂π
i ≥ qi. These multipli-

ers are called throughput incentives for they represent the penalty incurred by scheduling

policies that deviate from the corresponding throughput constraint. Now, applying the
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transformation described at the beginning of this section to the relaxed AoI optimization

(3.59a)-(3.59c) yields

Doubly relaxed RMAB

E
[
JDR∗]=min

π∈Π

{
lim

T→∞

1
T N

T

∑
t=1

N

∑
i=1

[
wiE [hi(t)] +(C−θi)E [ui(t)]−

C
N
+

θiqi

pi

]}
(3.60a)

s.t. θi ≥ 0 ,∀i ; (3.60b)

C ≥ 0 . (3.60c)

Next, we solve the doubly relaxed RMAB, establish that the relaxed AoI optimization is

indexable and obtain a closed-form expression for the Whittle’s Index.

The doubly relaxed RMAB is separable and thus can be solved for each individual link.

Observe that a scheduling policy running on a network with a single link i can only choose

between selecting link i for transmission during slot t or idling. The scheduling policy that

optimizes (3.60a)-(3.60c) for a given link i is characterized next.

Proposition 3.12 (Threshold policy). Consider the doubly relaxed RMAB problem

(3.60a)-(3.60c) associated with a single link i. The optimal scheduling policy is a

threshold policy that, in each slot t, selects link i when hi(t) ≥ Hi and idles when

1 ≤ hi(t) < Hi. For positive fixed values of C and θi: 1) if C > θi, then the expression

for the threshold is

Hi =

3
2
− 1

pi
+

√(
1
pi
− 1

2

)2

+
2(C−θi)

wi pi

 ; (3.61)

2) otherwise, if C ≤ θi, then the threshold is Hi = 1.

The proof of Proposition 3.12 follows similar arguments as the proof of Proposition 2.17.

Next, we define the condition for indexability and establish that the relaxed AoI optimiza-

tion is indexable. For a given value of C, let Ii(C) = {hi(t) ∈ N|hi(t) < Hi} be the set of
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states hi(t) in which the threshold policy idles. The doubly relaxed RMAB associated with

link i is indexable if the set Ii(C) increases monotonically from /0 to N, as the value of C

increases from 0 to +∞. Furthermore, the relaxed AoI optimization is indexable if this con-

dition holds for all links. The condition on Ii(C) follows directly from Proposition 3.12

and is true for all links i. Thus, we establish that the relaxed AoI optimization is indexable.

Given indexability, we define Whittle’s Index. Let Ci(hi(t)) be the Whittle’s Index

associated with link i in state hi(t). By definition, Ci(hi(t)) is the infimum value of C

that makes both scheduling decisions (transmit or idle) equally desirable to the threshold

policy in state hi(t). The scheduling decisions are equally desirable in state hi(t) when the

multiplier C is such that Hi = hi(t)+1. Using (3.61) to solve this equation for the value of

C gives the following expression for the Index

Ci(hi(t)) =
wi pihi(t)

2

[
hi(t)+

2
pi
−1
]
+θi . (3.62)

After establishing indexability and obtaining the expression for Ci(hi(t)), we define

Whittle’s Index policy.

Definition 3.13 (Whittle’s Index policy). The Whittle’s Index policy selects, in each

slot t, the link with highest value of Ci(hi(t)), with ties being broken arbitrarily.

Denote the Whittle’s Index policy as WI. Next, we derive the performance guarantee ρWI .

Theorem 3.14 (Optimality Ratio for WI). For any given network setup (N, pi,qi,wi),

the optimality ratio of WI is such that

ρ
WI ≤ 8+

1
LB

[
1
N

N

∑
i=1

θi−
7

2N

N

∑
i=1

wi

]
. (3.63)

In particular, for every network with ∑
N
i=1 θi ≤ 7∑

N
i=1 wi/2, the Whittle’s Index policy

is 8-optimal.
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The proof of Theorem 3.14 is provided in [50, Appendix G]. The arguments used for

deriving ρWI are similar to the ones for deriving ρDPP in Theorem 3.10. Those similarities

come from the fact that policies DPP and WI are alike. Comparing the expressions for

Wi(t) and Ci(hi(t)), in (3.34) and (3.62), respectively, we can see that: 1) both have an

AoI term, Wi(t) has α̃i pihi(t)/2 and Ci(hi(t)) has wi pihi(t)
[
hi(t)+ 2

pi
−1
]
/2; and 2) both

have a throughput term, Wi(t) has V ′pix+i (t) and Ci(hi(t)) has θi. Naturally, we expect the

performance of both policies to be similar in terms of AoI. The key difference between DPP

and WI lies in the throughput term. While the term V ′pix+i (t) guarantees that DPP satisfies

the throughput constraint, q̂π
i ≥ qi, the positive scalar θi represents an incentive for WI to

comply with the constraint, but provides no guarantee. The benefit of using a fixed θi is

that there is no need to keep track of x+i (t) for each link and at every slot t.

The results in this section hold for any given set of positive throughput incentives

{θi}N
i=1. Next, we propose an algorithm that finds the values of θi which maximize a lower

bound on the Lagrange Dual problem associated with the relaxed AoI optimization (3.59a)-

(3.59c). Observe that E
[
JDR∗] in (3.60a) is the Lagrange Dual function associated with

(3.59a)-(3.59c). Thus, we can define the Lagrange Dual problem as maxC,θi{E
[
JDR∗]}

subject to C ≥ 0 and θi ≥ 0,∀i. Since this dual problem is challenging to address, we

consider a lower bound:

max
C,χi
{L̃ (C,χi)} ≤max

C,θi
{E
[
JDR∗]} ≤ E [J∗] . (3.64)

subject to χi =C−θi, C ≥ 0 and θi ≥ 0 for all links i, where

L̃ (C,χi) =
1
N

N

∑
i=1

wi

pi
− C

N

[
1−

N

∑
i=1

qi

pi

]
+

N

∑
i=1

wi

N

√ 2χi

wi pi
+

[
1
pi
− 1

2

]2

− χiqi

wi pi
− 1

pi
− 1

2

 .
The throughput incentives θi that result from the maximization of L̃ (C,χi) are given by

Algorithm 2. Simulation results in [50] show that the values of {θ ∗i }N
i=1 from Algorithm 2

reduce the throughput debt when compared to θi = 0.
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Algorithm 2 Throughput Incentives

1: χi← wi pi[(1/qi)
2− (1/pi−1/2)2]/2 ,∀i

2: C←maxi{χi}
3: φ

−1
i ← pi

√
2min{C; χi}/(wi pi)+(1/pi−1/2)2 ,∀i

4: S← φ1 +φ2 + · · ·+φN
5: while S < 1 do
6: decrease C slightly
7: repeat steps 3 and 4 to update φi and S
8: end while
9: C∗ =C and χ∗i = min{C∗; χi} and θ ∗i =C∗−χ∗i ,∀i

10: return (θ ∗1 ,θ
∗
2 , · · · ,θ ∗N)



Chapter 4

AoI in Wireless Networks with

Stochastic Arrivals

I n this chapter, we consider a broadcast single-hop wireless network with a base sta-

tion (BS) and a number of nodes sharing time-sensitive information through unreliable

communication links, as illustrated in Fig. 4-1. A key difference from chapters 2 and 3 is

that fresh packets cannot be generated on demand. Packets from each stream arrive ac-

cording to a stochastic process and are enqueued in a separate (per stream) queue. The

queueing discipline controls which packet within each queue is available for transmission.

The scheduling policy decides, at every time t, which stream to serve to the corresponding

destination. Our goal is to develop scheduling policies that keep the information fresh at

every destination, i.e. that minimize the average AoI in the network.

In Sec. 2.2.2, it was shown that when the network is symmetric1 and streams can gen-

erate fresh packets on demand, the optimal scheduling policy serves the stream associated

with the largest AoI, namely argmax{hi(t)}. This policy is optimal for it gives the largest

reduction in AoI over all streams. However, when packet generation is random, streams

may not have fresh packets available for transmission. Thus, a scheduling policy must

account both for the AoI at the destinations and the time-stamps of the packets available

for transmission in each queue. For example, consider a simple network with two streams

1A network is symmetric when all nodes have identical channel reliability pi = p and weight wi = w.
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and two destinations. Assume that at time t, each stream has a single packet in its queue.

The packet from stream 1 was generated 30 msecs ago and the packet from stream 2 was

generated 10 msecs ago. Assume that the current AoI at destinations 1 and 2 are h1(t) = 50

msecs and h2(t) = 40 msecs, respectively. A policy that serves the stream associated with

the largest AoI would select stream 1 and yield an AoI reduction of 50− 30 = 20 msecs.

Alternatively, serving stream 2 would result in a reduction of 40−10 = 30 msecs. Hence,

to minimize the average AoI, it is optimal to schedule stream 2. In this simple example, the

optimal scheduling decision was easily determined. In general, designing a transmission

scheduling policy that keeps information fresh over time is a challenging task that needs to

take into account the packet arrival process, the queueing discipline, and the conditions of

the wireless channels.

In this chapter, we address the problem of optimizing link scheduling in networks with

stochastic packet arrivals and unreliable channels operating under three common queueing

disciplines. In particular, we derive a lower bound on the AoI performance achievable

by any given network operating under any queueing discipline. Then, we consider three

common queueing disciplines and develop both a Randomized policy and a Max-Weight

policy under each discipline. Our approach allows us to evaluate the combined impact of

the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the

AoI performance both analytically and using simulations. Numerical results show that the

performance of the Max-Weight policy with Last-Come First-Served queues is close to the

analytical lower bound.

This chapter generalizes chapter 2. The main difference is that in previous chapters

we assume that when the BS selects a stream, a new packet with fresh information is

generated and then transmitted to the corresponding destination in the same time-slot. In

that case, the packet delay is always 1 slot and the AoI is reduced to h(t) = 1 slot after

every packet delivery. In contrast, in this chapter, we consider a network in which packets

are generated according to a stochastic process and are enqueued before being transmitted.

This seemingly modest distinction affects the packet delay and the evolution of AoI over

time, which in turn affects the results and proofs throughout the chapter significantly. To

illustrate the technical differences, we briefly compare the approaches taken for analyzing
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Stationary Randomized policies and Max-Weight policies.

• Under the assumptions in previous chapters, the AoI evolution is stochastically re-

newed after every packet delivery, since h(t) = 1, and thus the AoI can be analyzed

by directly applying the elementary renewal theorem for renewal-reward processes.

In contrast, in this chapter, the evolution of AoI may be dependent across consecutive

inter-delivery intervals and, thus, the same approach is not applicable. To analyze the

AoI, we obtain the stationary distribution of a two-dimensional Markov Chain with

countably-infinite state space in Proposition 4.5.

• The Max-Weight policy and Drift-Plus-Penalty policy in previous chapters make

scheduling decisions based on AoI only. In contrast, in this chapter, the Max-Weight

policy selects streams based on the “AoI reduction” accrued from a successful packet

delivery, which is a function of both AoI and packet delay.

Beyond the fact that chapter 2 represents a special case of this chapter, in particular a

network with LCFS queues and fresh packet arrivals at every decision time, the results

are different in themselves and required different proof techniques due to the challenges

imposed by the stochastic arrivals, queueing disciplines and packet delay.

The remainder of this chapter is organized as follows. In Sec. 4.1, we describe the

network model. In Sec. 4.2 we derive an analytical lower bound on the AoI minimization

problem. In Sec. 4.3, we develop the Optimal Stationary Randomized policy for each

queueing discipline and characterize their AoI performance. In Sec. 4.4, we develop the

Max-Weight policy and obtain performance guarantees in terms of AoI. In Sec. 4.5, we

provide numerical results. A summary of results is provided in Sec. 4.6.

4.1 System Model

Consider a wireless network with a base station (BS) and N nodes sharing time-sensitive

information through unreliable communication links, as illustrated in Fig. 4-1. At the be-

ginning of every slot t, a new packet from stream i∈ {1,2, · · · ,N} arrives to the system with

probability λi ∈ (0,1],∀i. Let ai(t)∈ {0,1} be the indicator function that is equal to 1 when
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a packet from stream i arrives in slot t, and ai(t) = 0 otherwise. This Bernoulli arrival pro-

cess is i.i.d. over time and independent across different streams, with P(ai(t)= 1)= λi,∀i, t.

Figure 4-1: Illustration of the single-hop wireless network. On the left, we have a downlink
network with the BS serving multiple traffic streams to different destinations. On the right,
we have an uplink network with multiple sources transmitting different traffic streams to
the BS. The network model in this section comprehends both scenarios.

Packets from stream i are enqueued in queue i. Denote by Head-of-Line (HoL) packets

the set of packets from all queues that are available to the BS for transmission in a given

slot t. Depending on the queueing discipline employed by the network, queues can be of

three types:

(i) First-Come First-Served (FCFS) queues: packets are served in order of arrival. The

HoL packets in slot t are the oldest packets in each queue. This is a standard queueing

discipline, widely deployed in communication systems.

(ii) Single packet queues: when a new packet arrives, older packets from the same stream

are dropped from the queue. The HoL packets in slot t are the freshest (i.e. most

recently generated) packets in each queue. This queueing discipline is known to

minimize the AoI in a variety of contexts. From the perspective of the AoI, Single

packet queues are equivalent to Last-Come First-Served (LCFS) queues;

(iii) No queues: packets can be transmitted only duing the slot in which they arrive. The

HoL packets in slot t are given by the set {i|ai(t) = 1}.



4.1. SYSTEM MODEL 111

Let zi(t) represent the system time of the HoL packet in queue i at the beginning of

slot t. By definition, we have zi(t) := t− τA
i (t), where τA

i (t) is the arrival time of the HoL

packet in queue i. Naturally, the value of τA
i (t) changes only when the HoL packet changes,

namely when the current HoL packet is served or dropped and there is another packet in

the same queue; or when the queue is empty and a new packet arrives. Notice that zi(t) is

undefined when queue i is empty.

We denote by zF
i (t), zS

i (t) and zN
i (t), the system times associated with FCFS queues,

Single packet queues and No queues, respectively. For all three cases, whenever the system

time is defined, it evolves according to the definition zi(t) := t−τA
i (t). Moreover, it follows

from the description of the queueing disciplines that the evolution of zS
i (t) can be written

as

zS
i (t) =

 0 if ai(t) = 1;

zS
i (t−1)+1 otherwise,

(4.1)

and the evolution of zN
i (t) is such that zN

i (t) = 0 whenever an arrival occurs, i.e. ai(t) = 1,

and is undefined otherwise. In contrast, the evolution of zF
i (t) cannot be simplified for it

depends on both the arrival times and service times of packets in the queue.

In each slot t, the BS either idles or selects a stream and transmits its HoL packet to

the corresponding destination over the wireless channel. Let ui(t) ∈ {0,1} be the indicator

function that is equal to 1 when the BS transmits the HoL packet from stream i during slot

t, and ui(t) = 0 otherwise2. The BS can transmit at most one packet at any given time-slot

t. Hence, we have
N

∑
i=1

ui(t)≤ 1,∀t . (4.2)

The transmission scheduling policy governs the sequence of decisions {ui(t)}N
i=1 of the BS.

Let ci(t) ∈ {0,1} represent the channel state associated with destination i during slot

t. When the channel is ON, we have ci(t) = 1, and when the channel is OFF, we have

ci(t) = 0. The channel state process is i.i.d. over time and independent across different

destinations, with P(ci(t) = 1) = pi,∀i, t.
2In previous chapters, when the BS selects stream i a fresh packet is generated and transmitted over

the associated link. However, when packets are generated randomly, the BS can select streams with no
packets available for transmission. Notice that the indicator is ui(t) = 1 only when a packet from stream i is
transmitted during slot t.
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Let di(t) ∈ {0,1} be the indicator function that is equal to 1 when destination i suc-

cessfully receives a packet during slot t, and di(t) = 0 otherwise. A successful reception

occurs when the HoL packet is transmitted and the associated channel is ON, implying that

di(t) = ci(t)ui(t),∀i, t. Moreover, since the BS does not know the channel states prior to

making scheduling decisions, ui(t) and ci(t) are independent, and

E[di(t)] = piE[ui(t)],∀i, t . (4.3)

The scheduling policies considered in this chapter are non-anticipative, i.e. policies that

do not use future information in making scheduling decisions. Let Π be the class of non-

anticipative policies and let π ∈Π be an arbitrary admissible policy. Our goal is to develop

scheduling policies π that minimize the average AoI in the network. Next, we formulate

the AoI minimization problem.

Let hi(t) be the AoI associated with destination i at the beginning of slot t. By definition,

we have hi(t) := t− τD
i (t), where τD

i (t) is the arrival time of the freshest packet delivered

to destination i before slot t. If during slot t destination i receives a packet with system

time zi(t) = t − τA
i (t) such that τA

i (t) > τD
i (t), then in the next slot we have hi(t + 1) =

zi(t)+1. Alternatively, if during slot t destination i does not receive a fresher packet, then

the information gets one slot older, which is represented by hi(t+1) = hi(t)+1. Notice that

the three queueing disciplines considered in this chapter select HoL packets with increasing

freshness, implying that τA
i (t) > τD

i (t) holds3 for every received packet. Hence, the AoI

evolves as follows:

hi(t +1) =

 zi(t)+1 if di(t) = 1;

hi(t)+1 otherwise,
(4.4)

for simplicity, and without loss of generality, we assume that hi(1) = 1 and zi(0) = 0,∀i.

Substituting zF
i (t), zS

i (t) and zN
i (t) into (4.4) we obtain the AoI associated with FCFS

queues, Single packet queues and No queues, respectively. In Fig. 4-2 we illustrate the

evolution of hi(t) and zi(t) in a network employing Single packet queues.

3One example of a queueing discipline that can violate τA
i (t) > τD

i (t) is the Last-Come First-Served
(LCFS) queue. When an older packet with τA

i (t) ≤ τD
i (t) is delivered, the associated AoI does not decrease

and the network runs as if no packet was delivered. It follows that, from the perspective of the AoI, LCFS
queues are equivalent to Single packet queues.
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Figure 4-2: The blue and orange rectangles represent a packet arrival to queue i and a suc-
cessful packet delivery to destination i, respectively. The blue circles shows the evolution
of zi(t) for the Single packet queue and the orange circles shows the AoI associated with
destination i.

The time-average AoI associated with destination i is given by E
[
∑

T
t=1 hi(t)

]
/T . For

capturing the freshness of the information of a network employing scheduling policy π ∈Π,

we define the Expected Weighted Sum AoI (EWSAoI) in the limit as the time-horizon

grows to infinity as

E [Jπ ] = lim
T→∞

1
T N

T

∑
t=1

N

∑
i=1

wiE [hπ
i (t)] , (4.5)

where wi is a positive real number that represents the priority of stream i. We denote by

AoI-optimal, the scheduling policy π∗ ∈Π that achieves minimum EWSAoI, namely

E[J∗] = min
π∈Π

E [Jπ ] , (4.6)

where the expectation is with respect to the randomness in the channel state ci(t), schedul-

ing decisions ui(t) and arrival process ai(t). Next, we introduce the long-term throughput

and discuss the stability of FCFS queues.
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4.1.1 Long-term Throughput

Recall from Sec. 3.1 that the long-term throughput associated with destination i is defined

as

q̂π
i := lim

T→∞

1
T

T

∑
t=1

E [dπ
i (t)] . (4.7)

Throughout this section, we assume that q̂π
i > 0,∀i. Since packets from stream i are gener-

ated at a rate λi, the long-term throughput provided to destination i cannot be higher than

λi. Hence, the long-term throughput satisfies

q̂π
i ≤ λi,∀i . (4.8)

The shared and unreliable wireless channel further restricts the set of achievable values

of long-term throughput {q̂π
i }N

i=1. By employing (4.3) and (4.2) into the definition of long-

term throughput in (4.7), we obtain

N

∑
i=1

q̂π
i

pi
≤ 1 . (4.9)

Inequalities (4.8) and (4.9) are necessary conditions for the long-term throughput {q̂π
i }N

i=1

of any admissible scheduling policy π ∈ Π, regardless of the queueing discipline. Notice

that conditions (4.8) and (4.9) are not throughput requirements imposed by the nodes as

in chapter 3. Both inequalities are necessary conditions that follow naturally from the

stochastic arrivals and interference constraints of the network. Next, we discuss the stabil-

ity of FCFS queues and its impact on the AoI minimization problem.

4.1.2 Queue Stability

Let Qπ
i (t) be the number of packets in queue i at the beginning of slot t when policy π is

employed. Then, we say that queue i is stable if

lim
T→∞

E [Qπ
i (T )]< ∞ . (4.10)
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A network is stable under policy π when all of its queues are stable. For networks with

Single packet queues and No queues, stability is trivial since the backlogs are such that

Qπ
i (t)∈ {0,1},∀t, regardless of the scheduling policy. The discussion about queue stability

that follows is meaningful only for the case of FCFS queues.

Definition 4.1 (Stability Region). A set of arrival rates {λi}N
i=1 is within the stability

region of a given wireless network if there exists an admissible scheduling policy π ∈Π

that stabilizes all queues.

When the network is unstable under a policy η ∈ Π, then the expected backlog of at

least one of its queues grows indefinitely over time. An infinitely large backlog leads to

packets with infinitely large system times, i.e. zi(t)→ ∞. It follows from the evolution of

hi(t) in (4.4) that the AoI also increases indefinitely and, as a result, the Expected Weighted

Sum AoI diverges, namely E[Jη ]→ ∞. Clearly, instability is a critical disadvantage for

FCFS queues. Hence, we are interested in scheduling policies that can stabilize the network

whenever the arrival rates {λi}N
i=1 are within the stability region. Prior to introducing the

policies, we derive a lower bound to the AoI minimization problem.

4.2 Universal Lower Bound

In this section, we derive an alternative (and more insightful) expression for the AoI objec-

tive function Jπ in (4.5) in terms of packet delay and inter-delivery times. Then, we use this

expression to obtain a lower bound to the AoI minimization problem, namely LB ≤ E[J∗],

for any given network operating under an arbitrary queueing discipline.

Consider a network employing policy π during the time-horizon T . Let Ω be the sample

space associated with this network and let ω ∈Ω be a sample path. For a given sample path

ω , let ti[m] be the index of the time-slot in which the mth (fresher4) packet was delivered

to destination i, ∀m ∈ {1, · · · ,Di(T )}, where Di(T ) is the total number of packets delivered

4Recall that the delivery of an older packet with τA
i (t) ≤ τD

i (t) does not change the associated AoI and,
thus, should not be counted.
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up to (and including) slot T . Then, we define Ii[m] := ti[m]− ti[m−1] as the inter-delivery

time, with Ii[1] = ti[1] and ti[0] = 0.

The packet delay associated with the mth packet delivery to destination i is given by

zi(ti[m]). Notice that zi(ti[m]) is the system time of the HoL packet at the time it is delivered

to the destination, which is the definition of packet delay. To simplify notation, we use zi[m]

instead of zi(ti[m]).

Recall from (2.14) that M̄[x] is the operator that calculates the sample mean of a set of

values x. Using this operator, the sample mean of Ii[m] for a fixed destination i is given by

M̄[Ii] =
1

Di(T )

Di(T )

∑
m=1

Ii[m] . (4.11)

For simplicity of notation, the time-horizon T is omitted in the sample mean operator M̄.

Proposition 4.2. The infinite-horizon AoI objective function Jπ can be expressed as

follows

Jπ = lim
T→∞

N

∑
i=1

wi

2N

[
M̄[I2

i ]

M̄[Ii]
+

2M̄[ziIi]

M̄[Ii]
+1
]

w.p.1 , (4.12)

where Ii[m] is the inter-delivery time, zi[m] is the packet delay and

M̄[ziIi] =
1

Di(T )

Di(T )

∑
m=1

zi[m−1]Ii[m] . (4.13)

Proof Outline. Consider the interval between the (m− 1)th and mth packet delivery to

destination i. The time slots in this interval are t ∈ {ti[m− 1]+ 1, ti[m− 1]+ 2, · · · , ti[m−

1]+Ii[m]}, where ti[m−1]+Ii[m] = ti[m] is the time slot in which the mth packet is delivered

to destination i. According to the evolution of hi(t) in (4.4), in slot ti[m− 1]+ 1, we have

hi(ti[m−1]+1) = zi[m−1]+1. Then, in the inter-delivery period Ii[m], the AoI increases

by unity at every slot, until it reaches hi(ti[m]) = zi[m−1]+ Ii[m]. Hence, the expected sum
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AoI in the interval Ii[m] is given by

ti[m−1]+Ii[m]

∑
t=ti[m−1]+1

hi(t) = zi[m−1]Ii[m]+
Ii[m] (Ii[m]+1)

2
. (4.14)

Recall that for m = 1 we have ti[0] = 0 and zi(0) = 0,∀i. An equivalent expression can be

obtained for the interval Ri.

Using a similar approach as in Theorem 2.1, we substitute the sum (4.14) into the

objective function in (4.5) to obtain the equivalent form in (4.12). The complete proof is

provided in Appendix 4.A. �

Equation (4.12) is valid for networks operating under an arbitrary queueing discipline

and employing any scheduling policy π ∈ Π. This equation provides useful insights into

the AoI minimization. The first term on the RHS of (4.12), namely M̄[I2
i ]/2M̄[Ii], depends

only on the service regularity provided by the scheduling policy. The second term on the

RHS of (4.12) depends on both the packet delay zi[m−1] and the inter-delivery time Ii[m],

as follows
M̄[ziIi]

M̄[Ii]
=

Di(T )

∑
m=1

Ii[m]

∑
Di(T )
j=1 Ii[ j]

zi[m−1] . (4.15)

Notice that (4.15) is a weighted sample mean of the packet delays. Intuitively, for mini-

mizing this term, both the queueing discipline and the scheduling policy should attempt to

deliver packets with low delay zi[m−1] and, when the delay is high, they should deliver the

next packet as soon as possible in order to reduce the weight Ii[m] on the weighted mean

(4.15).

The expression in (4.12) provides intuition on how the scheduling policy should man-

age the packet delays zi[m] and the inter-delivery times Ii[m] in order to minimize AoI.

Moreover, it shows that by utilizing the simplifying assumption of queues always having

fresh packets available for transmission, the scheduling policy disregards zi[m] and fails to

address the term in (4.15). Next, we use (4.12) to obtain a lower bound to the AoI mini-

mization problem and, in upcoming sections, we consider scheduling policies that take into

account both Ii[m] and zi[m].

A lower bound on AoI is obtained from Proposition 4.2 using similar arguments as in
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the proof of Theorem 3.2. In particular, we apply Jensen’s inequality M̄[I2
i ] ≥ (M̄[Ii])

2 to

(4.12), manipulate the resulting expression, and then employ a minimization over policies

in Π, which yields

Lower Bound

LB =min
π∈Π

{
1

2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)}

(4.16a)

s.t. ∑
N
i=1 q̂π

i /pi ≤ 1 ; (4.16b)

q̂π
i ≤ λi,∀i , (4.16c)

where (4.16b) and (4.16c) are the necessary conditions for the long-term throughput in (4.9)

and (4.8), respectively. Notice that the optimization problem in (4.16a)-(4.16c) depends

only on the network’s long-term throughput {q̂π
i }N

i=1 and that the condition q̂π
i ≤ λi limits

the throughput to the packet arrival rate of the respective stream. To find the unique solution

to (4.16a)-(4.16c), we analyze the associated KKT Conditions.

Theorem 4.3 (Lower bound). For any given wireless network with parameters

(N, pi,λi,wi) and an arbitrary queueing discipline, the optimization problem in (4.16a)-

(4.16c) provides a lower bound on the AoI minimization problem, namely LB ≤ E[J∗].

The unique solution to (4.16a)-(4.16c) is given by

q̂LB
i = min

{
λi,

√
wi pi

2Nγ∗

}
,∀i , (4.17)

where γ∗ yields from Algorithm 3. The lower bound is given by

LB =
1

2N

N

∑
i=1

wi

(
1

q̂LB
i

+1

)
. (4.18)

To find the unique solution to the KKT Conditions, we use a similar technique as in

Theorem 3.7. The complete proof is provided in Appendix 4.B.
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Algorithm 3 Solution to the Lower Bound

1: γ̃ ← (∑N
i=1

√
wi/pi)

2/(2N) and γi← wi pi/2Nλ 2
i ,∀i

2: γ ←max{γ̃;γi}
3: qi← λi min{1;

√
γi/γ},∀i

4: S← ∑
N
i=1 qi/pi

5: while S < 1 and γ > 0 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update qi and S
8: end while
9: return γ∗ = γ and q̂LB

i = qi,∀i

Next, we develop the Optimal Stationary Randomized policy for different queueing

disciplines and derive the closed-form expression for their AoI performance.

4.3 Stationary Randomized Policies

Denote by ΠR the class of Stationary Randomized policies and let R ∈ ΠR be a policy

that makes scheduling decisions randomly, according to fixed probabilities {µi}N
i=1, where

µi = E[ui(t)] ∈ (0,1],∀i,∀t, and µidle = 1−∑
N
i=1 µi.

Definition 4.4 (Randomized policy). The Randomized policy selects, in each slot t,

stream i with probability µi, or selects no stream with probability µ0.

If the selected stream i has a non-empty queue, then ui(t) = 1 and the HoL packet is

transmitted by the BS to destination i. Alternatively, if the selected stream i has an empty

queue or policy R selected no stream, then ui(t) = 0,∀i and the BS idles. The scheduling

probabilities µi are fixed over time and satisfy ∑
N
i=1 µi = 1−µ0.

Randomized policies R ∈ΠR are as simple as possible. Each policy in ΠR is fully char-

acterized by the set {µi}N
i=1. They select streams at random, without taking into account

hi(t), zi(t) or queue backlogs Qi(t). Notice that policies in ΠR are not work-conserving,

since they allow the BS to idle during slots in which HoL packets are available for trans-

mission.
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Despite their simplicity, we show that by properly tuning the scheduling probabilities

µi according to the network parameters (N, pi,λi,wi), policies in ΠR can achieve perfor-

mances within a factor of 4 from the AoI-optimal. On the other hand, we also show that

naive choices of µi can lead to poor AoI performances. Next, we develop and analyze

scheduling policies for different queueing disciplines which are optimal over the class ΠR.

In Secs. 4.3.1, 4.3.2 and 4.3.3 we consider networks employing Single packet queues, No

queues and FCFS queues, respectively. Then, in Sec. 4.3.4 we compare their AoI perfor-

mances.

4.3.1 Randomized Policy for Single packet queue

Consider a network employing the Single packet queue discipline on N streams with packet

arrival rates λi, priorities wi and channel reliabilities pi. Recall that for the Single packet

queue, when a new packet arrives, older packets from the same stream are dropped. The

BS selects streams according to R ∈ΠR with scheduling probabilities µi.

Following a successful packet transmission from stream i, its queue can remain empty

or a new packet can arrive. The expected number of (consecutive) slots that queue i re-

mains empty is 1/λi− 1. When a new packet arrives to the queue, the BS transmits this

packet with probability µi. The expected number of slots necessary to successfully deliver

this packet is 1/piµi. Under policy R ∈ ΠR and for the case of Single packet queues, the

sequence of packet deliveries is a renewal process. It follows from the elementary renewal

theorem [23] that the long-term throughput is given by

lim
T→∞

1
T

T

∑
t=1

E[dR
i (t)] =

1
1/piµi +1/λi−1

,∀i, t . (4.19)

For the particular case of λi = 1, the AoI process hi(t) is also stochastically renewed

after every packet delivery and the long-term time-average E[hi(t)] can be easily obtained

using the elementary renewal theorem for renewal-reward processes, as in (2.45). In con-

trast, for the general case of λi ∈ (0,1], the evolution of hi(t) may be dependent across

consecutive inter-delivery intervals due to its relationship with the system time zS
i (t) given

in (4.4). To find an expression for the long-term time-average E[hi(t)] we formulate the
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problem as a two-dimensional Markov Chain (MC) with countably-infinite state space rep-

resented by (hi(t),zi(t)) and obtain the stationary distribution. Proposition 4.5 follows from

the stationary distribution of this two-dimensional MC.

Proposition 4.5. The optimal EWSAoI achieved by a network with Single packet

queues over the class ΠR is given by (4.20a)-(4.20b), where RS denotes the Optimal

Stationary Randomized policy for the Single packet queue discipline.

Optimal Randomized policy for Single packet queues

E
[
JRS
]
= min

R∈ΠR

{
1
N

N

∑
i=1

wi

(
1
λi
−1+

1
piµi

)}
(4.20a)

s.t. ∑
N
i=1 µi ≤ 1 ; (4.20b)

The complete proof is provided in Appendix 4.C. Next, we solve the optimization prob-

lem in (4.20a)-(4.20b) and obtain the optimal scheduling probabilities {µS
i }N

i=1.

Theorem 4.6. Consider a wireless network with parameters (N, pi,λi,wi) operating

under the Single packet queues discipline. The optimal scheduling probabilities are

given by

µ
S
i =

√
wi/pi

∑
N
j=1
√

w j/p j
,∀i , (4.21)

and the performance of the Optimal Stationary Randomized policy RS is

E
[
JRS
]
=

1
N

N

∑
i=1

wi

(
1
λi
−1
)
+

1
N

(
N

∑
i=1

√
wi

pi

)2

. (4.22)

Then, it follows that

E [J∗]≤ E
[
JRS
]
< 4E [J∗] , (4.23)

where E [J∗] = minπ∈ΠE [Jπ ] is the minimum AoI over the class of all admissible poli-

cies Π.
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Proof. The scheduling probabilities {µS
i }N

i=1 that minimize (4.20a)-(4.20b) also minimize

this equivalent problem

min
R∈ΠR

{
1
N

N

∑
i=1

wi

piµi

}
s.t.

N

∑
i=1

µi ≤ 1 . (4.24)

Consider the Cauchy–Schwarz inequality

(
N

∑
i=1

√
wi

pi

)2

≤

(
N

∑
i=1

µi

)(
N

∑
i=1

wi

piµi

)
. (4.25)

The LHS is a lower bound on the objective function in (4.24). Notice that Cauchy-Schwarz

holds with equality when {µS
i }N

i=1 is given by (4.21), implying that (4.21) is a solution

to both (4.24) and (4.20a)-(4.20b). Substituting the solution {µS
i }N

i=1 into the objective

function in (4.20a) gives (4.22).

Notice that the expression in (4.21) was obtained in Sec. 2.2.3 under the simplifying

assumption of all streams always having fresh packets available for transmission. In The-

orem 4.6 we show that (4.21) is in fact optimal for streams with stochastic packet arrivals

and for any set of arrival rates {λi}N
i=1.

For deriving the upper bound in (4.23), consider the Randomized policy R̃ with µ̃i =

q̂LB
i /pi,∀i. Substitute µ̃i into the RHS of (4.20a) and denote the result as E[JR̃]. Comparing

LB in (4.18) with E[JR̃] and noting from (4.17) that q̂LB
i ≤ λi, gives that

E
[
JR̃
]
≤ 1

N

N

∑
i=1

wi

(
2

piµ̃i
−1
)
< 4LB . (4.26)

By definition, we know that

LB ≤ E[J∗]≤ E[JRS
]≤ E[JR̃] . (4.27)

Inequality (4.23) follows directly from (4.26) and (4.27). �

Intuitively, the optimal probabilities {µi}N
i=1 should vary with the packet arrival rates

{λi}N
i=1. For example, consider a Single packet queue with low arrival rate and high
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scheduling probability. This queue is often offered service while empty, thus wasting re-

sources. Hence, it seems natural that the optimal µi should vary with λi. In Secs. 4.3.2 and

4.3.3, we show that this is the case for No queues and FCFS queues. However, Theorem 4.6

shows that for Single packet queues the optimal µS
i depends only on wi and pi. This result

is important for it simplifies the design of networked systems that attempt to minimize AoI,

as discussed in Sec. 4.3.4.

4.3.2 Randomized Policy for No queue

Consider a network with parameters (N, pi,λi,wi) employing the No queue discipline and

a Stationary Randomized policy R ∈ ΠR with scheduling probabilities µi. Recall that R is

oblivious to packet arrivals and that, under the No queue discipline, packets are available

for transmission only during the slot in which they arrive to the system. Hence, if R selects

stream i during slot t, a successful packet delivery occurs only if a packet from stream i

arrived at the beginning of slot t, i.e. ai(t) = 1, and the channel is ON, i.e. ci(t) = 1.

Therefore, for the No queue discipline, we have that di(t) = ai(t)ci(t)ui(t),∀i, t. This is

equivalent to a network with a virtual channel that is ON with probability piλi and OFF

with probability 1− piλi. We use this equivalence to derive the results that follow.

Proposition 4.7. The optimal EWSAoI achieved by a network with No queues over

the class ΠR is given by (4.28a)-(4.28b), where RN denotes the Optimal Stationary

Randomized policy for the No queues discipline.

Optimal Randomized policy for No queues

E
[
JRN
]
= min

R∈ΠR

{
1
N

N

∑
i=1

wi

piµiλi

}
(4.28a)

s.t. ∑
N
i=1 µi ≤ 1 ; (4.28b)

Proof. Under the No queues discipline, all packets are delivered with system time zN
i (t) = 0

and the AoI process hi(t) is renewed after every packet delivery. Hence, it follows from the
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elementary renewal theorem for renewal-reward processes that

lim
T→∞

1
T

T

∑
t=1

E[hi(t)] =
1

piµiλi
. (4.29)

Substituting (4.29) into (4.6) gives (4.28a). �

Theorem 4.8. Consider a wireless network with parameters (N, pi,λi,wi) operating

under the No queues discipline. The optimal scheduling probabilities are given by

µ
N
i =

√
wi/piλi

∑
N
j=1
√

w j/p jλ j
,∀i , (4.30)

and the performance of the Optimal Stationary Randomized policy RN is

E
[
JRN
]
=

1
N

(
N

∑
i=1

√
wi

piλi

)2

. (4.31)

Proof. The proof follows similar steps as in Theorem 4.6. �

As expected, the similarities between the Optimal Stationary Randomized policies for

the No queue and Single packet queue disciplines increase as the packet arrival rates {λi}N
i=1

increase. In particular, notice from (4.21) and (4.30) that µN
i = µS

i ,∀i, when λi = 1,∀i,

and, as a result, their AoI performance is also identical, namely E
[
JRN
]
= E

[
JRS
]

when

λi = 1,∀i. Recall that µS
i does not change with λi.

4.3.3 Randomized Policy for FCFS queue

Consider a network with parameters (N, pi,λi,wi) employing FCFS queues and a Station-

ary Randomized policy R∈ΠR with scheduling probabilities µi. In this setting, each FCFS

queue behaves as a discrete-time Ber/Ber/1 queue with arrival rate λi and service rate piµi.

From [30, Sec. 8.10], we know that the FCFS queue is stable when piµi > λi and that its
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steady-state expected backlog is given by

lim
T→∞

E [Qi(T )] =
λi(1− piµi)

piµi−λi
. (4.32)

From [104, Theorem 5], we know that the AoI associated with a stable FCFS queue is

given by

lim
T→∞

1
T

T

∑
t=1

E[hi(t)] =
1

piµi
+

1
λi

+

[
λi

piµi

]2 1− piµi

piµi−λi
. (4.33)

Notice the similarities between (4.33), the expected backlog in (4.32) and the AoI associ-

ated with a Single packet queue in (4.20a). Under light load, i.e. when λi << piµi, the third

term on the RHS of (4.33) is small when compared to the other terms. Hence, the AoI of

the FCFS queue in (4.33) is similar to the AoI of the Single packet queue in (4.20a). On

the other hand, under heavy load, as λi→ piµi, the third term on the RHS of (4.33) domi-

nates. Both the backlog and the AoI of the FCFS queue, in (4.32) and (4.33), respectively,

increase sharply. Recall that when the backlog is large, packets have to wait for a long time

in the queue before being served, what makes their information stale and, as a result, the

AoI large. The Single packet queue discipline avoids this issue by keeping only the freshest

packet in the queue.

Denote by RF the Optimal Stationary Randomized policy for the case of FCFS queues

and let {µF
i }N

i=1 be the associated scheduling probabilities. Substituting (4.33) into the

expression for the EWSAoI in (4.6) gives

Optimal Randomized policy for FCFS queues

E
[
JRF
]
= min

R∈ΠR

{
N

∑
i=1

wi

N

[
1

piµi
+

1
λi

+

[
λi

piµi

]2 1− piµi

piµi−λi

]}
(4.34a)

s.t. ∑
N
i=1 µi ≤ 1 ; (4.34b)

piµi > λi,∀i . (4.34c)

where (4.34b) is the constraint on scheduling decisions and (4.34c) is the condition for

network stability.

Remark 4.9. A sufficient condition for {λi}N
i=1 to be within the stability region of the
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network is given by ∑
N
i=1 λi/pi < 1.

Theorem 4.10. The optimal scheduling probabilities for the case of FCFS queues µF
i

are given by Algorithm 4 when δ → 0.

Proof. The auxiliary parameter δ > 0 is used to enforce a closed feasible set to the opti-

mization problem in (4.34a)-(4.34c). We exchange (4.34c) by piµi ≥ λi + δ ,∀i, to ensure

that Algorithm 4 always finds a unique solution to the KKT Conditions associated with

(4.34a)-(4.34c) for any fixed (and arbitrarily small) value of δ . Recall that when piµi ≈ λi

the AoI performance is poor. Hence, in most cases, the optimal scheduling probabilities

{µF
i }N

i=1 are such that piµ
F
i and λi are not close, meaning that small changes in δ should

not affect the solution. Algorithm 4 finds the unique solution to the KKT Conditions and is

developed using a similar method as in Theorem 3.7. �

As part of Algorithm 4, we use the partial derivative of (4.33) with respect to µi multi-

plied by wi/N, which is denoted as

gi(x) =
wi

N

{
λi

piµ
2
i

[
2

piµi
−1
]
− pi(1−λi)

(piµi−λi)2

}
x=µi

(4.35)

Algorithm 4 Randomized policy for FCFS queue

1: γi← (λi +δ )/pi ,∀i ∈ {1,2, · · · ,N}
2: γ ←maxi{−gi(γi)} . where gi(.) is given in (4.35)
3: µi←max{ γi ; g−1

i (−γ) }
4: S← µ1 +µ2 + · · ·+µN
5: while S < 1 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update µi and S
8: end while
9: return µF

i = µi,∀i
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4.3.4 Comparison of Queueing Disciplines

Next, we compare the performance of four different Stationary Randomized policies: 1)

Optimal policy for Single packet queues, RS; 2) Optimal policy for No queues, RN ; 3) Opti-

mal policy for FCFS queues, RF ; and 4) Naive policy for FCFS queues. The EWSAoI

of the first three policies is computed using (4.22), (4.31) and the solution to (4.34a)-

(4.34c), respectively. The Naive policy shares resources evenly between streams by as-

signing µi = 1/N,∀i. The EWSAoI of the Naive policy is computed using the expression

inside the minimization in (4.34a).

We consider a network with two streams, w1 = w2 = 1, p1 = 1/3, p2 = 1, λ1 = λ , λ2 =

λ/3 and varying arrival rates λ ∈ {0.01,0.02, · · · ,1}. In Fig. 4-3, we show the EWSAoI of

Randomized policies under different queueing disciplines and display the Lower Bound LB

for comparison. The policy with Single packet queues outperforms the policies with other

queueing disciplines for every arrival rate λ , as expected.

Figure 4-3: Comparison of Stationary Randomized policies in a network with N = 2
streams, w1 = w2 = 1, p1 = 1/3, p2 = 1, λ1 = λ , λ2 = λ/3 and increasing λ .

From Remark 4.9, we know that the network in Fig. 4-3 can be stabilized for λ < 0.3.

The Optimal policy for FCFS queues leverages its knowledge of pi and λi to stabilize the

network, and simultaneously minimize AoI, whenever {λi}N
i=1 is within the stability region.
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By comparing the performance of the Optimal policy and the Naive policy, it becomes

evident that stability is critical for FCFS queues.

Both the Single packet queue and the No queue disciplines present a natural relation-

ship between the rate at which fresh information is generated at the source λi and the

resulting AoI at the destination, namely a higher arrival rate (always) leads to a lower AoI.

Furthermore, Theorem 4.6 shows that the optimal scheduling probabilities µS
i for Single

packet queues are independent of λi. This result allows us to isolate the design of the ar-

rival rate λi from the design of the scheduling probability µi. In particular, to minimize

the EWSAoI in the network, the arrival rates {λi}N
i=1 should be set as high as possible,

while the scheduling probabilities {µS
i }N

i=1 should be proportional to
√

wi/pi according to

(4.21). Since arrival rates and scheduling policies are often defined by different layers of

the network stack, this isolation simplifies the design of networked systems. It is important

to emphasize that this isolation only holds for networks employing Single packet queues.

For FCFS queues and No queues the optimal value of µi changes for different values of λi.

Next, we develop Max-Weight policies that use the knowledge of hi(t) and zi(t) for making

scheduling decisions in an adaptive manner.

4.4 Max-Weight Policies

In this section, we use Lyapunov Optimization [85] to develop Max-Weight policies for

each of the queueing disciplines. The Max-Weight policy is designed to reduce the ex-

pected drift of the Lyapunov Function at every slot t. In doing so, the Max-Weight policy

attempts to minimize the AoI of the network.

We use the following linear Lyapunov Function

L
(
{hi(t)}N

i=1
)
= L(t) =

1
N

N

∑
i=1

α̃ihi(t) , (4.36)

where α̃i is a positive hyperparameter that can be used to tune the Max-Weight policy to

different network configurations and queueing disciplines. The Lyapunov Drift is defined
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as

∆(S(t)) := E [L(t +1)−L(t)|S(t)] , (4.37)

where S(t) = ({hi(t)}N
i=1,{zi(t)}N

i=1) is the network state at the beginning of time slot t.

The Lyapunov Function L(t) increases with the AoI of the network and the Lyapunov Drift

∆(S(t)) represents the expected increase of L(t) in one slot. Hence, by minimizing the drift

in (4.37) at every slot t, the Max-Weight policy is attempting to keep both L(t) and the

network’s AoI small.

To develop the Max-Weight policy, we analyze the expression for the drift in (4.37).

Substituting the evolution of hi(t + 1) from (4.4) into (4.37) and then manipulating the

resulting expression, we obtain

∆(S(t)) =
1
N

N

∑
i=1

α̃i−
1
N

N

∑
i=1

α̃i pi (hi(t)− zi(t))E [ui(t)|S(t)] . (4.38)

The scheduling decision in slot t affects only the second term on the RHS of (4.38). The

Max-Weight policy minimizes ∆(S(t)) at every slot t.

Definition 4.11 (Max-Weight policy). The Max-Weight policy selects, in each slot t,

the stream i with a HoL packet and the highest value of α̃i pi (hi(t)− zi(t)), with ties

being broken arbitrarily.

Observe that the Max-Weight policy is work-conserving since it idles only when all

queues are empty. Substituting zS
i (t), zN

i (t) and zF
i (t) into α̃i pi (hi(t)− zi(t)) gives the Max-

Weight policy associated with the Single packet queue, MW S, the No queue, MW N , and the

FCFS queue, MW F , respectively. Notice that the difference hi(t)− zi(t) represents the AoI

reduction accrued from a successful packet delivery to destination i. Hence, it makes sense

that the Max-Weight policy prioritizes queues with high potential reward hi(t)− zi(t).



130 4. AOI IN WIRELESS NETWORKS WITH STOCHASTIC ARRIVALS

Theorem 4.12 (Performance Bounds for MW S). Consider a wireless network with

parameters (N, pi,λi,wi) operating under the Single packet queues discipline. The

performance of the Max-Weight policy with α̃i = wi/piµ
S
i ,∀i, is such that

E
[
JMW S

]
≤ E

[
JRS
]
, (4.39)

where µS
i and E[JRS

] are the optimal scheduling probability for the case of Single packet

queues and the associated EWSAoI attained by RS, respectively.

Theorem 4.13 (Performance Bounds for MW N). Consider a wireless network with

parameters (N, pi,λi,wi) operating under the No queues discipline. The performance

of the Max-Weight Policy with α̃i = wi/piµ
N
i ,∀i, is such that

E
[
JMW N

]
≤ E

[
JRN
]
, (4.40)

where µN
i and E[JRN

] are the optimal scheduling probability for the case of No queues

and the associated EWSAoI attained by RN , respectively.

The proofs of Theorems 4.12 and 4.13 are provided in Appendices 4.D and 4.E, respec-

tively. Both proofs rely on the construction of equivalent systems that facilitate the analysis

of the expression of the drift in (4.38). The performance of MW F is evaluated in the next

section using simulations.

Stationary Randomized policies select streams randomly, according to a fixed set of

scheduling probabilities {µi}N
i=1. In contrast, Max-Weight policies leverage the knowledge

of hi(t) and zi(t) to select which stream to serve. Therefore, it is not surprising that Max-

Weight policies outperform Randomized policies. However, establishing a performance

guarantee as in (4.39) and (4.40) is challenging for it depends on finding a tight upper

bound for the performance of Max-Weight policies, which often do not have properties
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such as renewal intervals that simplify the analysis. Next, we provide numerical results

that further validate the superior performance of the Max-Weight policies.

4.5 Simulation Results

In this section, we evaluate the performance of scheduling policies in terms of the EWSAoI.

We compare: 1) the Optimal Stationary Randomized Policy for the case of Single packet

queues RS, No queues RN and FCFS queues RF ; 2) the Max-Weight Policy5 for the case of

Single packet queues MW S, No queues MW N and FCFS queues MW F ; and 3) the Whittle’s

Index Policy under the No queues discipline. The first two policies were developed in

Secs. 4.3 and 4.4, respectively, and the last policy was proposed in [37]. The Lower Bound

LB derived in Sec. 4.2 is displayed for comparison.

In Figs. 4-4 and 4-5 we simulate networks with increasing arrival rates, in Figs. 4-

6 and 4-7 we simulate networks with increasing channel reliability, and in Figs. 4-8 and

4-9 we simulate networks with increasing number of streams. The performance of the

Randomized policies is computed using the closed-form expressions derived in Sec. 4.3

while the performance of the Max-Weight and Whittle’s Index policies are averages over

10 simulation runs. The results in Figs. 4-4, 4-5, 4-6 and 4-7 are for networks with N = 4

traffic streams and time-horizon of T = 2×106 slots. The results in Figs. 4-8 and 4-9 are

for networks with increasing value of N and time-horizon of T = N×5×105 slots.

In Figs. 4-4 and 4-5, the four streams have weights w1 =w2 = 4 and w3 =w4 = 1, chan-

nel reliabilities pi = i/N,∀i, and arrival rates λi = (N− i+1)/N×λ ,∀i, for an increasing

value of λ ∈ {0.01,0.02, · · · ,0.35}. The simulation results are separated into Figs. 4-4 and

4-5 for clarity. The results in Figs. 4-4 and 4-5 suggest that the Max-Weight policy outper-

forms the corresponding Randomized and Whittle’s Index policies with the same queueing

discipline for every value of λ . The results also show that under the same class of schedul-

ing policies, Single packet queues outperforms other queueing disciplines for every value

of λ , as expected. It is evident from Fig. 4-4 that network instability, which occurs when

5For the Max-Weight Policies MW S, MW N and MW F , we employ βi = wi/piµ
X
i ,∀i, where µX

i is the
optimal scheduling probability for the associated queueing discipline.
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λ > 12/77, is a major disadvantage of employing FCFS queues.

Figure 4-4: Networks with N = 4 streams, weights w1 = w2 = 4 and w3 = w4 = 1, time-
horizon T = 2× 106 slots, channel reliabilities pi = i/N, and λi = (N− i+ 1)/N×λ ,∀i,
for an increasing arrival rate λ .

Figure 4-5: Networks with N = 4 streams, weights w1 = w2 = 4 and w3 = w4 = 1, time-
horizon T = 2× 106 slots, channel reliabilities pi = i/N, and λi = (N− i+ 1)/N×λ ,∀i,
for an increasing arrival rate λ .

In Figs. 4-6 and 4-7, the four streams have weights w1 = w2 = w3 = 1 and w4 = 4,

arrival rates λ1 = λ2 = λ3 = λ4 = 1/10, and channel reliabilities p1 = 4/5, p2 = 3/5,



4.5. SIMULATION RESULTS 133

p3 = 2/5 with increasing p4 ∈ {0.05,0.10, · · · ,1.00}. This variation in p4 can represent a

scenario in which the destination is moving. The results in Figs. 4-6 and 4-7 suggest that

the performance of FCFS queues are the most sensitive to network changes, while Single

packet queues are the least sensitive. Intuitively, this effect is explained by the accumulation

of stale packets in the FCFS queues when the channel reliability p4 decreases.

Figure 4-6: Networks with N = 4 streams, weights w1 = w2 = w3 = 1 and w4 = 4, time-
horizon T = 2× 106 slots, arrival rates λ1 = λ2 = λ3 = λ4 = 1/10, channel reliabilities
p1 = 4/5, p2 = 3/5, p3 = 2/5, and increasing p4 ∈ {0.05,0.10, · · · ,1.00}.

In Figs. 4-8 and 4-9 we simulate networks with an increasing number of streams N ∈

{5,8,10,13,15,18, · · · ,25,28,30}. Streams have identical priorities wi = 1,∀i∈{1, · · · ,N},

arrival rates λi = 0.05,∀i, and channel reliabilities pi = 0.8,∀i. The results in Figs. 4-8 and

4-9 show that the AoI performance of scheduling policies under FCFS queues degrades

sharply as the number of source-destination pairs N increase. In contrast, the performance

of the Max-Weight policy for Single packet queues degrades gracefully as the network

grows. This comparison is important, especially when we consider that FCFS queues

are the standard queueing discipline in most communication systems while LCFS queues

(which are equivalent to Single packet queues from the perspective of AoI) are commonly

not implemented.
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Figure 4-7: Networks with N = 4 streams, weights w1 = w2 = w3 = 1 and w4 = 4, time-
horizon T = 2× 106 slots, arrival rates λ1 = λ2 = λ3 = λ4 = 1/10, channel reliabilities
p1 = 4/5, p2 = 3/5, p3 = 2/5, and increasing p4 ∈ {0.05,0.10, · · · ,1.00}.

Figure 4-8: Networks with an increasing number of streams N ∈ {5,8,10,13,15,18,
· · · ,25,28,30}. Streams have identical priorities wi = 1,∀i ∈ {1,2, · · · ,N}, arrival rates
λi = 0.05,∀i, channel reliabilities pi = 0.8,∀i, and time-horizon of T = N×5×105 slots.

4.6 Summary

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate packets according to a stochastic process, enqueue them in separate (per source)
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Figure 4-9: Networks with an increasing number of streams N ∈ {5,8,10,13,15,18,
· · · ,25,28,30}. Streams have identical priorities wi = 1,∀i ∈ {1,2, · · · ,N}, arrival rates
λi = 0.05,∀i, channel reliabilities pi = 0.8,∀i, and time-horizon of T = N×5×105 slots.

queues, and transmit them via unreliable communication links. We addressed the problem

of minimizing the Expected Weighted Sum AoI in the network.

First, we derived a lower bound on the AoI performance achievable by any given net-

work, operating under any queueing discipline. Then, we considered three common queue-

ing disciplines and developed both a Stationary Randomized policy and a Max-Weight

policy under each discipline. A summary of the main results follows:

• Stationary Randomized policy for Single packet queues with optimal scheduling

probability µS
i ∝

√
wi/pi is 4-optimal for any network configuration (N, pi,λi,wi).

Notice that, contrary to intuition, the optimal scheduling probability µS
i is indepen-

dent of the packet arrival rate λi.

• Stationary Randomized policies for No queues and FCFS queues have optimal schedul-

ing probabilities µN
i and µF

i , respectively, that are sensitive to the packet arrival rate

λi, as shown in Theorems 4.8 and 4.10.

• Max-Weight policies for Single packet queues and No queues are shown in Theo-

rems 4.12 and 4.13 to outperform the corresponding Stationary Randomized Policies

with the same queueing discipline.



136 4. AOI IN WIRELESS NETWORKS WITH STOCHASTIC ARRIVALS

We evaluated the AoI performance both analytically and using simulations. Our approach

allowed us to evaluate the combined impact of the stochastic arrivals, queueing discipline

and scheduling policy on AoI. Numerical results show that the Max-Weight policy with

LCFS queues achieves near optimal performance in various network settings.
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Appendices

4.A Proof of Proposition 4.2

Proposition 4.2. The infinite-horizon AoI objective function Jπ can be expressed as

follows

Jπ = lim
T→∞

N

∑
i=1

wi

2N

[
M̄[I2

i ]

M̄[Ii]
+

2M̄[ziIi]

M̄[Ii]
+1
]

w.p.1 ,

where Ii[m] is the inter-delivery time, zi[m] is the packet delay and

M̄[ziIi] =
1

Di(T )

Di(T )

∑
m=1

zi[m−1]Ii[m] .

Proof. Consider a network employing policy π ∈ Π during the finite time-horizon T . Let

Ω be the sample space associated with this network and let ω ∈ Ω be a sample path. For

a given sample path ω , let Di(T ) be the total number of packets delivered to destination

i, zi[m] be the packet delay associated with the mth packet delivery, Ii[m] be the number

of slots between the (m− 1)th and mth packet deliveries and Ri be the number of slots

remaining after the last packet delivery. Then, the time-horizon can be written as follows

T =
Di(T )

∑
m=1

Ii[m]+Ri,∀i ∈ {1,2, · · · ,N} . (4.41)

The evolution of hi(t) is well-defined in each of the time intervals Ii[m] and Ri. Accord-

ing to (4.4), during the interval Ii[m], the parameter hi(t) evolves as {zi[m− 1]+ 1,zi[m−

1]+ 2, · · · ,zi[m− 1]+ Ii[m]}. This pattern is repeated throughout the entire time-horizon,

for m ∈ {1,2, · · · ,Di(T )}, and also during the last Ri slots. As a result, the time-average
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AoI associated with destination i can be expressed as

1
T

T

∑
t=1

hi(t) =
1
T

[
Di(T )

∑
m=1

zi[m−1]Ii[m]+
Di(T )

∑
m=1

(Ii[m]+1)Ii[m]

2
+ zi[Di(T )]Ri +

(Ri +1)Ri

2

]

=
1
2

[
Di(T )

T
1

Di(T )

Di(T )

∑
m=1

(
I2
i [m]+2zi[m−1]Ii[m]

)
+

R2
i

T
+2

zi[Di(T )]Ri

T
+1

]
,∀i ,

(4.42)

where the second equality uses (4.41) to replace the two linear terms by T .

Combining (4.41) with the sample mean M̄[Ii], yields

T
Di(T )

=
∑

Di(T )
j=1 Ii[ j]+Ri

Di(T )
= M̄[Ii]+

Ri

Di(T )
. (4.43)

Substituting (4.43) into (4.42) and then employing the sample mean operator M̄ on I2
i [m]

and zi[m−1]Ii[m], gives

1
T

T

∑
t=1

hi(t) =
1
2

[(
M̄[Ii]+

Ri

Di(T )

)−1 (
M̄[I2

i ]+2M̄[ziIi]
)
+

R2
i

T
+2

zi[Di(T )]Ri

T
+1

]
,∀i ,

(4.44)

The next step is to take the limit of (4.44) as T →∞. Prior to taking the limit, we assume

in the remaining part of this proof that the system time of the HoL packet in queue i is finite,

zi(t) < ∞, as t → ∞, with probability one. Recall from the discussion in Sec. 4.1.2 that if

zi(t)→ ∞ with a positive probability, then the objective function diverges, E[Jπ ]→ ∞.

Hence, there is no loss of optimality in assuming that zi(t)< ∞ with probability one. From

this assumption, it follows that packet delays are finite with probability one, zi[m] < ∞,

and that packets are continuously delivered to destination i, what makes the number of

slots after the last packet delivery Ri, finite with probability one. Hence, in the limit as

T →∞, we have continuous packet deliveries, Di(T )→∞, and finite zi[m] and Ri implying

that R2
i /T → 0, Ri/Di(T )→ 0 and zi[Di(T )]Ri/T → 0. Employing those limits into (4.44)

gives

lim
T→∞

1
T

T

∑
t=1

hi(t) = lim
T→∞

[
M̄[I2

i ]

2M̄[Ii]
+

M̄[ziIi]

M̄[Ii]
+

1
2

]
,∀i . (4.45)
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To obtain the final expression in (4.12) we employ (4.45) into (4.5), without the expectation.

�



140 4. AOI IN WIRELESS NETWORKS WITH STOCHASTIC ARRIVALS

4.B Proof of Theorem 4.3

Theorem 4.3 (Lower Bound). For any given wireless network with parameters

(N, pi,λi,wi) and an arbitrary queueing discipline, the optimization problem in (4.16a)-

(4.16c) provides a lower bound on the AoI minimization problem, namely LB ≤ E[J∗].

The unique solution to (4.16a)-(4.16c) is given by

q̂LB
i = min

{
λi,

√
wi pi

2Nγ∗

}
,∀i ,

where γ∗ yields from Algorithm 3. The lower bound is given by

LB =
1

2N

N

∑
i=1

wi

(
1

q̂LB
i

+1

)
.

Algorithm 3 Solution to the Lower Bound

1: γ̃ ← (∑N
i=1

√
wi/pi)

2/(2N) and γi← wi pi/2Nλ 2
i ,∀i

2: γ ←max{γ̃;γi}
3: qi← λi min{1;

√
γi/γ},∀i

4: S← ∑
N
i=1 qi/pi

5: while S < 1 and γ > 0 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update qi and S
8: end while
9: return γ∗ = γ and q̂LB

i = qi,∀i

Proof. Consider a network with parameters (N, pi,λi,wi) and an arbitrary queueing disci-

pline. First, we show that (4.16a)-(4.16c) provides a lower bound LB on the AoI minimiza-

tion problem E[J∗] = minπ∈ΠE [Jπ ], then we find the unique solution to (4.16a)-(4.16c) by

analyzing its KKT Conditions. The optimization problem in (4.16a)-(4.16c) is rewritten

below for convenience.
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Lower Bound

LB =min
π∈Π

{
1

2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)}

s.t. ∑
N
i=1 q̂π

i /pi ≤ 1 ;

q̂π
i ≤ λi,∀i ,

Consider the expression for the time-average AoI associated with destination i in (4.42),

which is valid for any admissible policy π ∈ Π and time-horizon T . Substituting the non-

negative terms zi[m−1]Ii[m] and zi[Di(T )]Ri by zero, employing the sample mean operator

M̄ to I2
i [m] and then applying Jensen’s inequality M̄[I2

i ]≥ (M̄[Ii])
2, we obtain

1
T

T

∑
t=1

hi(t)≥
1
2

(
Di(T )

T

(
M̄[Ii]

)2
+

R2
i

T
+1
)

. (4.47)

Substituting (4.43) into (4.47), gives

1
T

T

∑
t=1

hi(t)≥
1
2

(
1
T
(T −Ri)

2

Di(T )
+

R2
i

T
+1
)

. (4.48)

By minimizing the LHS of (4.48) analytically with respect to the variable Ri, we have

1
T

T

∑
t=1

hi(t)≥
1
2

(
T

Di(T )+1
+1
)

. (4.49)

Taking the expectation of (4.49) and applying Jensen’s inequality, yields

1
T

T

∑
t=1

E [hi(t)]≥
1
2

 1

E
[

Di(T )
T

]
+

1
T

+1

 . (4.50)

Applying the limit T → ∞ to (4.50) and using the definition of throughput in (4.7), gives

lim
T→∞

1
T

T

∑
t=1

E [hi(t)]≥
1
2

(
1

q̂π
i
+1
)

. (4.51)
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Substituting (4.51) into the objective function in (4.5), yields

E [Jπ ] = lim
T→∞

1
N

N

∑
i=1

wi

T

T

∑
t=1

E [hi(t)]≥
1

2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)

. (4.52)

Inequality (4.52) is valid for any admissible policy π ∈ Π. Notice that the RHS of (4.52)

depends only on the network’s long-term throughput {q̂π
i }N

i=1. Adding to (4.52) the two

necessary conditions for the long-term throughput in (4.8) and (4.9), and then minimizing

the resulting problem over all policies in Π, yields E[J∗] = minπ∈ΠE [Jπ ] ≥ LB where LB

is given by (4.16a)-(4.16c).

After showing that (4.16a)-(4.16c) provides a lower bound on the AoI minimization

problem, we find the unique set of network’s long-term throughput {q̂LB
i }N

i=1 that solves

(4.16a)-(4.16c) by analyzing its KKT Conditions. Let γ be the KKT multiplier associated

with the relaxation of ∑
N
i=1 q̂π

i /pi ≤ 1 and {ζi}N
i=1 be the KKT multipliers associated with

the relaxation of q̂π
i ≤ λi,∀i. Then, for γ ≥ 0 , ζi ≥ 0 and q̂π

i ∈ (0,1],∀i, we define

L (q̂π
i ,ζi,γ) =

1
2N

N

∑
i=1

wi

(
1

q̂π
i
+1
)
+

N

∑
i=1

ζi (q̂π
i −λi)+ γ

(
N

∑
i=1

q̂π
i

pi
−1

)
, (4.53)

and, otherwise, we define L (q̂π
i ,ζi,γ) = +∞. Then, the KKT Conditions are

(i) Stationarity: ∇q̂π
i
L (q̂π

i ,ζi,γ) = 0;

(ii) Complementary Slackness: γ(∑N
i=1 q̂π

i /pi−1) = 0;

(iii) Complementary Slackness: ζi(q̂π
i −λi) = 0,∀i;

(iv) Primal Feasibility: q̂π
i ≤ λi,∀i, and ∑

N
i=1 q̂π

i /pi ≤ 1;

(v) Dual Feasibility: ζi ≥ 0,∀i, and γ ≥ 0.

Since L (q̂π
i ,ζi,γ) is a convex function, if there exists a vector ({q̂LB

i }N
i=1,{ζ ∗i }N

i=1,γ
∗)

that satisfies all KKT Conditions, then this vector is unique. Next, we find the vector

({q̂LB
i }N

i=1,{ζ ∗i }N
i=1,γ

∗).
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To assess stationarity, ∇q̂π
i
L (q̂π

i ,ζi,γ)= 0, we calculate the partial derivative of L (q̂π
i ,ζi,γ)

with respect to q̂π
i , which gives

− wi pi

2N(q̂π
i )

2 +ζi pi + γ = 0 ,∀i . (4.54)

From complementary slackness, γ(∑N
i=1 q̂π

i /pi− 1) = 0, we know that either γ = 0 or

∑
N
i=1 q̂π

i /pi = 1. First, we consider the case ∑
N
i=1 q̂π

i /pi = 1. Based on dual feasibility,

ζi ≥ 0, we can separate streams i ∈ {1, · · · ,N} into two categories: streams with ζi > 0 and

streams with ζi = 0.

Category 1) streams i with ζi > 0. It follows from complementary slackness, ζi(q̂π
i −λi) =

0, that q̂π
i = λi. Plugging this value of q̂π

i into (4.54) gives the inequality ζi pi = γi− γ > 0,

where we define the constant

γi :=
wi pi

2Nλ 2
i
. (4.55)

Category 2) streams i with ζi = 0. It follows from (4.54) that

γ = γi

(
λi

q̂π
i

)2

⇒ q̂π
i = λi

√
γi

γ
, for γi− γ ≤ 0 . (4.56)

Hence, for any fixed value of γ ≥ 0, if γ ≥ γi then stream i is in Category 2, otherwise,

stream i is in Category 1. Moreover, the values of ζi and q̂π
i associated with stream i, in

either Category, can be expressed as

ζi = max
{

0;
γi− γ

pi

}
,∀i . (4.57)

q̂π
i = λi min

{
1;
√

γi

γ

}
,∀i . (4.58)

Notice that when γ > max{γi}, then all streams are in Category 2 and q̂π
i < λi,∀i. By

decreasing the value of γ gradually, the throughput q̂π
i of each stream i in (4.58) either

increases or remain fixed at λi. Our goal is to find the value of γ∗ which yields {q̂π
i }N

i=1 sat-

isfying the condition ∑
N
i=1 q̂π

i /pi = 1. Suppose this condition is satisfied when γ >max{γi},
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with all streams in Category 2, then it follows that

N

∑
i=1

q̂π
i

pi
=

N

∑
i=1

λi

pi

√
γi

γ
=

1√
2Nγ

N

∑
i=1

√
wi

pi
= 1 ⇒ γ

∗ = γ̃ :=
1

2N

(
N

∑
i=1

√
wi

pi

)2

, (4.59)

where γ̃ is a fixed constant and the solution is unique γ∗ = γ̃ .

Alternatively, suppose that ∑
N
i=1 q̂π

i /pi = 1 is satisfied when min{γi} ≤ γ ≤ max{γi},

with some streams in Category 1 and others in Category 2. To find γ∗, we start with

γ =max{γi} and gradually decrease γ , adjusting {q̂π
i }N

i=1 according to (4.58) until we reach

∑
N
i=1 q̂π

i /pi = 1. The uniqueness of γ∗ follows from the monotonicity of q̂π
i with respect to

γ in (4.58).

Another possibility is for γ to reach a value lower than min{γi} and still result in

∑
N
i=1 q̂π

i /pi < 1. Notice from (4.58) that when γ < min{γi}, then all streams are in Cat-

egory 1 and have maximum throughputs, namely q̂π
i = λi,∀i. It follows that ∑

N
i=1 q̂π

i /pi =

∑
N
i=1 λi/pi < 1, in which case the condition ∑

N
i=1 q̂π

i /pi = 1 cannot be satisfied for any

value of γ ≥ 0. Hence, from complementary slackness, γ(∑N
i=1 q̂π

i /pi−1) = 0, we have the

unique solution γ∗ = 0.

Proposed algorithm to find γ∗ that solves the KKT Conditions: start with γ =max{γi; γ̃}.

Then, compute {q̂π
i }N

i=1 using (4.58) and verify if the condition ∑
N
i=1 q̂π

i /pi = 1 is satis-

fied. If ∑
N
i=1 q̂π

i /pi < 1, then gradually decrease γ and repeat the procedure. Stop when

∑
N
i=1 q̂π

i /pi = 1 or when γ < min{γi}. If ∑
N
i=1 q̂π

i /pi = 1 holds, then assign γ∗← γ . Oth-

erwise, if γ < min{γi} holds, then assign γ∗← 0. The solution to the KKT Conditions is

given by γ∗ and the associated ζ ∗i and q̂LB
i obtained by substituting γ∗ into (4.57) and (4.58),

respectively.

It is evident from the proposed algorithm that for any given network with parameters

(N, pi,λi,wi) and an arbitrary queueing discipline, the solution to the KKT Conditions,

({q̂LB
i }N

i=1,{ζ ∗i }N
i=1,γ

∗), exists and is unique. The proposed algorithm is described using

pseudocode in Algorithm 3.

�
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4.C Proof of Proposition 4.5

Proposition 4.5. The optimal EWSAoI achieved by a network with Single packet

queues over the class ΠR is given by (4.20a)-(4.20b), where RS denotes the Optimal

Stationary Randomized Policy for the Single packet queue discipline.

Optimal Randomized policy for Single packet queues

E
[
JRS
]
= min

R∈ΠR

{
1
N

N

∑
i=1

wi

(
1
λi
−1+

1
piµi

)}
s.t. ∑

N
i=1 µi ≤ 1 ;

Proof. Consider the evolution of hi(t) and zS
i (t) given in (4.4) and (4.1), respectively. Under

policy R ∈ΠR, the tuple (hi(t),zS
i (t)) represents the state of stream i and evolves according

to a two-dimensional Markov Chain with countably-infinite state space. The basic structure

of this Markov Chain is illustrated in Fig. 4-10.

Figure 4-10: Illustration of the state evolution associated with stream i of a network em-
ploying policy R ∈ ΠR and operating under the Single packet queue discipline. In partci-
ular, we show the outgoing transition arcs from any given state (hi(t),zi(t)) = (h,z),∀z ∈
{0,1,2, · · ·},h≥ z with the associated transition probabilities.

From the basic structure in Fig. 4-10, we derive the stationary distribution of stream i’s

Markov Chain. To that end, we separate state transitions into three categories and obtain

the associated probability distributions.
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• Transition to an empty6 queue (h,h),∀h ∈ {1,2, · · ·}:

P(h,h) = P(1,0)
(1−λi)

h

λi

{
1− (1− piµi)

h

piµi

}
; (4.60)

• Transition to a slot with a new arrival (h,0),∀h ∈ {1,2, · · ·}:

P(h,0) = P(1,0)

{
h−1

∑
n=0

(1−λi)
h−1−n(1− piµi)

n

}
; (4.61)

• Uneventful transition to (h,z),∀z ∈ {1,2, · · ·},h > z:

P(h,z) = P(h− z,0)(1−λi)
z(1− piµi)

z

= P(1,0)(1−λi)
z(1− piµi)

z

{
h−z−1

∑
n=0

(1−λi)
h−z−1−n(1− piµi)

n

}
. (4.62)

Then, with the stationary distribution, we obtain an expression for the probability of

hi(t) = h

P(h) =
h

∑
z=0

P(h,z) =
P(1,0)

λi

[
h−1

∑
n=0

(1−λi)
h−1−n(1− piµi)

n

]
, (4.63)

for h≥ 1 and, since ∑hP(h) = 1, we have that P(1,0) = λ 2
i piµi.

Since the countable-state Markov Chain is irreducible and has a stationary distribution,

this distribution is unique. Moreover, the chain is positive recurrent and

lim
T→∞

1
T

T

∑
t=1

E[hi(t)] = E[h] =
∞

∑
h=1

hP(h) =
1

piµi
+

1
λi
−1 . (4.64)

Proposition 4.5 follows from substituting (4.64) into the objective function in (4.6). �

6When the queue is empty, the system time z is not part of the network state. However, to facilitate the
analysis, and without loss of generality, we assume in this appendix that z is always part of the state and
evolves according to (4.1).
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4.D Proof of Theorem 4.12

Theorem 4.12 (Performance Bounds for MW S). Consider a wireless network with

parameters (N, pi,λi,wi) operating under the Single packet queues discipline. The per-

formance of the Max-Weight policy with α̃i = wi/piµ
S
i ,∀i, is such that

E
[
JMW S

]
≤ E

[
JRS
]
,

where µS
i and E[JRS

] are the optimal scheduling probability for the case of Single packet

queues and the associated EWSAoI attained by RS, respectively.

Proof. Consider stream i from a network operating under the Single packet queue disci-

pline. In each slot t, a packet is transmitted, i.e. ui(t) = 1, if the stream is selected and

its queue is non-empty. Hence, packet transmissions ui(t) depend on the queue backlog.

To decouple packet transmissions from the queue backlog, we create dummy packets that

can be transmitted without affecting the AoI. In particular, suppose that at time t queue i is

selected and successfully transmits a packet with zS
i (t) = z. Then, at the beginning of slot

t + 1, with probability 1−λi we place a dummy packet with zS
i (t + 1) = z+ 1 at the HoL

of the queue, otherwise we place a real packet with zS
i (t) = 0. From that moment on, the

behavior of dummy packets is indistinguishable from real packets. Notice that due to the

choice of zS
i (t + 1) = z+ 1, when a dummy packet is delivered to the destination, it does

not change the associated AoI. Moreover, the system time zS
i (t) is now defined at every slot

t following (4.1). Next, we analyze the equivalent system with dummy packets.

The Max-Weight policy minimizes the drift in (4.38). Hence, any other policy π ∈ Π

yields a higher (or equal) value of ∆(S(t)). Consider the Stationary Randomized policy for

Single packet queues defined in Sec. 4.3.1 with scheduling probability µS
i and let

E [ui(t)|S(t)] = E [ui] = µ
S
i . (4.65)
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Substituting µS
i into the Lyapunov Drift gives the upper bound

∆(S(t))≤ 1
N

N

∑
i=1

α̃i−
1
N

N

∑
i=1

α̃i pi

(
hi(t)− zS

i (t)
)

µ
S
i . (4.66)

Now, taking the expectation with respect to S(t) and then the time-average on the inter-

val t ∈ {1,2, · · · ,T} yields

E [L(T +1)]
T

− E [L(1)]
T

≤ 1
N

N

∑
i=1

α̃i−
1

T N

T

∑
t=1

N

∑
i=1

α̃i piE
[
hi(t)− zS

i (t)
]

µ
S
i . (4.67)

Manipulating this expression, assigning α̃i = wi/piµ
S
i and taking the limit as T →∞, gives

E
[
JMW S

]
≤ 1

N

N

∑
i=1

wi

piµ
S
i
+ lim

T→∞

1
T N

N

∑
i=1

T

∑
t=1

wiE
[
zS

i (t)
]
. (4.68)

From the evolution of zS
i (t) in (4.1), we know that

lim
T→∞

1
T N

N

∑
i=1

T

∑
t=1

wiE
[
zS

i (t)
]
=

1
N

N

∑
i=1

wi

(
1
λi
−1
)

. (4.69)

Substituting (4.69) into (4.68) and then comparing the result with (4.20a) yields

E
[
JMW S

]
≤ 1

N

N

∑
i=1

wi

piµ
S
i
+

1
N

N

∑
i=1

wi

(
1
λi
−1
)
= E

[
JRS
]
. (4.70)

�



4.E. PROOF OF THEOREM 4.13 149

4.E Proof of Theorem 4.13

Theorem 4.13 (Performance Bounds for MW N). Consider a wireless network with

parameters (N, pi,λi,wi) operating under the No queues discipline. The performance

of the Max-Weight Policy with α̃i = wi/piµ
N
i ,∀i, is such that

E
[
JMW N

]
≤ E

[
JRN
]
,

where µN
i and E[JRN

] are the optimal scheduling probability for the case of No queues

and the associated EWSAoI attained by RN , respectively.

Proof. Consider stream i from a network operating under the No queue discipline. In each

slot t, a packet is successfully transmitted, i.e. di(t) = 1, if a packet arrives, the stream is

selected and the channel is ON. Notice that all delivered packets have zN
i (t) = 0. This is

equivalent to a network with packets that are always fresh, i.e. zN
i (t) = 0,∀i, t, and with

a virtual channel that is ON with probability piλi and OFF with probability 1− piλi. The

Lyapunov Drift for this equivalent system with fresh packets and virtual channels is given

by:

∆(S(t)) =
1
N

N

∑
i=1

α̂i−
1
N

N

∑
i=1

α̂iλi pihi(t)E [ui(t)|S(t)] . (4.71)

For minimizing ∆(S(t)), the Max-Weight policy selects, in each slot t, the stream i with

a HoL packet and the highest value of α̂iλi pihi(t), with ties being broken arbitrarily. By

comparing the drift of the equivalent system (4.71) and the original system (4.38), it is easy

to see that α̃i = α̂iλi.

The Max-Weight policy minimizes the drift in (4.71). Hence, any other policy π ∈ Π

yields a higher (or equal) value of ∆(S(t)). Consider the Stationary Randomized policy for

No queues defined in Sec. 4.3.2 with scheduling probability µN
i and let

E [ui(t)|S(t)] = E [ui] = µ
N
i . (4.72)
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Substituting µN
i into the Lyapunov Drift gives the upper bound

∆(S(t))≤ 1
N

N

∑
i=1

α̂i−
1
N

N

∑
i=1

α̂iλi pihi(t)µN
i . (4.73)

Now, taking the expectation with respect to S(t) and then the time-average on the inter-

val t ∈ {1,2, · · · ,T} yields

E [L(T +1)]
T

− E [L(1)]
T

≤ 1
N

N

∑
i=1

α̂i−
1

T N

T

∑
t=1

N

∑
i=1

α̂iλi piE [hi(t)]µN
i . (4.74)

Manipulating this expression, assigning α̂i = wi/λi piµ
N
i and taking the limit as T → ∞,

gives

E
[
JMW N

]
≤ 1

N

N

∑
i=1

wi

λi piµ
N
i
. (4.75)

For deriving the upper bound in (4.40), consider the Optimal Stationary Randomized

policy RN . Substituting µN
i into (4.28a) and then comparing with (4.75) gives

E
[
JMW N

]
≤E
[
JRN
]
. (4.76)

�



Chapter 5

WiFresh: AoI from Theory to

Implementation

I n this chapter, we study AoI in practical wireless networks. We show that as the conges-

tion in the network increases, the AoI degrades sharply, leading to outdated information

at the destination. To address this challenge, we propose WiFresh: an unconventional ar-

chitecture that achieves near optimal information freshness for wireless networks of any

size, even when the network is overloaded.

To illustrate the impact of information freshness on time-sensitive applications, con-

sider a monitoring system composed of a remote monitor, a wireless base station (BS),

and N mobile nodes. Each node i ∈ {1,2, · · · ,N} moves with an average velocity of vi

meters per second, generates status information from time to time, and sends this infor-

mation to the remote monitor via the wireless base station. Status information can include

the node’s current position, inertial measurements, and pictures of the environment. The

remote monitor keeps track of the information, and is particularly interested in the position

of the nodes. Assume that at time t, the latest packet received by the remote monitor from

node i had information about its position at time τi(t). The AoI hi(t) = t− τi(t) captures

how fresh the position information is at time t. In particular, an AoI of hi(t) = 2 seconds

represents that at time t the remote monitor knows the location of node i two seconds ago.

Hence, the uncertainty about node i’s position at time t is captured by the quantity vihi(t),
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as illustrated in Fig. 5-1, and a large AoI corresponds to a large position uncertainty.

Figure 5-1: Illustration of a monitoring system. The wireless base station receives infor-
mation from the N = 4 mobile nodes and forwards this information to the remote monitor.
The position uncertainty of node i from the perspective of the remote monitor is represented
by the red circle with radius vihi(t) centered at the last known position of node i. The re-
mote monitor does not know the current position of node i, which is illustrated by the blue
drone.

In Table 5.1, we consider a sequence of monitoring systems with increasing size N and

display the average AoI hi(t) in seconds, where the average is taken over time t and over

all the N nodes. Each node is a Raspberry Pi generating position information using the

Stratus GPYes 2.0 u-blox 8 GPS receiver, and also generating inertial measurements using

the Pololu MinIMU-9 v5 sensor. The base station is a Raspberry Pi receiving data from

the N nodes via: 1) WiFi UDP, which is the standard communication method; 2) WiFi

Age Control Protocol (ACP), which uses the Transport layer protocol developed in [92]

to control the packet generation rates at the source nodes in order to optimize information

freshness; or 3) WiFresh, which is the network architecture proposed in this chapter. Details

about the experiment and the complete set of measurements are provided in Sec. 5.4.3.

WiFi UDP. The measurements in the first row of Table 5.1 show that as the number

of nodes N in the WiFi UDP network increases, the network becomes overloaded and the

average AoI hi(t) degrades sharply. The average AoI for N = 12 nodes is 0.32 seconds,

while for N = 20 nodes is 22.43 seconds, which means that the information at the remote

monitor is (on average) 22 seconds old. This staleness directly affects the capability of the

monitoring system of tracking the current position of the nodes.

WiFi ACP. The measurements in the second row of Table 5.1 show that the average
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Table 5.1: Average AoI hi(t) (in seconds) of a monitoring system employing stan-
dard WiFi UDP (first row), WiFi with controlled packet generation rate (second row), or
WiFresh (third row).

N 2 8 12 20 24

WiFi UDP 0.34 0.32 0.32 22.43 34.09
WiFi ACP 0.99 0.97 0.88 5.76 6.91
WiFresh 0.29 0.35 0.39 0.49 0.54

AoI hi(t) for WiFi ACP with N = 20 nodes is 5.76 seconds. By controlling the packet

generation rates at the source nodes, ACP improves the average AoI by a factor of four

when compared with WiFi UDP. Notice that a high packet generation rate may overload

the network and lead to a high average AoI, while a low packet generation rate may result

in infrequent information updates at the destination, which may also lead to a high average

AoI. The ACP dynamically adapts the packet generation rates at the nodes in order to drive

the network to the point of optimal information freshness. This point of minimum AoI is

illustrated in Fig. 5-3. Details about ACP can be found in [92].

WiFresh. The measurements in the third row of Table 5.1 show that the average AoI

hi(t) for WiFresh with N = 20 nodes is 0.54 seconds. WiFresh improves the average AoI

by a factor of forty when compared with WiFi UDP. Experimental results in Sec. 5.4 show

that this improvement increases for larger N. The superior performance of WiFresh is

due to the combination of three elements: Last-Come First-Served (LCFS) queues, Polling

Multiple Access mechanism, and Max-Weight scheduling policy. The choice of each of

these elements is underpinned by theoretical research. The LCFS queue was shown to

be the optimal queueing discipline in terms of information freshness in different settings

[10,21,60]. The Polling Multiple Access with Max-Weight scheduling policy was analyzed

in terms of average AoI in chapter 4 and in [42, 44, 51].

Scalability problem. Neither WiFi UDP nor WiFresh attempt to control the packet

generation rate at the source nodes. Hence, when the number of nodes N increases to the

point that the cumulative packet generation rate exceeds the capacity of the network, the

network becomes overloaded and the number of backlogged packets grows rapidly. For
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WiFi UDP, a large backlog in the First-Come First-Served (FCFS) queues leads to high

packet delay and, thus, to high average AoI. In contrast, as observed in Table 5.1, WiFresh

scales gracefully even when the network is overloaded, with average AoI increasing lin-

early1 with N. This is due to:

• the Polling mechanism that prevents packet collisions, allowing for efficient resource

allocation among nodes, which is critical in networks with large N;

• the Max-Weigh policy that determines the sequence of nodes to poll in order to opti-

mize information freshness, keeping the AoI of each node as low as possible; and

• the LCFS queues that prioritize the packet with lowest delay, leading nodes to always

transmit the freshest packets to the destination.

Applications of WiFresh. WiFresh is designed to support time-sensitive applications

that rely on the knowledge of the current state of the system. For example: monitoring

mobile ground-robots in automated fulfillment warehouses at Amazon [107, 111] and Al-

ibaba [89]; collision prevention applications [61] for vehicles on the road [3,16,27,63]; path

planning, localization and motion control for multi-robot formations using drones [2,4] and

using ground-robots [106]; multi-drone system for tracking a mobile spectrum cheater [88];

multi-drone system for automated aerial cinematography [83]; multi-drone system for ex-

ploration of subterranean environments [79]; multi-robot simultaneous localization and

mapping (SLAM) using drones [69, 77] and using ground-robots [75]; real-time surveil-

lance system using a fleet of ground-robots [80]; and data collection from sensors, drones

and cameras for agriculture using the Azure FarmBeats IoT platform [56, 108].

The various time-sensitive applications in [2–4, 16, 27, 56, 63, 69, 75, 77, 79, 80, 83, 88,

89, 106–108, 111] are all implemented using the IEEE 802.11 standard (WiFi). WiFi is an

attractive choice for it is low-cost, well-established, and immediately available in drones

[83], computing platforms running the Robot Operating System (ROS) [80], sensors that

measure soil temperature, pH, and moisture [108], and in the Raspberry Pis used in this

chapter. Moreover, as showcased by these various implementations and by the results in

the first row of Table 5.1, small-scale underloaded WiFi networks are able to support time-

1Notice that the universal lower bound in Theorem 2.1 shows that the optimal average AoI cannot scale
better than linearly on N.
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sensitive applications. Two main shortcomings of WiFi, or any other wireless technology

employing FCFS queues and Random Access mechanisms, are scalability and congestion.

Our contribution. Leveraging the theoretical results in previous chapters, we propose

WiFresh: a network architecture that scales gracefully, achieving near optimal informa-

tion freshness for wireless networks of any size, even when the network is overloaded.

We propose and realize two strategies for implementing WiFresh: WiFresh Real-Time, in

which LCFS queues, Polling mechanism and Max-Weight scheduling policy are imple-

mented at the MAC layer in a network of eleven FPGA-based Software Defined Radios

(Fig. 5-7) using hardware-level programming and operating at the microsecond time-scale;

and WiFresh App which is a customization of WiFresh implemented at the Application

layer, without modifications to lower layers of the communication system, in a network of

twenty five Raspberry Pis (Fig. 5-9) using Python 3. WiFresh App runs over standard WiFi

UDP, manipulating WiFi UDP into behaving as WiFresh, making it easy to integrate into

applications that already run over WiFi such as [2–4,16,27,56,63,69,75,77,79,80,83,88,

89, 106–108, 111]. Our experimental results in Sec. 5.4 show that WiFresh can improve

information freshness by two orders of magnitude when compared to an equivalent stan-

dard WiFi UDP network. To the best of our knowledge, this is the first work to propose and

experimentally evaluate a practical wireless network architecture that scales gracefully in

terms of information freshness.

The remainder of this chapter is organized as follows. In Sec. 5.1, we describe related

work on AoI. In Sec. 5.2, we discuss the impact of the multiple access mechanism, trans-

mission scheduling policy, and queueing discipline on information freshness. In Sec. 5.3,

we describe the design and implementation of WiFresh Real-Time and WiFresh App. In

Sec. 5.4, we evaluate the performance of WiFresh in a network with increasing load and in

a network with increasing size. The chapter is concluded in Sec. 5.5.

5.1 Related Work

Most papers on AoI focus on theory and a few consider system implementation. A literature

review of theoretical works is provided in Sec. 1.2. System implementation is considered in
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[57,92,95]. In [95], the authors consider a source-destination pair transmitting packets over

the Internet and measure the AoI for different packet generation rates. In [57], the authors

consider a vehicular network and develop an Application layer algorithm that adapts the

packet generation rates at the sources to improve information freshness. This algorithm

is validated using the ORBIT testbed with wireless nodes employing WiFi, in particular

the IEEE 802.11a standard. In [92], the authors consider an Internet-of-Things network

and develop a Transport layer protocol named Age Control Protocol (ACP) that adapts the

packet generation rates at the sources in order to optimize information freshness. This

protocol is validated using ten sources connected via WiFi to the Internet and sending

packets to a destination in another continent. In Sec. 5.4, we implement ACP and evaluate

its performance against WiFresh.

5.2 Background on Age of Information

The AoI hi(t) measures the time elapsed since the generation of the freshest packet received

by the destination from source i. The evolution of the AoI process is illustrated in Fig. 1-

2 which is displayed below for convenience. The time-average expected AoI associated

with source i is given by
∫ T

t=0E[hi(t)]dt/T . From Fig. 5-2, we can see that to keep the

information at the destination as fresh as possible, i.e. minimize the time-average expected

AoI, it is necessary to simultaneously provide: i) low packet delay; ii) high data throughput;

and iii) service regularity2. To minimize AoI, we consider the network as a whole and

optimize the system across the queueing discipline, the multiple access mechanism and the

transmission scheduling policy. Next, we discuss each of them in detail.

5.2.1 Queueing Discipline

The queueing discipline employed at the source nodes is central for minimizing AoI. In

this section, we compare FCFS and LCFS queues and evaluate their performance in terms

of AoI. FCFS queues are widely deployed in communication systems and they are the basis

2It is important to emphasize the difference between delivering packets regularly and providing a min-
imum throughput. In general, a given minimum throughput can be achieved even if long periods with no
delivery occur, as long as those are balanced by short periods of consecutive packet deliveries.
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Figure 5-2: Illustration of the AoI evolution in a network with a single source sending
packets to a single destination through a wireless base station (BS). Packets generated at
the source wait in the queue before being served.

for other disciplines such as Priority Queueing and Fair Queueing. FCFS queues transmit

packets in order of arrival, meaning that the freshest packet is always placed at the tail of

the queue. Under heavy loads, the FCFS queue is often backlogged and the freshest packet

has to wait for a long queueing delay before being delivered to the destination. The high

queueing delay leads to stale information at the destination and to high AoI. Naturally, this

effect is more prominent for large FCFS queues, as discussed in Sec. 5.4.1.

LCFS queues are often considered in the AoI literature [10, 11, 21, 60, 87], but they

are not commonly deployed in communication systems. LCFS queues place the most re-

cently generated packet at the Head-of-Line (HoL), leading to source nodes that transmit

the freshest packet first, which makes LCFS queues ideal for applications that rely on the

knowledge of the current state of the system, i.e. applications that need fresh information at

the destination. Under heavy loads, the LCFS queue is frequently replacing its HoL packet

with fresher packets. We expect that the higher the packet generation rate at the source

nodes, the lower the average AoI at the destination. LCFS queues are not commonly found

in communication systems. LCFS is not one of the queueing discipline (qdisc) options in

Linux nor in the Software Defined Radios (SDRs) we utilized for implementing WiFresh.

In both cases, as expected, the standard queueing discipline is FCFS.

Comparing FCFS and LCFS. Consider an M/M/1 queueing system with infinite queue



158 5. WIFRESH: AOI FROM THEORY TO IMPLEMENTATION

size, fixed packet service rate of µ = 1 packet per second and variable packet generation rate

λ , employing either FCFS or LCFS discipline. In Fig. 5-3, we display the time-average ex-

pected AoI for FCFS and LCFS, the expected packet delay and the expected inter-delivery

time. The analytical expressions for the AoI associated with FCFS and LCFS queues were

obtained in [59] and [21], respectively, and the expressions for packet delay and inter-

delivery time can be found in [30].

Figure 5-3: Expected delay, expected inter-delivery time and expected average AoI of the
queueing system with service rate of µ = 1 and variable packet generation rate λ .

Choice of LCFS for WiFresh. From Fig. 5-3, we can see that the minimum time-

average AoI for FCFS queues is achieved at moderate loads, in particular λ/µ ≈ 0.53,

while for LCFS queues the higher the packet generation rate λ , the lower the AoI. In

addition, LCFS outperforms FCFS for every packet generation rate λ . In fact, LCFS was

shown to be the optimal queueing discipline in different settings including single queue

systems [21, 60, 87], single-hop wireless networks [11] and multi-hop wireless networks

[10]. Thus, we propose to use the LCFS discipline in WiFresh.

Effect of dropping packets. Nodes with LCFS queues transmit the freshest packet

first. Notice that when a packet with older information is delivered to the destination after

a packet with fresher information, the freshness of the information is not affected and,

thus, the value of hi(t) remains unchanged. Hence, if packets with older information were
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dropped at the source as soon as a fresher packet arrived to the LCFS queue, the information

freshness at the destination would not be affected. It follows that, from the perspective of

AoI, a LCFS queue is equivalent to a head-drop FCFS queue of size 1 packet, in which

only the freshest packet is kept. The advantage of dropping older packets at the source is

saving communication resources. One possible disadvantage is that dropped packets might

contain useful information. For example, in a position tracking system, older packets can

be used to predict future movement.

5.2.2 Multiple Access Mechanism

Consider the network in Fig. 5-4 with N source nodes sending time-sensitive information to

the remote monitor via the wireless BS. Packets are generated at the sources and enqueued

in separate queues. The multiple access mechanism controls the method utilized by each

of the N sources for sharing the common wireless channel. In this section, we compare two

types of multiple access mechanism, Random Access and Polling, in terms of information

freshness.

To capture the freshness of the information in the network, we define the Expected

Weighted Sum AoI (EWSAoI) as

EWSAoI = lim
T→∞

1
T N

∫ T

t=0

N

∑
i=1

wiE [hi(t)]dt , (5.1)

where T is a positive real number that represents the time-horizon and wi is a positive real

number that depicts the weight (or priority) of source i. To minimize the EWSAoI, the

multiple access mechanism should attempt to: i) provide high communication efficiency

by avoiding packet collisions and reducing the control overhead; and ii) prioritize trans-

missions from sources with high current AoI hi(t), favorable channel conditions and high

weight wi.

Random Access is a widely deployed class of multiple access mechanisms, e.g. WiFi,

ZigBee, Wireless Body Area networks [68], and traditional cellular systems such as GSM.

The fundamental idea is that, when a source has a packet to transmit, it uses a randomized

algorithm to contend for channel access. Randomization is employed to reduce the proba-
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Figure 5-4: Illustration of the network with N source nodes sending time-sensitive infor-
mation to the remote monitor via the wireless BS.

bility of two or more sources transmitting packets simultaneously, which would result in a

packet collision. Random Access mechanisms are discussed in detail in chapter 6. Some

advantages of Random Access are simplicity, decentralization and low control signaling

overhead. Two disadvantages are the probability of packet collision that increases with the

number of sources N and the distributed operation that makes it challenging to implement

a dynamic transmission prioritization based on parameters such as AoI hi(t) and/or current

channel conditions.

Polling mechanism is a well-known alternative to Random Access. The BS coordi-

nates the communication in the network by sending poll packets to the sources selected for

transmission, as illustrated in Fig. 5-5. The BS selects the next source to poll based on the

scheduling policy, which may be a function of dynamic parameters such as AoI hi(t) and/or

current channel conditions. The polling mechanism attempts to eliminate packet collisions

and enables dynamic prioritization, making it suitable for large-scale time-sensitive appli-

cations.

Two important challenges associated with polling mechanisms are the control overhead

and the choice of scheduling policy. Control overhead: the BS transmits a poll packet

before receiving each data packet. In contrast, Random Access may require that the BS

transmit an acknowledgment packet following the reception of each data packet. Hence,

the control overhead of both mechanisms is comparable. Scheduling policy: the BS dy-

namically chooses the next source to poll. Evidently, a naive policy can degrade the perfor-
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Figure 5-5: Polling mechanism with the BS controlling the channel access for N=2
sources.

mance. Next, we discuss scheduling policies that are designed to optimize the information

freshness in the network.

5.2.3 Scheduling Policy

The problem of obtaining an optimal scheduling policy for single-hop wireless networks

in terms of information freshness was shown in [32] to be NP-hard. Numerous heuristic

policies based on Approximate Dynamic Programming [38], Restless Multi-Armed Ban-

dits [51,52] and Lyapunov Optimization [42,44,50,51] have been proposed in the literature.

The MW policy is chosen for WiFresh because it is intuitive, low-complexity and has su-

perior performance guarantees, as seen in chapter 4.

Max-Weight (MW) policy. Consider the network in Fig. 5-4 employing LCFS queues

and a Polling mechanism. Assume that t is the current decision time of the next poll packet.

Let pi ∈ (0,1] be the channel reliability associated with source i, namely the probability of

a successful reception of a data packet following the transmission of a poll packet to source

i. Let τHoL(t) be the time-stamp of the current Head-of-Line packet from source i at time

t and let zi(t) = t − τHoL(t) be the current system time of this HoL packet. Notice that

if this HoL packet were delivered to the BS at time t, then zi(t) would be the associated

packet delay and the AoI would be reduced from hi(t) to zi(t), as illustrated in Fig. 5-2.

Hence, the difference hi(t)− zi(t) represents the potential AoI reduction of polling source

i at time t. Assume that the scheduling policy knows the values of zi(t) and pi, and denote

I (i, t) := wi pi(hi(t)− zi(t))2 as the index of source i at time t. Then, the MW policy
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selects, at every decision time t, the source i∗(t) with highest value of I (i, t), with ties

being broken arbitrarily. Intuitively, the MW is polling the source with highest weighted

potential AoI reduction. This particular expression for I (i, t) was derived in Sec. 4.4.

The assumptions of known zi(t), and static and known pi were utilized in chapter 4 to

derive performance guarantees in terms of information freshness. In this chapter, we do

not assume knowledge of zi(t) and pi. In WiFresh, we estimate both zi(t) and pi over time,

as described in Sec. 5.3.2. For building intuition into the MW policy, we provide a simple

example.

Example. Consider an ideal symmetric network in which all sources have the same

weight wi = w > 0, the same channel reliability pi = p ∈ (0,1], and all sources generate

fresh packets continuously such that their LCFS queues always have fresh HoL packets,

meaning that zi(t) = 0,∀i, t. Under these conditions, the MW policy selects, at each de-

cision time t, the source i∗(t) = argmax{√wi pi(hi(t)− zi(t))} ≡ argmax{hi(t)}. This

intuitive policy, which always polls the source with most outdated information, is called

Maximum Age First (MAF), and it was shown in Theorem 2.7 to achieve optimal infor-

mation freshness (i.e. minimum EWSAoI) for the case of ideal symmetric networks. Both

the MW policy and the MAF policy are implemented in real networks and evaluated in

Sec. 5.4.

5.3 Design and Implementation

In this section, we discuss the design and implementation of WiFresh in its two forms:

WiFresh Real-Time and WiFresh App. The design and implementation of WiFresh Real-

Time is discussed in Sec. 5.3.2 and Sec. 5.3.3, respectively, and the design and imple-

mentation of WiFresh App is discussed in Sec. 5.3.4 and Sec. 5.3.5, respectively. Their

performance is evaluated in Sec. 5.4. Prior to delving into the details, we describe the main

challenges.
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5.3.1 Challenges

Complexity of implementation. To achieve high performance, WiFresh Real-Time was

implemented at the MAC layer using a network of FPGA-based Software Defined Radios.

The Polling mechanism and the MW scheduling policy were fully implemented in FPGAs

with 10 MHz clocks, enabling WiFresh Real-Time to make the scheduling decision and

trigger the transmission of the next poll packet in approximately 20 microseconds. Keep-

ing this time-interval short and limiting the length of the poll packet are important factors

in reducing the control overhead and achieving high performance. The results in Sec. 5.4.2

show that WiFresh Real-Time can improve information freshness by a factor of 200 when

compared to an equivalent WiFi network. The main challenge of implementing WiFresh

Real-Time at the MAC layer is the high complexity associated with implementing numer-

ous real-time functions (such as Polling, MW policy, queueing discipline and estimation

algorithms) using hardware-level programming.

Barrier to adoption. Targeting an alternative implementation of WiFresh that could

be easily integrated into applications that already run over WiFi such as [2–4,16,27,56,63,

69,75,77,79,80,83,88,89,106–108,111], we propose WiFresh App which is implemented

in Python 3 and runs at the Application layer, without modifications to lower layers of the

communication system. The main challenge is in the design of a Python application that is

capable of driving a standard WiFi UDP network (with FCFS queues and Random Access)

to behave as a WiFresh network (with LCFS queues and Polling mechanism with MW

policy). This design is discussed in Sec. 5.3.4. The experimental results in Sec. 5.4.3 show

that WiFresh App can improve information freshness by a factor of 65 when compared to

an equivalent WiFi UDP network.

Bridging theory and practice. Theoretical works on Age of Information often assume

that: 1) nodes in the network are synchronized; 2) nodes generate packets on-demand or

according to simple stochastic processes; 3) each source is associated with a single type of

information such as position, inertial measurements or images; 4) each data packet contains

a complete information update; 5) channel reliabilities {pi}N
i=1 are fixed and known; and/or

6) system times of HoL packets {zi(t)}N
i=1 are known. To leverage the theory and im-
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plement (for the first time) an AoI-based network architecture composed of LCFS queues

and Polling mechanism with MW scheduling policy, we augment WiFresh with algorithms

that synchronize clocks, dynamically learn {pi}N
i=1 and {zi(t)}N

i=1, manage sources with

multiple information types, and manage packet fragmentation.

Fragmentation of information updates. The AoI is reduced when fresh information is

received at the destination. The evolution of hi(t) assumes that each data packet contains a

complete information update. To accommodate large information updates, such as images,

WiFresh has to manage packet fragmentation. Two issues are discussed below.

The first issue is when to reduce the AoI hi(t). In general, the AoI hi(t) can be reduced

(or partially reduced) upon reception of a subset of fragments. In this work, fragmentation

is used for transmitting images and, in this case, it makes sense to reduce AoI only when

all fragments are received. The second issue is whether the LCFS queue should replace the

HoL packet as soon as a new information update arrives, or if the LCFS queue should wait

until all fragments from the previous information update are delivered before replacing

the HoL packet. Notice that if information updates are generated with a high rate, then

replacing the HoL packet as soon as a new information update arrives may hinder the

complete transmission of information updates. For this reason, in this work, we choose to

transmit all fragments before replacing the information update at the LCFS queue.

WiFresh Real-Time runs at the MAC layer. Hence, it is blind to the concept of informa-

tion and can only see individual data packets. This makes the adjustments discussed above

challenging to implement. To overcome this problem, WiFresh Real-Time could gather in-

formation regarding fragmentation from other layers of the communication system. In this

work, we implement fragmentation only in WiFresh App, which runs at the Application

layer and is aware of information updates. Recall that information updates are generated

and received by the Application layer.

5.3.2 Design of WiFresh Real-Time

In this section, we describe WiFresh Real-Time (WiFresh RT) in detail. The layers of the

communication system are illustrated in Fig. 5-6. Next, we describe the three types of

packets used in WiFresh RT:
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• Poll packet is sent from the BS to a selected source to indicate that the source can

transmit one data packet. The duration of the data packet transmission is limited to

T XOP milliseconds;

• Data packet is sent from the source to the BS following a poll packet. The data

packet contains a time-stamp indicating when the packet reached the MAC layer.

• Empty packet is sent from the source to the BS following a poll packet when there

is no data packet to be transmitted, i.e. when the queue at the polled source is empty.

The Empty packet is used for the BS to differentiate between not receiving data due

to a transmission error or due to an empty queue at the source. This differentiation is

useful for estimating pi and zi(t).

Figure 5-6: Components of the WiFresh RT system. The MAC layers at the source and
BS are emphasized for they are central to the implementation of WiFresh RT.

Basic source behavior. The source generates information updates in the Application

layer and forwards them to lower layers of the communication system. When a data packet

arrives at the MAC layer, WiFresh RT appends a time-stamp to the packet and then stores it

in a head-drop FCFS queue of size 1 packet. Recall that this queue keeps only the freshest

packet and discards older packets. The source can be in one of two states: 1) waiting for

a poll packet from the BS; or 2) transmitting the freshest data packet to the BS. While

waiting for a poll packet, the source manages its queue. Upon receiving a poll packet, the

source fetches a data packet from its queue and transmits this packet to the BS through

the wireless channel. If the queue is empty, the source transmits an empty packet to the
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BS. After transmitting either the data packet or the empty packet, the source goes back to

waiting for the next poll packet.

Basic BS behavior. The BS does not generate data packets. Its main responsibility is

to coordinate the communication in the network. The BS can be in one of two states: 1)

waiting for a data packet; or 2) transmitting a poll packet. While waiting for a data packet,

the BS keeps track of the waiting period. If the waiting period exceeds BS_Timeout = 100

microseconds or a data packet is received, the BS updates its estimate of the network state

(ĥi(t), ẑi(t), p̂i(t))N
i=1, where ĥi(t) is the estimate of hi(t), ẑi(t) is the estimate of zi(t) and

p̂i(t) is the estimate of pi at time t. These estimates are used by the MW policy to determine

the source i∗(t) with highest index I (i, t)=wi p̂i(t)(ĥi(t)− ẑi(t))2. After transmitting a poll

packet to source i∗(t), the BS goes back to waiting for the next data packet, as illustrated in

Fig. 5-5. The algorithms used to estimate hi(t), pi and zi(t) are discussed next.

Clock synchronization is needed to accurately compute hi(t) := t− τi(t), where t is

the current time measured by the BS and τi(t) is a time-stamp created by source i. If clocks

are not synchronized, the values of hi(t) for different sources may have different biases,

which may lead to wrong scheduling decisions by the MW policy. To estimate the time-

stamp offset between each source and the BS, and obtain the estimates {ĥi(t)}N
i=1, some

possible approaches are: adding GPS antennas to every node in the system and then us-

ing GPS time; synchronizing the Operating System (OS) of every node using the Network

Time Protocol [82] via the Internet and then using the OS time; or implementing a syn-

chronization algorithm as part of WiFresh. In WiFresh RT we use the OS time. In WiFresh

App we implement a built-in synchronization algorithm described in Sec. 5.3.4.

Learning channel reliability. To estimate the value of pi ∈ (0,1] associated with each

source i, we implement a simple estimator. Let Pi(t) be the number of poll packets trans-

mitted to source i in the last W seconds and let Di(t) be the number of data packets and

empty packets successfully received from source i in the same period. Then, the estimate

of pi at time t is given by

p̂i(t) =
Di(t)+1
Pi(t)+1

. (5.2)

We choose a time window of W = 0.5 seconds. Notice that when the number of poll
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packets Pi(t) is low, the estimate p̂i(t) tends to be optimistic, i.e. higher. In particular,

when Pi(t) = Di(t) = 0, we have p̂i(t) = 1. This high value of p̂i(t) when the number of

poll packets is low creates an incentive for the MW policy to select sources that have not

been polled recently.

To determine the changes in Di(t) and Pi(t) for each source i over time, we log the

transmission and reception events within the window W using large arrays. This log is

created at the on-board processor of the SDR (as opposed to the FPGA) in order to spare

the limited FPGA resources. This design choice imposes the following sequence of events:

1) the FPGA processes the transmission/reception events and communicates them to the

on-board processor; 2) the processor logs the events, calculates p̂i(t) and communicates

the updated estimate to the FPGA; 3) the FPGA uses the latest value of p̂i(t) as input to the

MW policy. The disadvantage of keeping the log at the processor is the added round-trip

communication delay between on-board processor and FPGA which is of approximately

500 microseconds. Since p̂i(t) represents the average channel reliability in the last W =

0.5 seconds, it follows that this relatively small round-trip communication delay has a

negligible impact on the performance of the MW policy. The estimate of pi is the only

portion of WiFresh RT which is not fully implemented at the FPGA.

Learning the system times. Recall that the difference hi(t)− zi(t) represents the po-

tential AoI reduction of polling source i at time t and that the MW policy wishes to use this

difference for selecting the appropriate source to poll. The problem is that the MW policy

does not know the system times of the HoL packets {zi(t)}N
i=1, which are only known by

the respective sources, as illustrated in Fig. 5-4. One approach for estimating zi(t) could be

to develop an algorithm that generates estimates ẑi(t) based on the entire history of trans-

mission and reception events, especially the sequence of previously received time-stamps.

The main drawback of this approach is its complexity. A less accurate but much simpler

approach is to estimate zi(t) based on the latest received packet only. In particular, we

know that when the freshest data packet from source i is received at time t, the potential

AoI reduction of polling source i again at time t is (most likely3) zero, which is represented

3The potential AoI reduction of polling source i again at time t might be greater than zero if source i
generates a new data packet while the previous data packet was being transmitted. We assume that this is an
unlikely event and neglect its effect.
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by zi(t) = hi(t). Similarly, when an empty packet is received at time t, the potential AoI

reduction of polling source i again at time t is (most likely) zero. Hence, we can estimate

zi(t) using the following mechanism:

• ẑi(t)← ĥi(t) following the successful reception of a data packet or an empty packet

from source i at time t; and

• ẑi(t) remains constant over time while no packet is received.

This simple mechanism prevents the MW policy to repeatedly schedule the same source i

with a high AoI hi(t) and an empty queue. Notice that estimation errors in ĥi(t), p̂i(t) or

ẑi(t) affect the performance of the MW policy only when they lead to wrong scheduling

decisions. In the next section, we discuss the implementation of WiFresh RT.

5.3.3 Implementation of WiFresh Real-Time

We implement WiFresh RT in a Software Defined Radio testbed composed of a desktop

computer operating as the remote monitor, one NI USRP 2974 operating as the wireless

base station, and ten nodes operating as sources: seven NI USRP 2974 and three NI USRP

2953R, as shown in Fig. 5-7. The code is developed using the LabVIEW Communications

802.11 Application Framework v3.0 (802.11 AFW). The 802.11 AFW [40] is a modifiable

reference design of WiFi with Transport layer based on UDP, MAC layer based on the

Distributed Coordination Function (DCF), PHY layer based on Orthogonal Frequency-

Division Multiplexing (OFDM), and no Network Layer. We use this WiFi reference design

as a starting point to implement WiFresh RT.

The 802.11 AFW is composed of two main codes: the Host code (running at the on-

board Intel i7 6822EQ 2 GHz Quad Core processor) and the FPGA code (running at the Xil-

inx Kintex-7 XC7K410T FPGA). The Host code is responsible for the generation/reception

of data packets, radio configuration, and displaying measurements and plots. The FPGA

code is responsible for processing data packets, generating control packets (e.g. Clear-to-

Send, Request-to-Send and Acknowledgments), accessing the wireless channel using DCF,

time management (e.g. Interframe spaces and timeouts), etc. The FPGA code allows us
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Figure 5-7: WiFresh RT testbed.

to implement real-time functions at the hardware level. The FPGA clock is of 10 MHz,

meaning that these functions run at the microsecond time-scale.

For implementing WiFresh RT, we created numerous real-time functions at the FPGA,

including: 1) Polling Multiple Access mechanism; 2) Max-Weight scheduling policy; 3)

head-drop FCFS queue with size 1 packet; 4) time-stamp processing; 5) learning algo-

rithms; and 6) measurement logs. The PHY layer of the WiFi reference design was kept

unchanged. The PHY layer is based on the IEEE 802.11n standard and it has center fre-

quency 2.437 GHz, bandwidth of 20 MHz and a fixed MCS index of 5.

5.3.4 Design of WiFresh App

WiFresh App is an implementation of WiFresh that aims to be easily integrated into time-

sensitive applications that already run over WiFi such as [2–4, 16, 27, 56, 63, 69, 75, 77,

79, 80, 83, 88, 89, 106–108, 111]. WiFresh App is implemented in Python 3 and runs at

the Application layer, without modifications to lower layers of the communication system,

as illustrated in Fig. 5-8. This Python application is designed to drive a standard WiFi

UDP network (with FCFS queues and Random Access) to behave as a WiFresh network

(with LCFS queues and Polling mechanism with MW policy). WiFresh App contains all

elements of WiFresh RT and some additional features, namely fragmentation of large infor-

mation updates, a built-in synchronization algorithm, and support for sources that generate

multiple types of information. Next, we describe WiFresh App.
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Figure 5-8: Components of the WiFresh App system. The Application layer at the source
and destination is emphasized for it is central to the implementation of WiFresh App.

Basic source behavior. The source generates information updates at the Application

layer. WiFresh App time-stamps the information updates and stores them in a LCFS queue,

which is implemented using a Python LIFO stack. The LCFS queue releases a single in-

formation update only when the source receives a poll packet from the destination. If the

released information update fits into a single data packet, this information update is en-

capsulated into a data packet and forwarded to lower layers of the communication system.

Otherwise, the information update is fragmented, stored and the first data packet is for-

warded. Fragments are stored in a FCFS queue which is separate from the LCFS queue

containing information updates. Upon receiving the next poll packet acknowledging the

first fragment, the source forwards the second fragment, and so on, until all fragments are

successfully delivered to the destination. When the poll packet acknowledging the final

fragment is received, the LCFS queue releases the next information update, which is then

fragmented, stored and transmitted following the same procedure.

When a fragment reaches the source’s MAC layer, WiFi stores it in a FCFS queue and

transmits it to the destination using Random Access. Ideally, since the destination only

generates a new poll packet after the previous fragment is received, there should be at most

one source attempting transmission using Random Access at any given time. This means

that, even when all sources are generating information updates with a high rate, the under-

lying WiFi network is handling one data packet at a time, resulting in low packet delay and

low probability of transmission errors, which still may occur due to the unreliable nature
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of the wireless channel. When transmission errors occur, WiFi may attempt to retransmit

the data packet. Notice that by implementing LCFS queues and Polling mechanisms with

MW policy at the Application layer, WiFresh App is driving the underlying WiFi network

to operate as a WiFresh network.

Basic destination behavior. Similarly to WiFresh RT, the destination in WiFresh App

generates poll packets, implements a timeout of Destination_Timeout = 300 milliseconds,

updates its estimate of the network state (ĥi(t), ẑi(t), p̂i(t))N
i=1, and uses the MW policy to

decide which source to poll next. The main differences are that scheduling decisions are

made at the Application layer at the millisecond time-scale, as opposed to the MAC layer

at the microsecond time-scale, and that the destination manages the fragmentation proce-

dure described above, uses a built-in clock synchronization algorithm to estimate ĥi(t), and

supports sources that generate multiple types of information.

Clock synchronization. Let tD be the current time measured by the destination and let

tS
i be the current time measured by source i. The time-stamp offset is given by ∆i = tD− tS

i .

To estimate the value of ∆i we implement a two-way handshake called the on-wire protocol

that is part of the Network Time Protocol. Details about the handshake are provided in Ap-

pendix 5.A and in [82, Sec. 8]. To synchronize the entire network, the destination performs

a two-way handshake with each source i ∈ {1,2, · · · ,N}. The synchronization procedure

runs periodically with period sync_period = 300 seconds. The sequence of past and present

time-stamp offset measurements for each source i is filtered and estimates of {∆̂i(t)}N
i=1 are

obtained. The AoI with time-stamp offset correction is given by ĥi(t) = t−τi(t)− ∆̂i(t). As

soon as the synchronization procedure ends, the destination resumes using the MW policy

with ĥi(t) to schedule data packet transmissions.

Multiple information types per source. The AoI is associated with a single type of

information such as position, inertial measurements or images. In a network with sources

that generate multiple types of information, we create for each tuple (source, information

type) a separate instance of WiFresh App with independent LCFS queue, time-stamp off-

set, AoI ĥi(t), channel reliability p̂i, system time ẑi(t), and priority wi. For example, in a

network with two sources, each generating three types of information updates, there are

seven instances of WiFresh App: three per source and one at the destination. The destina-
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tion treats each instance of WiFresh App at the sources as an independent entity, and sends

individual poll packets to each of them. For simplicity, in the description of WiFresh App

that follows, we assume that each source has a single instance of WiFresh App, and use the

terms source and WiFresh App instance interchangeably.

5.3.5 Implementation of WiFresh App

We implement WiFresh App in a Raspberry Pi (Raspi) testbed composed of one desktop

computer operating as the remote monitor, one Raspberry Pi 3B+ with a WiFi USB adapter

operating as the wireless BS, and twenty four nodes operating as sources: ten Raspberry

Pi 3B+ fetching data from sensors and fourteen Raspberry Pi Zero W generating synthetic

data that emulates the sensors. For the measurements in Sec. 5.4, nodes are static and

placed indoors. The distance between sources and destination is between 2 and 3 meters.

In Fig. 5-9, we display some of the sources4 and the three sensors described below:

• cameras (Arducam 5 Megapixels 1080p) generating jpg images with resolution 256x144

pixels and size of approximately 19 kbytes at a rate of 2 Hz.

• Inertial Measurement Units (Pololu MinIMU-9 v5 Gyro, Accelerometer, and Com-

pass) generating information updates of size 20 bytes at a rate of 100 Hz; and

• GPS units (Stratux GPYes 2.0 u-blox 8) generating information updates of size 50

bytes at a rate of 1 Hz;

To create synthetic GPS data for indoor environments, we use a NMEA sentence generator

[6] that emulates the GPS unit.

The Raspberry Pis run the Raspbian Stretch OS and communicate via WiFi, in particu-

lar the IEEE 802.11g standard at 2.4 GHz. WiFresh App is implemented using Python 3.

The main functionalities we developed are: 1) Polling mechanism; 2) Max-Weight schedul-

ing policy; 3) LCFS queue; 4) fragmentation management; 5) time-stamp processing; 6)

learning algorithms; 7) interface with sensors; 8) synthetic generation of data packets em-

ulating each type of sensor; 9) graphical user interfaces; and 10) measurement logs. The
4The remote control cars and battery packs are used for running tests outdoors. The measurements in this

chapter were performed indoors.
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Figure 5-9: WiFresh App sources and their sensors.

Transport, Network, MAC and PHY layers were kept unchanged, as illustrated in Fig. 5-8.

WiFresh App is built over standard UDP, IP and WiFi protocols.

5.4 Experimental Results

In this section, we evaluate the performance of WiFresh in a dynamic indoor University

office space with multiple external sources of interference such as mobile phones, laptops

and campus WiFi base stations. We evaluate WiFresh RT and WiFresh App, and compare

them with other communication systems. In particular, using the SDR testbed described in

Sec. 5.3.3, we compare:

• WiFresh RT: as described in Sec. 5.3.2;

• WiFresh RT FCFS: identical to WiFresh RT but with sources employing FCFS

queues;

• WiFi UDP FCFS: UDP over standard WiFi; and

• WiFi UDP LCFS: UDP over standard WiFi but with sources employing LCFS

queues instead of FCFS queues.

In addition, using the Raspi testbed described in Sec. 5.3.5, we compare:
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• WiFresh App: as described in Sec. 5.3.4;

• WiFresh MAF: identical to WiFresh App but with a scheduling policy that, at every

decision time t, selects the source i∗(t) with highest value of AoI hi(t);

• WiFi UDP FCFS: UDP over standard WiFi;

• WiFi TCP FCFS: TCP over standard WiFi; and

• WiFi ACP FCFS: Age Control Protocol (ACP) over standard WiFi. ACP is a Trans-

port layer protocol recently proposed in [92] that adapts the packet generation rate of

each source i in order to minimize the AoI in the network. Recall that in our testbed,

the packet generation rate is fixed and determined by the associated sensor. Hence,

in our implementation of ACP, we approximate the target packet generation rate by

regularly discarding some of the packets before they reach the FCFS queue.

Next, we present the results of experimental evaluations of WiFresh.

5.4.1 Single Source with High Load

In this section, we consider a network with a destination, a wireless BS and a single source

generating packets of 150 bytes with rate λ ∈ {5,6,7} kHz. These short packets of 150

bytes represent Machine to Machine (M2M) status updates, and different values of λ rep-

resent different levels of congestion. In Tables 5.2 and 5.3, we measure the time-average

Age of Information (in seconds) and the effective throughput (in Mbps). The effective

throughput is measured at the Application layer of the destination and, thus, it refers to the

number of useful bits received per second. In Table 5.2, we consider WiFresh RT and WiFi

UDP FCFS in the SDR testbed, and in Table 5.3, we consider WiFresh App and WiFi UDP

FCFS in the Raspi testbed. Each experiment runs for 10 minutes.

External interference. The results in Tables 5.2 and 5.3 show that when the packet

generation rate increases from 5 kHz to 7 kHz, the effective throughput does not change

significantly, indicating that sources with λ ≥ 5 kHz are saturated, i.e. always have data to

transmit. Table 5.2 shows that the throughput of WiFresh RT is higher than the throughput
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Table 5.2: Measurements using the SDR testbed.

SDR WiFresh RT WiFi UDP FCFS

AoI Thr. AoI Thr.
(sec) (Mbps) (sec) (Mbps)

λ = 5k 0.003 4.866 0.306 2.406
λ = 6k 0.003 4.905 0.304 2.433
λ = 7k 0.004 4.412 0.320 2.328

Table 5.3: Measurements using the Raspi testbed.

Raspi WiFresh App WiFi UDP FCFS

AoI Thr. AoI Thr.
(sec) (Mbps) (sec) (Mbps)

λ = 5k 0.040 0.229 224.8 1.242
λ = 6k 0.046 0.197 248.2 1.183
λ = 7k 0.042 0.208 242.3 1.281

of WiFi UDP FCFS. This is because WiFresh RT does not back off when competing with

other wireless networks for channel access, making it less susceptible to external interfer-

ence. Recall that WiFresh RT is not designed to coexist with other networks. WiFresh RT is

designed to support large-scale time-critical applications and, to that end, its Polling Mul-

tiple Access mechanism attempts to leverage all the available communication resources.

In contrast, WiFresh App runs over standard WiFi, making it as susceptible to external

interference as WiFi. Table 5.3 shows that the throughput of WiFresh App is lower than

the throughput of WiFi UDP FCFS. The main reason for the lower throughput is the con-

trol overhead associated with running a Polling mechanism over standard WiFi. Notice

that acknowledgement packets follow the successful transmission of every poll and data

packets, thus increasing the control overhead. Despite the lower throughput, WiFresh App

significantly outperforms WiFi UDP FCFS in terms of information freshness, as we see

next.

Queueing discipline. The results in Tables 5.2 and 5.3 show that WiFresh RT and
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WiFresh App can improve AoI by two orders of magnitude when compared to WiFi UDP

FCFS. In this single source scenario, the performance gain comes from using a LCFS queue

instead of a FCFS queue. In Fig. 5-10, we compare the AoI hi(t) evolution over time for a

system employing FCFS and LCFS. It is clear that a high packet generation rate improves

the AoI hi(t) performance of LCFS, and degrades the performance of FCFS.

Queue size. In all three WiFi UDP FCFS experiments in Table 5.3, the AoI hi(t)

grows as in Fig. 5-10 throughout the entire experiment, i.e. for 600 seconds, giving a

time-average AoI of at least 220 seconds. This result suggests that the FCFS queue of the

Raspberry Pi did not overflow, which would have helped stabilizing AoI. In contrast, in all

three WiFi UDP FCFS experiments in Table 5.2, the FCFS queue5 overflows in the first few

seconds, limiting the AoI hi(t) growth and resulting in a time-average AoI of around 0.3

seconds. This suggests that a larger FCFS queue at the SDRs would have further impaired

the performance of WiFi UDP FCFS.

Figure 5-10: AoI hi(t) evolution over time in the Raspi testbed with λ = 6 kHz. On the
LHS we have WiFi UDP FCFS and on the RHS we have WiFresh App, which uses LCFS.

5The transmission queue of the SDR can store one megabyte of data. Notice that for λ = 5kHz we are
generating 0.75 megabyte per second.
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5.4.2 Network with Increasing Load

In this section, we consider a network with a destination, a wireless BS and ten sources gen-

erating packets of 150 bytes with rate λ . In Fig. 5-11, we display the Expected Weighted

Sum AoI measurements (in seconds) for the SDR testbed employing the following commu-

nication systems: 1) WiFresh RT; 2) WiFi UDP LCFS; 3) WiFresh RT FCFS; and 4) WiFi

UDP FCFS. The weights of the ten sources are set to wi = 1,∀i. Each experiment runs for

10 minutes.

Figure 5-11: Time-average AoI measurements for the SDR testbed with ten sources gen-
erating packets of 150 bytes with rate λ ∈ {100,250,500,750,1k,2k,5k} Hz.

By comparing the results of WiFresh RT and WiFi UDP FCFS for λ ≥ 500 Hz, we

can see that WiFresh RT improves information freshness by (at least) a factor of 200 when

compared to an equivalent standard WiFi network. To understand how much of this im-
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provement is due to the queueing discipline and how much is due to the multiple access

mechanism, we draw additional comparisons. By comparing WiFresh RT and WiFi UDP

LCFS, both of which use LCFS queues, we can assess the impact of the multiple access

mechanism on information freshness. As expected, the improvement of Polling over Ran-

dom Access increases as the packet generation rate λ increases. In particular, for λ = 5

kHz, WiFresh RT improves AoI by a factor of 7 when compared to WiFi UDP LCFS. To

assess the impact of queueing, we compare WiFresh RT and WiFresh RT FCFS, both of

which use Polling with MW policy. For λ ≥ 500 Hz, the LCFS queue improves information

freshness by (at least) a factor of 100 when compared to the FCFS queue. Both the queue-

ing discipline and the multiple access mechanism improve AoI significantly. However, the

effect of the queueing discipline is clearly dominant.

In Fig. 5-12, we display the EWSAoI measurements (in seconds) for the Raspi testbed

employing the following communication systems: 1) WiFresh App; and 2) WiFi UDP

FCFS. The weights of the ten sources are set to wi = 1,∀i. Each experiment runs for 10

minutes. The results in Fig. 5-12 show that for λ ≥ 100 Hz, WiFresh App improves informa-

tion freshness by three orders of magnitude when compared to an equivalent standard WiFi

network. We note that WiFi UDP FCFS performs differently in the Raspi and SDR testbeds

due to differences in the platforms, and in particular due to differences in the FCFS queue

sizes. The large FCFS queues at the Raspberry Pis have a negative effect on WiFi UDP

FCFS, which amplifies the performance gain of WiFresh App at high packet generation

rates λ .

5.4.3 Network with Increasing Size

In this section, we consider a network with a destination, a wireless BS and N sources, each

source generates up to three types of information updates: position information of 50 bytes

at 1 Hz, inertial measurements of 20 bytes at 100 Hz, and images of 19 kbytes at 2 Hz.

Notice that a network with N physical sources can have up to 3N sources of information,

each source of information with its own independent instance of WiFresh App, its own

queue, and its own AoI hi(t) evolution.

In Figs. 5-13 and 5-14, we display the EWSAoI measurements (in seconds) for the
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Figure 5-12: Time-average AoI measurements for the Raspi testbed with ten sources
generating packets of 150 bytes with rate λ ∈ {10,50,100,250,500,750,1k,2k,5k} Hz.

Raspi testbed employing the following communication systems: 1) WiFresh App; 2) WiFresh

MAF; 3) WiFi UDP FCFS; 4) WiFi TCP FCFS; and 5) WiFi ACP FCFS. In Fig. 5-13,

we consider sources generating both position information and images, and in Fig. 5-14,

we consider sources generating both position information and inertial measurements. The

weights of the sources of information are set to wi = 1,∀i. Each configuration runs for a

total of 10 minutes.

TCP over standard WiFi. The results in Figs. 5-13 and 5-14 show that WiFi TCP

FCFS has the worst performance in terms of AoI. TCP provides reliable and in-order

packet delivery by requesting retransmissions and rearranging out-of-order packets before

forwarding them to the Application layer. Both of these features can degrade information

freshness, especially when sources are generating packets at high rates.

Age Control Protocol over standard WiFi. ACP dynamically adapts the packet gen-

eration rates at the sources (by regularly discarding some of the packets) in order to drive

the underlying WiFi network to the point of minimum AoI. The results in Figs. 5-13 and 5-

14 show that, for N = 20, WiFi ACP FCFS improves information freshness by a factor of 4

when compared to WiFi UDP FCFS; in turn WiFresh App improves information freshness

by (at least) a factor of 10 when compared to WiFi ACP FCFS.

Impact of scheduling policy. The only difference between WiFresh App and WiFresh
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Figure 5-13: EWSAoI measurements for the Raspberry Pi testbed with N ∈ {1,2,4,6,8,
10,12,16,20,24} sources generating position information and images.

MAF is the scheduling policy. MAF schedules the source with highest value of ĥi(t), and

neglects information about channel conditions p̂i(t) and information about the HoL packet

at the source’s queue ẑi(t). In networks with sources that generate data packets at different

rates, such as the Raspi testbed, MAF can often poll sources with empty queues, what

degrades its AoI performance. This is a main reason for the performance gap between

WiFresh MAF and WiFresh App in Figs. 5-13 and 5-14.

Impact of traffic. The results in Fig. 5-13 show that for N ≥ 16, WiFresh App improves

information freshness by a factor of 65 when compared to WiFi UDP FCFS, and by a factor

of 230 when compared to WiFi TCP FCFS. The results in Fig. 5-14 show that for N ≥ 16,

WiFresh App improves information freshness by a factor of 20 when compared to either

WiFi UDP FCFS or WiFi TCP FCFS. The improvement is more evident in Fig. 5-13 since

cameras generate more traffic than IMUs. In particular, the camera generates approximately
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Figure 5-14: EWSAoI measurements for the Raspberry Pi testbed with N ∈ {1,2,4,6,8,
10,12,16,20,24} sources generating position information and inertial measurements.

304 kbits per second per source while the IMU generates approximately 16 kbits per second

per source.

From the measurements in this section, it is clear that the more congested the network,

the more prominent is the superiority of WiFresh when compared with WiFi in terms of

information freshness, making WiFresh well-suited for large-scale applications that rely

on sharing large amounts of time-sensitive information. The average AoI in a WiFresh

network scales gracefully with the packet generation rate λ , as seen in Sec. 5.4.2, and with

the number of nodes N, as seen in Sec. 5.4.3. WiFresh Real-Time achieves the highest

performance in terms of throughput and average AoI, while WiFresh App achieves high

performance and can be easily integrated into time-sensitive applications that already run

over WiFi, as discussed in Sec. 5.3.4.
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5.5 Summary

In this chapter, we proposed WiFresh: an unconventional architecture that achieves near

optimal information freshness for wireless networks of any size. The superior performance

of WiFresh is due to the combination of three elements: LCFS queues, Polling Multiple Ac-

cess mechanism, and Max-Weight scheduling policy. The choice of each of these elements

is underpinned by theoretical research. We proposed and realized two strategies for imple-

menting WiFresh: 1) WiFresh Real-Time, in which our architecture is implemented at the

MAC layer in a network of eleven FPGA-based Software Defined Radios using hardware-

level programming; and 2) WiFresh App which is a customization of WiFresh implemented

at the Application layer, without modifications to lower layers of the communication sys-

tem, in a network of twenty five Raspberry Pis using Python 3. A key advantage of WiFresh

App is that it can be easily integrated into time-sensitive applications that already run over

WiFi such as [2–4, 16, 27, 56, 63, 69, 75, 77, 79, 80, 83, 88, 89, 106–108, 111]. Our experi-

mental results showed that WiFresh can improve information freshness by two orders of

magnitude when compared to an equivalent standard WiFi network.
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Appendices

5.A Synchronization for WiFresh App

To synchronize the clocks of the sources with the destination, we implement a two-way

handshake called the on-wire protocol that is part of the Network Time Protocol [82, §8].

Let tD be the current time measured by the destination and let tS
i be the current time mea-

sured by source i. The time-stamp offset is given by ∆i = tD− tS
i . To estimate the value of

∆i for a given source i we implement a handshake with five basic steps:

1. The destination starts the handshake by measuring the current time tD
1 and then im-

mediately transmitting a sync request packet to source i containing the value of tD
1 .

2. Source i receives the sync request and records the reception time tS
i,2. Notice that tS

i,2−

tD
1 = δ D→i−∆i, where δ D→i is the time elapsed since the start of the transmission at

the destination until the packet reception at the source.

3. Source i measures the current time tS
i,3 and then immediately transmits a sync re-

sponse packet to the destination containing the values of tD
1 , tS

i,2 and tS
i,3.

4. The destination receives the sync response and records the reception time tD
4 . No-

tice that tD
4 − tS

i,3 = δ i→D +∆i, where δ i→D is the time elapsed since the start of the

transmission at the source until the packet reception at the destination.

5. Assuming that δ D→i ≈ δ i→D, an estimate of the offset ∆i is given by the expression

∆̃i(t) =
(tD

4 − tS
i,3)− (tS

i,2− tD
1 )

2
. (5.3)

To synchronize the network, the destination performs a two-way handshake with each

source i ∈ {1,2, · · · ,N}. After each successful handshake, we use Eq.5.3 to obtain a new

offset measurement ∆̃i(t). The entire synchronization procedure runs periodically with

period sync_period = 300 seconds. The sequence of past and present time-stamp offset

measurements for each source i is filtered and estimates of {∆̂i(t)}N
i=1 are obtained. The
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AoI with time-stamp offset correction is given by ĥi(t) = t− τS
i (t)− ∆̂i(t). As soon as the

synchronization procedure ends, the destination resumes using the MW policy with ĥi(t)

to schedule data packet transmissions.



Chapter 6

AoI in Random Access Networks

R andom Access is a multiple access technique that underpins protocols such as Slotted-

ALOHA and Carrier-Sense Multiple Access (CSMA). A main difference between

the two protocols is that CSMA utilizes carrier sensing capabilities to avoid packet colli-

sions, while Slotted-ALOHA is a simpler protocol that does not assume that nodes have

carrier sensing capabilities.

In chapter 5, we provided numerous examples of time-sensitive applications that are

implemented using Random Access [2–4, 16, 27, 56, 63, 69, 75, 77, 79, 80, 83, 88, 89, 106–

108, 111], discussed two important shortcomings of networks that employ FCFS queues

and Random Access, namely scalability and congestion, and then proposed an alterna-

tive network architecture composed of LCFS queues, Polling mechanism and Max-Weight

scheduling policy. In contrast, in this chapter, we consider networks that employ LCFS

queues and Random Access, in particular Slotted-ALOHA and CSMA, and propose a

framework to analyze and optimize information freshness.

The literature on the analysis and optimization of Slotted-ALOHA and CSMA networks

is vast, dating almost five decades [1, 64, 91]. For a survey on throughput and delay opti-

mization of CSMA networks, we refer the readers to [117]. The optimization of centralized

multiple access mechanisms in terms of AoI has been considered in previous chapters and

in numerous works including [32,38,42,49,51,74,99,101,104,105,114]. The optimization

of distributed mechanisms, such as Slotted-ALOHA and CSMA, in terms of AoI has been
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recently considered in [18, 20, 26, 41, 57, 58, 67, 76, 103].

The authors of [18,58,103] studied Slotted-ALOHA networks with sources that gener-

ate packets on demand. Slotted-ALOHA networks with stochastic packet generation were

considered in [20,67]. In particular, the authors of [20] analyzed Slotted-ALOHA networks

in the limit as the number of sources goes to infinity, and proposed a mechanism to dynami-

cally drop packets in order to minimize the average AoI in the network. The authors of [67]

used Queueing Theory to analyze AoI in a wireless network with Bernoulli packet arrivals

and geometric inter-delivery times, and used simulation results to optimize the AoI perfor-

mance under three classes of multiple access mechanisms, including Slotted-ALOHA.

CSMA networks were considered in [26, 41, 57, 76]. In particular, the authors of [57]

used simulations and experimental results to evaluate the average AoI in a CSMA net-

work. The authors of [26] developed a discrete-time model for a CSMA network with

sources that generate packets on demand, derived an expression for the average AoI, and

then used Game Theory to analyze the coexistence of WiFi and Dedicated Short-Range

Communications (DSRC) in terms of throughput and AoI. The authors of [76] developed

a continuous-time model for a collision-free CSMA network with stochastic packet gener-

ation, derived an expression for the average AoI, and then used this expression to find the

optimal back-off rate. Notice that [76] does not consider the effects of packet collisions

which, as we see in this chapter, play an important role in the AoI optimization of Random

Access networks.

Our contributions. In this chapter, we propose a framework to analyze and optimize

the average AoI in Random Access networks with stochastic packet generation. In par-

ticular, we develop a discrete-time network model that accounts for the effects of packet

collisions and derive an accurate approximation for the average AoI in the network. We

then use the analytical model to optimize the Random Access mechanism in terms of AoI.

Our approach allows us to evaluate the combined impact of the packet generation rate,

transmission probability, and size of the network on the AoI performance. Finally, we im-

plement the optimized CSMA network in the Software Defined Radio testbed in Fig. 6-8

and compare the AoI measurements with analytical results and simulations. To the best of

our knowledge, this is the first work to provide theoretical results on the optimization of a
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CSMA network with stochastic packet generation and packet collisions, and the first work

to implement a CSMA mechanism optimized for AoI.

The remainder of this chapter is organized as follows. In Sec. 6.1, we present the

network model. In Sec. 6.2, we derive expressions for the inter-delivery interval, packet

delay and AoI. In Sec. 6.3, we optimize the Random Access network in terms of AoI. In

Sec. 6.4, we implement the optimized CSMA network and discuss experimental results.

This chapter is concluded in Sec. 6.5.

6.1 System Model

Consider a broadcast single-hop wireless network with N sources transmitting time-sensitive

information to the Base Station (BS) using Random Access. Let the time be slotted, with

mini-slot duration δ seconds and mini-slot index k ∈ {1,2, · · · ,K}, where Kδ is the time-

horizon of this discrete-time system. At the beginning of every mini-slot k, each source

i ∈ {1,2, · · · ,N} generates a new packet with probability λi ∈ (0,1]. Let ai(k) be the indi-

cator function that is equal to 1 when source i generates a fresh packet in mini-slot k, and

equal to 0, otherwise. The packet generation process is i.i.d. over mini-slots and indepen-

dent across different sources, with P(ai(k) = 1) = λi.

Queueing discipline. Sources keep only the most recently generated packet, i.e. the

freshest packet, in their transmission queue. When source i generates a new packet at

the beginning of mini-slot k, older packets are discarded from its transmission queue. This

queueing discipline is equivalent to LCFS and it is known to optimize the AoI in a variety of

contexts [10,21,60]. Notice that delivering the most recently generated packet provides the

freshest information to the BS. Moreover, notice that when a packet with older information

is delivered after a packet with fresher information, the information freshness at the BS is

not affected. Hence, discarding older packets from the transmission queue when a fresher

packet is generated has no effect on the information freshness.

Random Access mechanism. When there is a transmission opportunity in mini-slot

k and source i has an undelivered packet, then source i starts transmitting with probability

µi ∈ (0,1], and idles with probability 1− µi. The mini-slot duration δ is set to the time



188 6. AOI IN RANDOM ACCESS NETWORKS

needed for any source to detect a transmission from other sources. Hence, if source i

is the only source to start transmitting in mini-slot k, then all other sources detect the

transmission by the beginning of mini-slot k+1 and defer new transmissions until source i

stops transmitting. As a result, if source i is the only source to start transmitting in mini-slot

k, then this transmission is successful. Otherwise, if two or more sources start transmitting

in the same mini-slot k, then there is a packet collision and the BS is unable to receive these

packets. After the collision, sources continue to employ Random Access to retransmit their

undelivered packets. The duration of a collision or a successful packet transmission is L

mini-slots, as illustrated in Fig. 6-1. We assume that there are no hidden/exposed sources

and that the feedback from the BS is instantaneous and without error.

Figure 6-1: Illustration of the Random Access network and associated timeline with packet
generation, transmission and collision events.

Definition of epoch. Sources continually sense the wireless channel and defer trans-

missions until the channel is idle. Transmission opportunities occur when the channel is

idle at the beginning of a mini-slot. Denote by epoch the time interval between two con-

secutive transmission opportunities, let t ∈ {1,2, · · · ,T} be the epoch index, where T is the

total number of epochs, and let X(t) be the number of mini-slots contained in epoch t. It

follows that X(t) = L mini-slots when epoch t is busy, i.e. contains a transmission attempt,

and X(t) = 1 mini-slot when epoch t is idle. By dividing the time-horizon into epochs, we

obtain K = ∑
T
t=1 X(t). In Fig. 6-1, we have K = 20 mini-slots and T = 12 epochs. Notice

that each epoch is associated with a single transmission opportunity.
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6.1.1 Transmission probability

Source i can transmit at the beginning of every epoch in which its transmission queue has a

packet. Let qi(t) be the probability of source i transmitting a packet in epoch t. Naturally, if

the transmission queue is empty, then qi(t) = 0, and if the transmission queue has a packet,

then qi(t) = µi. It follows that the probability of epoch t being idle, containing a successful

packet transmission from source i, and containing a packet collision are given by

P I(t) =
N

∏
i=1

(1−qi(t)) (6.1a)

P S
i (t) = qi(t)

N

∏
j=1, j 6=i

(1−q j(t)) (6.1b)

PC(t) = 1−P I(t)−
N

∑
i=1

P S
i (t) , (6.1c)

respectively. Notice that P I(t), P S
i (t), and PC(t) depend on state of the transmission

queues of every source in the network. For simplicity, and since we do not assume global

knowledge of the state of the queues, we approximate the transmission probability in

epoch t, qi(t), by its expected time-average qi = limT→∞ ∑
T
t=1E[qi(t)]/T . Equivalent ap-

proximations are employed in various works that analyze Random Access networks, such

as [14, 17, 18, 26]. In Secs. 6.2 and 6.4, we compare the analytical model with simulation

and experimental results, and validate this approximation.

To obtain a closed-form expression for the transmission probability qi, we consider

the time interval between two consecutive packet deliveries from source i, and divide this

interval into two parts: before and after a new packet generation. Let NB
i be the num-

ber of consecutive epochs following the start of the inter-delivery interval (i.e., after the

successful packet transmission) and preceding the packet generation, and let NA
i be the

number of consecutive epochs following the packet generation and preceding the actual

packet delivery, as illustrated in Fig. 6-1. Let XB
i (t) be the number of mini-slots contained

in epoch t ∈ {1, · · · ,NB
i } within the interval NB

i , and let XA
i (t) be the number of mini-slots

contained in epoch t ∈ {1, · · · ,NA
i } within the interval NA

i . The sequence of packet deliv-

eries from source i is a renewal process and, thus, we can employ the elementary renewal
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theorem [23, Sec. 5.6] to obtain the following expression for the transmission probability

qi =
(E[NA

i ]+1)µi

E[NB
i ]+ (E[NA

i ]+1)
,∀i . (6.2)

Notice that the denominator in (6.2) represents the expected number of transmission op-

portunities in the inter-delivery interval and the numerator in (6.2) represents the expected

number of transmission opportunities in which source i has a packet to transmit. The ex-

pected number of mini-slots in the inter-delivery interval is discussed in Sec. 6.2.1.

We define the probability that all nodes other than i are idle during an arbitrary epoch t

as

Q−i =
N

∏
j=1, j 6=i

(1−q j) . (6.3)

Proposition 6.1. The expected time-average transmission probability of source i is

given by

qi =

(
(1−λi)

LQ−i

1− (1−λi)Q−i− (1−λi)L(1−Q−i)
+

1
µi

)−1

. (6.4)

Proof. To obtain the transmission probability in (6.4), we start by deriving expressions for

E[XB
i ] and E[XA

i ]. Then, we use these expected values, the law of iterated expectations, and

the fact that XB
i (t) are i.i.d. over time to derive expressions for E[NB

i ] and E[NA
i ]. Finally,

we substitute E[NB
i ] and E[NA

i ] into (6.2) to obtain (6.4). The complete proof is provided

in Appendix 6.A. �

Notice from (6.4) that, as expected, qi ∈ (0,µi]. Moreover, notice that changing the

packet generation probability λi or the conditional transmission probability µi of a partic-

ular source i, changes the transmission probability q j of all sources in the network. In

particular, changing λi or µi, changes qi according to (6.4). In turn, qi affects Q− j,∀ j 6= i,

which affects the transmission probabilities q j of all sources in the network. The set of

functions {qi}N
i=1 captures the influence that one source has on other sources in the net-

work. This set of functions is further discussed in Secs. 6.2 and 6.3. Next, we develop a

framework for analyzing information freshness.
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6.2 Analysis of Age of Information

In this section, we derive expressions for the inter-delivery interval, packet delay and AoI,

and then, compare the analysis with simulation results. In Sec. 6.3, we use this framework

to optimize Slotted-ALOHA and CSMA networks in terms of AoI.

6.2.1 Inter-delivery interval

The sequence of packet deliveries from source i is a renewal process. For this reason,

henceforth in this section, we focus on a single inter-delivery interval. Consider the inter-

delivery interval in Fig. 6-1. Let Ii be the number of mini-slots between two consecutive

packet deliveries from source i. It follows that

E[Ii] = E

NB
i

∑
t=1

XB
i (t)+

NA
i

∑
t=1

XA
i (t)+L

 , (6.5)

where the first and second sums on the RHS of (6.5) represent the total number of mini-slots

in the time intervals NB
i and NA

i , respectively.

Proposition 6.2. A (tight) lower bound on the expected inter-delivery interval is given

by

E[Ii]≥
(1−λi)

L

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

+L−1 , (6.6)

Proof. To obtain the lower bound in (6.6), we derive expressions for the first and second

sums on the RHS of (6.5). The expected value of the second sum ∑
NA

i
t=1 XA

i (t) can be ob-

tained by employing Wald’s equality [23, Sec. 5.5] and then using E
[
NA

i
]

and E
[
XA

i (t)
]
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derived in Appendix 6.A, as follows

E

NA
i

∑
t=1

XA
i (t)

= E
[
NA

i

]
E
[
XA

i (t)
]

=
1−µiQ−i

µiQ−i

[
(1−µi)Q−i

1−µiQ−i +L
1−Q−i

1−µiQ−i

]
. (6.7)

Notice that we cannot employ Wald’s equality to find an expression for the first sum

∑
NB

i
t=1 XB

i (t). This is because the random variables XB
i (t) and NB

i are dependent. Recall

that packet generation events occur at the beginning of mini-slots, as opposed to epochs.

Hence, if the epoch duration XB
i (t) increases, the number of epochs until the first packet

generation NB
i decreases. To obtain an approximate expression for the first sum, we use the

lower bound Y B
i ≤ ∑

NB
i

t=1 XB
i (t), where Y B

i is the number of mini-slots that precede the first

packet generation. The probability distribution of Y B
i is given by

P(Y B
i = 0) = 1− (1−λi)

L ; (6.8a)

P(Y B
i = k) = (1−λi)

L+k−1
λi,∀k ∈ {1,2, · · ·} , (6.8b)

where (6.8a) represents the probability of source i generating a new packet while delivering

the previous packet or in the first mini-slot after the delivery, and (6.8b) represent the prob-

ability of source i generating a new packet k + 1 mini-slots after delivering the previous

packet. From (6.8a) and (6.8b) we obtain the lower bound

E[Y B
i ] =

(1−λi)
L

λi
≤ E

NB
i

∑
t=1

XB
i (t)

 . (6.9)

Substituting (6.7) and (6.9) into the inter-delivery interval in (6.5) gives (6.6). �

Notice that if the packet generation occurs during a busy epoch, as illustrated in Fig. 6-

1, then Y B
i ≤ ∑

NB
i

t=1 XB
i (t) ≤ Y B

i + L− 1. Otherwise, if the packet generation occurs dur-

ing an idle epoch, then Y B
i = ∑

NB
i

t=1 XB
i (t). The approximation E[Y B

i ] ≈ E[∑NB
i

t=1 XB
i (t)] sim-

plifies the analysis and is particularly accurate in networks with small value of L and/or

low transmission probabilities qi. In Slotted-ALOHA networks, in which L = 1, we have
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E[Y B
i ] = E[∑NB

i
t=1 XB

i (t)] and the lower bound on the inter-delivery interval in (6.6) holds

with equality. Numerical results in Sec. 6.2.3 show that the lower bound in (6.6) is tight in

a wide range of network configurations, including CSMA networks with large L, and is par-

ticularly accurate near the point of optimal AoI. Next, we derive an analytical expression

for the Age of Information.

6.2.2 Age of Information

Consider the inter-delivery interval in Fig. 6-2. Let τi(k) be the time-stamp of the freshest

packet received by the destination from source i at the beginning of mini-slot k. Then, the

AoI is defined as hi(k) := k− τi(k). At the beginning of the mini-slot that follows a packet

delivery from source i, the value of τi(k) is updated to the time-stamp of the new packet,

and the AoI is reduced to the packet delay, namely hi(k) = zi = k− τi(k), where zi is the

delay associated with the freshest packet delivered from source i. The evolution of AoI and

its relationship with the packet delay are illustrated in Fig. 6-2.

Figure 6-2: Timeline with packet generation, transmission and collision events, and asso-
ciated packet delay zi and AoI evolution hi(k).

To capture the Age of Information in the entire network, we define the infinite-horizon

expected network AoI (NAoI) as

NAoI := lim
K→∞

1
KN

K

∑
k=1

N

∑
i=1

E [hi(k)] . (6.10)
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Theorem 6.3. The expected NAoI is (accurately) approximated by

NAoI ≈ 1
N

N

∑
i=1

(
1−λi

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

)
+

3(L−1)
2

+

+
1

2N

N

∑
i=1

(1−λi)
L

λi

[
2
λi

+L−1
]
− (L−1)

[
1
µi
−1
]

(
(1−λi)

L

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

+L−1
) . (6.11)

Proof. To obtain an expression for the infinite-horizon expected network AoI in (6.10),

we first analyze the evolution of hi(k) over time, and then we employ tools from Renewal

Theory. From Fig. 6-2, we can see that in an inter-delivery interval with duration Ii mini-

slots and packet delay zi mini-slots, the value of hi(k) evolves according to the sequence

zi,zi +1, · · · ,zi + Ii−1. The sum of AoI in this inter-delivery interval is ziIi + Ii(Ii−1)/2.

The sequence of packet deliveries over time is a renewal process. This fact allowed

us to use Renewal Theory to obtain the expression for the transmission probability qi in

(6.2). However, since the packet delay is not independent across consecutive inter-delivery

intervals - notice from Fig. 6-2 that the value of the packet delay is upper bounded by the

previous inter-delivery interval - we cannot use Renewal Theory to obtain an expression

for NAoI.

To overcome this challenge, we define the augmented packet delay z̃i ∈ {L,L+1, · · ·},

which is unbounded and independent across inter-delivery intervals. The augmented packet

delay is an upper bound on the packet delay, namely zi ≤ z̃i, with probability distribution

P(z̃i = L+ k) = (1− λi)
kλi,k ∈ {0,1, · · ·}. This upper bound is particularly tight when

the inter-delivery intervals Ii are large and/or the packet generation probability λi is high.

Using the elementary renewal theorem for renewal-reward processes [23, Sec. 5.4] and the
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augmented packet delay z̃i into (6.10), we get

lim
K→∞

1
KN

K

∑
k=1

N

∑
i=1

E [hi(k)]≤
1
N

N

∑
i=1

E[z̃iIi + Ii(Ii−1)/2]
E[Ii]

= E[z̃i]+
E[I2

i ]

2E[Ii]
− 1

2
. (6.12)

Substituting the first and second1 moments of the inter-delivery interval, and the first mo-

ment of the augmented packet delay into (6.12), we obtain the approximated expression for

NAoI in (6.11). �

6.2.3 Numerical Results

In this section, we consider symmetric Random Access networks with N = 10 sources,

packet generation probabilities λi = λ ,∀i, and conditional transmission probabilities µi =

µ,∀i, in four different settings: Slotted-ALOHA networks with L = 1 and two values of

λ ∈ {0.05,0.5}; and CSMA networks with L = 50 and two values of λ ∈ {0.05,0.5}. We

simulate the Random Access networks described in Sec. 6.1, and compare the simulation

results with the analytical expressions of the transmission probability q in (6.4) and NAoI

in (6.11).

In Figs. 6-3, 6-4, 6-5, and 6-6, we simulate networks with increasing conditional trans-

mission probability µ ∈ (0,1]. In Figs. 6-3 and 6-4, we simulate Slotted-ALOHA networks

with packet transmission duration of L = 1 mini-slot, and in Figs. 6-5 and 6-6, we simu-

late CSMA networks with L = 50. In Figs. 6-3 and 6-5, we plot the network AoI, and in

Figs. 6-4 and 6-6, we plot the transmission probability q. Simulations have a time-horizon

of K = 20×106 mini-slots, each mini-slot with normalized duration δ = 1.

From Figs. 6-3, 6-4, 6-5, and 6-6, it is evident that the analytical expressions for q and

NAoI developed in Secs. 6.1 and 6.2, respectively, closely follow the simulation results in a

wide range of network configurations, including low and high values of packet transmission

duration L ∈ {1,50}, low and high packet generation probabilities λ ∈ {0.05,0.5} and

conditional transmission probabilities µ in the interval (0,1].

1A lower bound on the second moment of the inter-delivery interval can be obtained using a similar
approach as in Proposition 6.2.
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Figure 6-3: Simulation of symmetric Slotted-ALOHA networks with L = 1, increasing
conditional transmission probability µ and two different packet generation probabilities λ .

Figure 6-4: Simulation of symmetric Slotted-ALOHA networks with L = 1, increasing
conditional transmission probability µ and two different packet generation probabilities λ .

By comparing Figs. 6-3 and 6-5, we can observe that networks with larger packet du-

ration L are less sensitive to changes in the packet generation probability λ . Recall that

λ directly affects the number of epochs in which the transmission queue is empty NB
i and

the packet delay zi. A larger L significantly reduces NB
i and increases the inter-delivery

interval Ii, which reduces the impact of NB
i and zi on the NAoI performance, thus making

the network with larger L less sensitive to variations in λ .

Figures 6-3 and 6-5 also show that: 1) a sub-optimal operating point µ can severely

degrade the NAoI performance of the network; and 2) the point of minimum NAoI changes

significantly in different network settings. Both observations highlight the importance of
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Figure 6-5: Simulation of symmetric CSMA networks with L = 50, increasing conditional
transmission probability µ and two different packet generation probabilities λ .

Figure 6-6: Simulation of symmetric CSMA networks with L = 50, increasing conditional
transmission probability µ and two different packet generation probabilities λ .

optimizing NAoI in Random Access networks, which is addressed in the next section.

Figures 6-4 and 6-6 show that for high L and/or high λ , the transmission probability q

is comparable to the conditional transmission probability µ , i.e. q ≈ µ . In contrast, when

λ is low, the relationship between q and µ , which is governed by the iterated function

q = g(q,µ,λ ) in (6.4), is more involved. Notice that the plot in Fig. 6-4 for networks with

L = 1 shows a discontinuity around µ = 0.4 when λ = 0.05. In turn, for networks with

L = 50, this discontinuity appears for λ < 0.05. Figure 6-7 shows the discontinuity for

λ ∈ {0.0013,0.0019}. This discontinuity plays an important role in the optimization of

NAoI, as we will discuss in Propositions 6.4 and 6.6.
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Figure 6-7: Simulation of symmetric CSMA networks with L = 50, increasing conditional
transmission probability µ and two different packet generation probabilities λ .

6.3 Network Optimization

In this section, we optimize NAoI in symmetric Random Access networks with packet

generation probabilities λi = λ ∈ (0,1],∀i, and conditional transmission probabilities µi =

µ ∈ (0,1],∀i. In particular, we find the optimal value of µ in terms of the parameters

(N,L,λ ) for three important cases: 1) Slotted-ALOHA networks, in which L = 1; 2) sat-

urated CSMA networks, in which L > 1 and packets are generated on demand, i.e. λ = 1;

and 3) general CSMA networks with low packet generation probability λ � 1. Then, we

show that the three cases are strongly interconnected. In particular, we show that the re-

sults of the third case subsume the results of the first two cases. In Sec. 6.4, we compare

the analytical optimization of NAoI with experimental and numerical results.

6.3.1 Slotted-ALOHA networks

Consider a symmetric Slotted-ALOHA network. Substituting L = 1 into the expression of

NAoI in (6.11), we obtain

NAoI ≈ 1−λ

λ
+

1
µQ

+

1−λ

λ 2

1−λ

λ
+

1
µQ

, (6.13)
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where Q = (1− q)N−1 is the probability that all but one of the nodes are idle during an

arbitrary epoch t and q is the transmission probability given by

q =
1

1−λ

λ
Q+

1
µ

. (6.14)

Proposition 6.4. In a symmetric Slotted-ALOHA network, the solution candidates

µ ∈ (0,1) for the NAoI minimization are given by

µ
(1) =

1

N− 1−λ

λ

(
1− 1

N

)N−1 ; (6.15a)

µ
(2) =

q(2)

1−
√

1−λ
; (6.15b)

µ
(3) =

(
q(3)
)2

(N−1)

q(3)N−1
, (6.15c)

where q(2) ∈ (0,1) and q(3) ∈ [1/N,1) are the solutions to the equations below

q(2)
(

1−q(2)
)N−1

=
λ√

1−λ
; (6.16a)(

q(3)
)2(

1−q(3)
)N−2

=
λ

(1−λ )(N−1)
. (6.16b)

Proof. To find the value of µ ∈ (0,1) that minimizes NAoI, we analyze (6.13). The chal-

lenge is that the expression of NAoI in (6.13) is a function of µ , λ , and q, where q is not

directly controllable. The transmission probability q is determined by the iterated func-

tion q = g(q,µ,λ ) in (6.14). To simplify the expression of NAoI, we substitute (6.14) into

(6.13), which gives

NAoI ≈ 1
q(1−q)N−1 +

1−λ

λ 2 q(1−q)N−1 , (6.17)

where q(1−q)N−1 is the probability of a successful transmission from any given source i.
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By analyzing the expression of NAoI in (6.17) and its partial derivative with respect to

q, and then analyzing the iterated function in (6.14) together with its first and second partial

derivatives, we obtain the solution candidates in (6.15a)-(6.15c). Notice that the analysis

of the iterated function is non-trivial, since the associated fixed points q are not guaranteed

to span the entire interval (0,1) due to the discontinuities displayed in Figs. 6-4 and 6-7.

The complete proof is provided in Appendix 6.B. �

Global minimum NAoI. For a given packet generation probability λ ∈ (0,1], we cal-

culate the solution candidates µ( j), for j ∈ {1,2,3}, using (6.15a)-(6.16b). Then, we sub-

stitute λ and µ( j) into (6.14) to find the associated transmission probability q. Finally, by

substituting λ , µ( j) and q into the NAoI expression in (6.13), we can find and compare the

values of NAoI from the different solution candidates. The solution candidate that yields

the lowest NAoI is the global minimizer. Notice that this is a low-complexity procedure.

Equations (6.16a) and (6.16b) have up to four solutions, meaning that the total number of

solution candidates from (6.15a)-(6.15c) is at most five, for any values of N and λ .

6.3.2 Saturated CSMA networks

In this section, we optimize NAoI in symmetric CSMA networks with sources that generate

packets on demand, i.e. λ = 1.

Proposition 6.5. In a symmetric CSMA network with λ = 1, and large values of N and

L. The value of µ that minimizes NAoI is given by

µ
∗ ≈ 1

N

√
2
L
. (6.18)

Proof. Substituting λ = 1 into the expression of the transmission probability q in (6.4),

yields q = µ . Taking the partial derivative of NAoI in (6.11) with respect to µ gives

2(L−1)
µ2 − 2L(1−Nµ)

µ2(1−µ)N +
L(L−1)N(1−µ)N−1

(L− (L−1)(1−µ)N)2 . (6.19)
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Since the first and second terms of the partial derivative in (6.19) are dominant, especially

for CSMA networks with large L, we neglect the third term, equate the partial derivative to

zero, and obtain

(L−1)(1−µ)N = L(1−Nµ) , (6.20)

which has a unique solution µ∗ ∈ (0,1/N]. Then, we approximate (1−µ)N in (6.20) by its

second degree Taylor Polynomial to obtain the closed-form solution

µ
∗ ≈ −N +

√
N2 +2(L−1)N(N−1)
(L−1)N(N−1)

. (6.21)

Notice that when N and L are large, equation (6.21) is equivalent to (6.18). �

6.3.3 General CSMA networks

In this section, we optimize NAoI in symmetric CSMA networks with low packet genera-

tion probability, λ � 1, and then discuss the relationship between the NAoI optimization

for general CSMA networks, saturated CSMA networks, and Slotted-ALOHA networks.

Proposition 6.6. In a symmetric CSMA network with λ � 1. The solution candidates

µ ∈ (0,1) for the NAoI minimization are given by

µ
( j) =

(
1

q( j)
− (1−λ )LQ( j)

1− (1−λ )Q( j)− (1−λ )L(1−Q( j))

)−1

, (6.22)

for j ∈ {1,2,3}, where Q( j) = (1− q( j))N−1 and q( j) ∈ (0,1) are the solutions to the

equations below

(L−1)
(

1−q(1)
)N

= L
(

1−Nq(1)
)
, (6.23a)

(
q(2)
)2(

1−q(2)
)N−2

=

λ

[
L− (L−1)

(
1−q(2)

)N−1
]2

(1−λL)L(N−1)
, (6.23b)



202 6. AOI IN RANDOM ACCESS NETWORKS

and

2λ
2L2
(

1−q(3)
)2
−4λ

2(L−1)L
(

1−q(3)
)N+2

+

+
(

1−q(3)
)2N

λ
2(L−1)

[
L
(

3
(

q(3)
)2
−4q(3)+2

)
−2
(

1−q(3)
)2
]
+

+
(

1−q(3)
)2N (

q(3)
)2

(λ (L+1)−2) = 0 . (6.23c)

Proof. The proof follows similar steps as Proposition 6.4. The main difference is that the

expressions for NAoI in (6.11) and the iterated function in (6.4) are more challenging to

analyze for CSMA networks than for Slotted-ALOHA networks. To simplify the analysis

of (6.4) and (6.11) for networks with λ � 1, we use the binomial approximation (1−λ )L≈

1−λL. The complete proof is provided in Appendix 6.C. �

Global minimum NAoI. To find the solution candidate µ( j) that yields the lowest

NAoI, we follow the low-complexity procedure described at the end of Sec. 6.3.1 using

the results in Proposition 6.6, the expression for the transmission probability q in (6.4),

and the expression for NAoI in (6.11). After running this procedure for various network

configurations, we observe that in practice the candidate µ(2) associated with (6.23b) is the

minimizer when λ is low, the candidate µ(1) associated with (6.23a) is the minimizer when

λ is (relatively) high, and the candidate µ(3) associated with (6.23c) is never the minimizer.

This observation is illustrated in Sec. 6.4.2.

Propositions 6.4, 6.5 and 6.6 determine the optimal value of µ for Slotted-ALOHA

networks, saturated CSMA networks with λ = 1 and general CSMA networks with λ � 1,

respectively. Despite these differences, we show that the three propositions are strongly

interconnected. In particular, we show that the results in Propositions 6.4 and 6.5 are special

cases of Proposition 6.6. Consider (6.23a)-(6.23c) from Proposition 6.6. Notice that when

λ = 1, the equation in (6.23a) is equivalent to (6.20) from Proposition 6.5, and when L = 1,

the equation in (6.23a) yields (6.15a) from Proposition 6.4. Similarly, it is easy to see that

when L = 1, the equations in (6.23b) and (6.23c) are equivalent to (6.16b) and (6.16a) from

Proposition 6.4, respectively. Hence, the results in Proposition 6.6 apply not only to CSMA
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networks with λ � 1, but also to Slotted-ALOHA networks with λ ∈ (0,1], and to CSMA

networks with λ = 1. Thus, we conjecture that the solution candidates µ for the NAoI

minimization given in Proposition 6.6 are a good approximation to the optimal solution for

general Random Access networks with arbitrary parameters (N,L,λ ). Next, we validate

this conjecture by comparing the analytical optimization of NAoI in Proposition 6.6 with

experimental and numerical results.

6.4 Experimental and Numerical Results

In this section, we describe the experimental setup and then compare the analytical expres-

sions for the NAoI performance (Theorem 6.3) and NAoI optimization (Proposition 6.6)

with numerical and experimental results. Prior to delving into the details of the experi-

mental setup, we describe the key characteristics of the optimized CSMA network that we

implemented:

• sources use queues that keep only the freshest packet, as described in Sec. 6.1;

• sources have a conditional transmission probability µ that can be tuned to the optimal

value. To adjust the conditional transmission probability to a given µ ′ ∈ (0,1], we

set2 the contention window of the Distributed Coordination Function (DCF) to W =

2/µ ′−1, as proposed in [14, Eq.(8)]; and

• the BS has a time-stamp manager that logs the evolution of hi(k) over time for every

source in the network. Notice that keeping track of hi(k) = k− τi(k) requires that all

nodes in the network are synchronized.

6.4.1 Experimental Setup

We implement the optimized CSMA network in the FPGA-based Software Defined Radio

(SDR) testbed in Fig. 6-8 composed of one NI USRP 2974 operating as the Base Station,

2In this chapter, we manually set W = 2/µ ′− 1. Distributed algorithms that can dynamically tune µ

aiming to maximize throughput in CSMA networks were developed in various works including [15,28,33,43].
Similar algorithms can be used to tune µ for minimizing NAoI. The implementation of such algorithms is out
of the scope of this thesis.
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and ten sources: seven NI USRP 2974 and three NI USRP 2953R. The code is developed

using a modifiable WiFi reference design [40] with Transport layer based on UDP, MAC

layer based on DCF, PHY layer based on the IEEE 802.11n standard with center frequency

2.437 GHz, bandwidth of 20 MHz, mini-slot duration of δ = 9µsecs, and a fixed MCS in-

dex of 5. We use this WiFi reference design as a starting point, and implement the queueing

discipline, the mechanism for adjusting µ , and the time-stamp manager at the FPGA of the

SDRs using hardware-level programming.

Figure 6-8: Software Defined Radio testbed.

6.4.2 Results and Discussion

In this section, we evaluate the NAoI performance and optimization using experimental,

numerical, and analytical results. We consider a network with N = 10 sources, L = 50

mini-slots, mini-slot duration of δ = 9µsecs, and different values of λ and µ , and we

compare:

• Experimental results, in which we run the SDR testbed for ten minutes and mea-

sure the time-average NAoI as in (6.10). Each SDR generates packets of 280 bytes

with a period of δ/λ seconds and transmits these packets at a rate of approxi-

mately 5Mbps, which gives a packet transmission duration of approximately L = 50

mini-slots. For each fixed value of λ ∈ {2.25,4.5,9,45}× 10−3, we find the op-

timal µ∗ by comparing the values of NAoI for different contention windows W ∈

{8,16,32,64,128,256}. Recall that µ = 2/(W +1);
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• Simulation results, in which we obtain NAoI by simulating the Random Access

network described in Sec. 6.1 for a time-horizon of K = 20× 106 mini-slots. For

each fixed λ ∈ (0,1), we find the optimal µ∗ by comparing the values of NAoI for

different values of µ ∈ (0,1); and

• Analytical Model, in which we compute NAoI using Theorem 6.3 and compute the

optimal µ∗ associated with a given λ ∈ (0,1) using Proposition 6.6.

Table 6.1: NAoI performance (in milliseconds) from the experiments with the SDR
testbed, from the simulation results, and from the analytical expression in Theorem 6.3.

Experimental results

W 8 16 32 64 128 256

λ = 2.25×10−3 12.82 6.79 6.77 7.11 8.39 9.10
λ = 4.5×10−3 25.24 6.89 6.50 7.09 7.82 8.56
λ = 9×10−3 24.21 8.46 6.89 6.41 7.50 8.79

λ = 45×10−3 20.87 9.13 6.38 5.98 6.43 7.56

Simulation results

W 8 16 32 64 128 256

λ = 2.25×10−3 10.97 6.40 6.18 6.43 6.95 8.73
λ = 4.5×10−3 20.02 8.45 6.40 5.78 5.93 7.19
λ = 9×10−3 21.58 8.91 6.62 5.80 5.85 6.96

λ = 45×10−3 22.93 9.56 6.84 5.81 5.74 6.72

Analytical Model

W 8 16 32 64 128 256

λ = 2.25×10−3 11.17 9.54 9.59 9.74 10.03 11.18
λ = 4.5×10−3 18.35 8.37 6.99 6.70 6.93 8.22
λ = 9×10−3 21.29 8.99 6.75 5.99 6.04 7.17

λ = 45×10−3 22.91 9.50 6.84 5.83 5.77 6.72

In Table 6.1, we display the NAoI performance from experimental, simulation, and

analytical results, for W ∈ {8,16,32,64,128,256} and λ ∈ {2.25,4.5,9,45}× 10−3. The

results in Table 6.1 show that the analytical model closely follows both the simulation and

experimental results, and is particularly accurate when λ is large. The lower accuracy of the

analytical model for small λ is a result of two approximations: 1) q(t) ≈ q, introduced in
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Sec. 6.1.1; and 2) z ≈ z̃, introduced in the proof of Theorem 6.3. Notice that when packet

generation is infrequent, i.e. λ is small, the transmission probability in epoch t is often

q(t) = 0 and the time-averaged transmission probability q can be larger than 0, depending

on µ , as illustrated in Figs. 6-4, 6-6, and 6-7, meaning that the approximation q(t)≈ q may

be inaccurate. In addition, when λ is small, the packet delay z becomes an important factor

in the NAoI analysis, and the upper bound z ≤ z̃ becomes less tight. In contrast, when λ

is large, which is the region of interest for the NAoI optimization, both approximations are

accurate.

The transmission probability q of the sources is directly affected by W and λ . In par-

ticular, a larger W results in lower µ and q, and a lower λ results in lower q. The results

in Table 6.1 reflect this relationship and its impact on the NAoI performance. Notice that

when the contention window is large, e.g. W = 256, the transmission probability is (rela-

tively) low, and NAoI improves for larger λ . In contrast, when the contention window is

small, e.g. W = 8, the transmission probability is (relatively) large, and NAoI improves

for smaller λ . As expected, this behavior is observed in the experimental, simulation, and

analytical results.

In Figs. 6-9 and 6-10, we display the optimal µ∗ and the corresponding minimum

NAoI∗, respectively, for different values of λ ∈ (0,0.05]. For λ ≥ 0.05, we note that the

optimal conditional transmission probability remains constant at µ∗ = 0.02 and the value

of NAoI∗ decreases with λ , achieving NAoI∗ = 5.58 milliseconds when λ = 1. The op-

timal conditional transmission probability µ∗ from experimental results is obtained using

the measurements in Table 6.1. Figures 6-9 and 6-10 show that the analytical results in

Secs. 6.2 and 6.3 closely follow simulation and experimental results.

In Sec. 6.3.3, we noted that in practice the global minimizer µ∗ obtained using Propo-

sition 6.6 displays a threshold structure. In particular, for each network configuration with

parameters (N,L), there exists a threshold λ ′ ∈ (0,1) such that, when λ < λ ′, the min-

imizer is the candidate µ(2) associated with (6.23b) and, when λ ≥ λ ′, the minimizer is

the candidate µ(1) associated with (6.23a). By matching the optimal values of µ∗ from

the analytical results in Fig. 6-9 with the solution candidates µ( j) in Proposition 6.6, we

find that the threshold for N = 10 and L = 50 is λ ′ = 0.00187. This threshold structure is
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observed in various network configurations, and it can be used to reduce the computational

complexity of finding the global minimizer µ∗ using Proposition 6.6. Moreover, to further

reduce the complexity, we provide an approximate solution for µ(1). Notice from (6.22)

and (6.23a) that when λ is high, an approximate solution for µ(1) and q(1) is given by

µ
(1) ≈ q(1) ≈ 1

N

√
2
L
= 0.02 , (6.24)

which coincides with µ∗ in Fig. 6-9 for λ > 0.01.

Figure 6-9: Optimal conditional transmission probability µ∗ obtained from the experi-
ments with the SDR testbed, from the simulation results, and from the analysis in Proposi-
tion 6.6.

Figure 6-10: Optimal NAoI performance associated with the optimal µ∗.
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6.5 Summary

In this chapter, we studied AoI in networks employing Random Access mechanisms. We

considered a wireless network with a number of nodes generating packets according to a

Bernoulli process and employing Slotted-ALOHA or CSMA to transmit these packets to

the BS. We proposed a framework to analyze and optimize the average AoI in the wireless

network. In particular, we developed a discrete-time model and derived expressions for:

the time-average transmission probability, a lower bound on the inter-delivery interval, an

upper bound on the packet delay, and an (accurate) approximation for the average AoI

in the network. We then used the analytical expressions to optimize the Random Access

mechanism in terms of AoI. Furthermore, we implemented the optimized CSMA network

in a Software Defined Radio testbed and compared the AoI measurements with analytical

and numerical results in order to validate our framework. We showed that the analytical

results accurately track both the simulation and experimental results. Our approach allowed

us to evaluate the combined impact of the packet generation rate, transmission probability,

and size of the network on the AoI performance.
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Appendices

6.A Proof of Proposition 6.1

In this appendix, we obtain the closed-form expression for the transmission probability qi

displayed in Proposition 6.1. Consider the time interval between two consecutive packet

deliveries from source i illustrated in Fig. 6-1. To obtain qi in (6.4), we derive expressions

for E[NB
i ] and E[NA

i ], and substitute them into the definition of qi in (6.2) which is rewritten

below for convenience

qi =
(E[NA

i ]+1)µi

E[NB
i ]+ (E[NA

i ]+1)
.

We start by analyzing E[XB
i (t)] and E[XA

i (t)]. Since XB
i (t) is the length of epoch t

within the interval NB
i in which source i does not have a packet to transmit, it follows that

P(XB
i (t) = 1) =

N

∏
j=1, j 6=i

(1−q j) = Q−i , (6.25a)

P(XB
i (t) = L) = 1−Q−i . (6.25b)

In addition, since XA
i (t) is the length of epoch t within the interval NA

i in which source i

may transmit, but cannot deliver its packet, it follows that

P(XA
i (t) = 1) =

(1−µi)Q−i

1−µiQ−i , (6.26a)

P(XA
i (t) = L) =

1−Q−i

1−µiQ−i , (6.26b)

where the numerator in (6.26a) represents the probability of no source transmitting a packet,

and the denominator represents the probability of source i not delivering its packet. From

(6.25a), (6.25b), (6.26a), and (6.26b), we obtain the expected values below

E[XB
i (t)] = Q−i +L(1−Q−i) , (6.27a)

E[XA
i (t)] =

(1−µi)Q−i

1−µiQ−i +L
1−Q−i

1−µiQ−i . (6.27b)
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Next, we analyze E[NB
i ] and E[NA

i ]. By the definition of the interval NB
i , it follows that

P(NB
i = 0) = 1− (1−λi)

L ; (6.28a)

P(NB
i = n|{X(n)}n

m=1) =
[
1− (1−λi)

X(n)
]
×

× (1−λi)
L

n−1

∏
m=1

(1−λi)
X(m),∀n ∈ {1,2, · · ·} . (6.28b)

The first term on the RHS of (6.28b) represents the probability of a packet generation on the

nth epoch of the interval NB
i . The second and third terms on the RHS of (6.28b) represent

the probability of no packet generation prior to the nth epoch. To obtain the expectation

of NB
i , we use the probabilities in (6.28a)-(6.28b), employ the law of iterated expectations,

and then use the fact that XB
i (t) are i.i.d. with mean given by (6.27a), which yields

E[NB
i ] =

(1−λi)
L

1− (1−λi)Q−i− (1−λi)L(1−Q−i)
. (6.29)

In addition, by the definition of the interval NA
i , it follows that

P(NA
i = n) =

[
1−µiQ−i]n

µiQ−i,∀n ∈ {0,1, · · ·} , (6.30)

which gives the expected value below

E[NA
i ] =

1−µiQ−i

µiQ−i . (6.31)

Finally, substituting (6.29) and (6.31) into the transmission probability in (6.2) gives the

closed-form expression in (6.4).
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6.B Proof of Proposition 6.4

In this appendix, we derive the solution candidates µ ∈ (0,1] displayed in Proposition 6.4

for the NAoI minimization in symmetric Slotted-ALOHA networks. First, we analyze

the expression of NAoI in (6.17) and then we analyze the expression of the transmission

probability q in (6.14).

6.B.1 Network AoI

The expression of NAoI in (6.17) is central to the analysis and is rewritten below for con-

venience

NAoI ≈ 1
q(1−q)N−1 +

1−λ

λ 2 q(1−q)N−1 .

The partial derivative of NAoI with respect to the transmission probability q is given by

∂NAoI
∂q

≈ (Nq−1)(λ 2−q2(1−q)2N−2(1−λ ))

λ 2q2(1−q)N . (6.32)

This partial derivative has up to three roots q(1), q(2)1 and q(2)2 , characterized by the equations

below

q(1) =
1
N

and q(2)(1−q(2))N−1 =
λ√

1−λ
, (6.33)

which are dependent on the packet generation probability λ . Next, we divide λ into three

cases. Case 1: if λ is high enough such that

1
N

(
1− 1

N

)N−1

<
λ√

1−λ
, (6.34)

then the unique root q(1) = 1/N is the point of global minimum NAoI. Case 2: if λ is such

that
1
N

(
1− 1

N

)N−1

=
λ√

1−λ
, (6.35)
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then the three roots overlap q(1) = q(2)1 = q(2)2 = 1/N at the point of global minimum NAoI.

Case 3: if λ is low enough such that

1
N

(
1− 1

N

)N−1

>
λ√

1−λ
, (6.36)

then q(1)= 1/N is a point of local maximum NAoI and q(2)1 ,q(2)2 are points of local minimum

NAoI. Notice that q(1) = 1/N is between q(2)1 and q(2)2 .

Summary. For a given packet generation probability λ ∈ (0,1], we use (6.33)-(6.36) to

determine the transmission probabilities q(1) and q(2). Then, we substitute q(1) and q(2) into

the expression that relates µ and q in (6.14) to obtain the solution candidates µ(1) and µ(2)

in (6.15a) and (6.15b), respectively. Next, we analyze the expression in (6.14) to derive the

third solution candidate shown in Proposition 6.4.

6.B.2 Transmission Probability

The expression for the transmission probability (6.14) is rewritten below for convenience

q =
1

1−λ

λ
(1−q)N−1 +

1
µ

.

This iterated function can be written as q = g(q,µ,λ ), with g continuous over (q,µ,λ ) ∈

[0,1]× (0,1]× (0,1] and having extreme points

g(0,µ,λ ) =
1

1−λ

λ
+

1
µ

and g(1,µ,λ ) = µ . (6.37)

Since 0< g(0,µ,λ )≤ g(1,µ,λ )< 1 for all (µ,λ )∈ (0,1]2, we conclude that q= g(q,µ,λ )

has at least one fixed point in the interval q ∈ [0,1].
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Taking the first and second partial derivatives of g(q,µ,λ ) with respect to q, we get

∂g(q,µ,λ )
∂q

=

1−λ

λ
(N−1)(1−q)N−2(

1−λ

λ
(1−q)N−1 +

1
µ

)2 , (6.38)

and

∂ 2g(q,µ,λ )
∂q2 =

(1−λ )λ µ2(N−1)(1−q)N [(1−λ )µN(1−q)N−1−λ (N−2)
]

[(1−λ )µ(1−q)N +λ (1−q)]3
. (6.39)

Combining the analysis of (6.14), (6.38) and (6.39), and taking into account the extreme

points in (6.37), we conclude that q = g(q,µ,λ ) has either

• one fixed point which is attracting, i.e. ∂g(.)/∂q < 1

• two fixed points, one attracting and the other borderline, i.e. ∂g(.)/∂q = 1; or

• three fixed points, two attracting and one repelling, i.e. ∂g(.)/∂q > 1.

Hence, for any given (µ,λ ), the iterated function has either one of two attracting fixed

points. To obtain the attracting fixed points, we solve qk+1 = g(qk,µ,λ ) recursively using

two initial values q0 = 0 and q0 = µ .

Interpretation. When λ → 1, sources often have packets in their transmission queues,

resulting in a transmission probability q that is comparable to the conditional transmission

probability µ . Substituting λ = 1 into the iterated function q = g(q,µ,λ ) in (6.14), it

is easy to see that q = µ is the unique attracting fixed point. Similarly, when µ → 0,

sources rarely attempt to transmit and, thus, often have packets in their transmission queues,

implying (again) that q = µ is a fixed point. In contrast, when λ is low and µ is high, the

network may be in one of two states: 1) low_q state, in which transmission queues are often

empty and packet collisions are rare; or 2) high_q state, in which more than one source is

attempting to transmit and packet collisions are frequent. The network oscillates between

these two states. Intuitively, a transition to high_q may occur when two or more sources

generate packets at the same time, and a transition to low_q may occur when all packets in

the network are delivered to the BS. Each network state corresponds to an attractive fixed
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point. For simplicity, in this chapter, we focus on the high_q state and neglect low_q. The

numerical results in Sec. 6.2.3 show that the value of high_q obtained from the iterated

function closely follows the simulated value of the transmission probability q in a wide

range of network parameters.

For a fixed λ , as µ increases from 0 to 1, the fixed points q ∈ [0,1] tend to increase.

Let G(λ ) be the set of all attracting fixed points q associated with the iterated function

q = g(q,µ,λ ) in (6.14). From (6.14), we can see that q→ 0 and q = 1 are attracting fixed

points associated with µ → 0 and µ = 1, respectively. However, there is no guarantee that

G(λ ) spans the entire interval (0,1]. Recall that as µ increases, the number of attracting

fixed points may change from one to two, and vice versa. These changes may allow for

gaps in G(λ ), leading to G(λ ) that does not span (0,1]. Notice that these gaps are solution

candidates for the minimization of NAoI. A necessary condition for a gap to occur at

the point µ(3) is the existence of a borderline fixed point at µ(3). Let µ(3) ∈ (0,1] be

the conditional transmission probability associated with a borderline fixed point. Then, it

follows that there exists q(3) ∈ [0,1] such that

q(3) = g(q(3),µ(3),λ ) and
∂g(q(3),µ(3),λ )

∂q
= 1 . (6.40)

From the system of equations in (6.40), we obtain the solution candidate µ(3) in (6.15c).
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6.C Proof of Proposition 6.6

In this appendix, we derive the solution candidates µ ∈ (0,1] displayed in Proposition 6.6

for the NAoI minimization in symmetric CSMA networks with low packet generation rate

λ � 1. To simplify the analysis, we use the binomial approximation

(1−λ )L ≈ 1−λL , (6.41)

which is accurate when λL� 1. Substituting (6.41) into the expression for q in (6.4), gives

q≈ 1
(1−λL)Q

λ (Q+L−QL)
+

1
µ

, (6.42)

where Q = (1− q)N−1 is the probability that all but one of the nodes are idle during an

arbitrary slot t. Then, substituting (6.41) and (6.42) into the expression of NAoI in (6.11),

yields

NAoI ≈ Q+L−QL
qQ

+
5(L−1)

2
+

1
2

(
1
λ
−L
)(

2
λ
+L−1

)
−
(

1
µ
−1
)
(L−1)

Q+L−QL
qQ

+L−1
.

(6.43)

Notice that, for small λ , we have

(
1
λ
−L
)(

2
λ
+L−1

)
�
(

1
µ
−1
)
(L−1) . (6.44)

Hence, we can further simplify (6.43), and get

NAoI ≈ Q+L−QL
qQ

+
5(L−1)

2
+

1
2

(
1
λ
−L
)(

2
λ
+L−1

)
Q+L−QL

qQ
+L−1

, (6.45)



216 6. AOI IN RANDOM ACCESS NETWORKS

which is a function of λ and q. Next, we analyze the expression of NAoI in (6.45) and the

expression of q in (6.42) to determine the solution candidates µ ∈ (0,1] in Proposition 6.6

6.C.1 Network AoI

By taking the partial derivative of NAoI in (6.45) with respect to q and setting it equal to

zero, we obtain the following equations

(L−1)
(

1−q(1)
)N

= L
(

1−Nq(1)
)
, (6.46)

and

2λ
2L2
(

1−q(3)
)2
−4λ

2(L−1)L
(

1−q(3)
)N+2

+

+
(

1−q(3)
)2N

λ
2(L−1)

[
L
(

3
(

q(3)
)2
−4q(3)+2

)
−2
(

1−q(3)
)2
]
+

+
(

1−q(3)
)2N (

q(3)
)2

(λ (L+1)−2) = 0 (6.47)

For a given packet generation probability λ ∈ (0,1], we use (6.46) and (6.47) to deter-

mine the transmission probabilities q(1) and q(3). Then, we substitute q(1) and q(3) into the

expression that relates µ and q in (6.22) to obtain the solution candidates µ(1) and µ(3) in

Proposition 6.6. Notice that (6.46) and (6.47) are displayed in Proposition 6.6 as (6.23a)

and (6.23c), respectively. Next, we analyze the expression of q in (6.42) to derive the third

solution candidate shown in Proposition 6.6.

6.C.2 Transmission Probability

The iterated function in (6.42) can be written as q = g(q,µ,λ ), with g continuous over

(q,µ,λ ) ∈ [0,1]× (0,1]× (0,1] and having extreme points

g(0,µ,λ ) =
1

1−λL
λ

+
1
µ

and g(1,µ,λ ) = µ . (6.48)
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Assuming that λL < 1, we have 0 < g(0,µ,λ ) ≤ g(1,µ,λ ) < 1 for all (µ,λ ) ∈ (0,1]2.

Hence, we conclude that q = g(q,µ,λ ) has at least one fixed point in the interval q ∈ [0,1].

Analyzing the first and second partial derivatives of g(q,µ,λ ) with respect to q, and

taking into consideration the extreme points in (6.48), we arrive at the same conclusions as

Appendix 6.B, namely that:

• for any given (λ ,µ) the iterated function q = g(q,µ,λ ) has either one or two attract-

ing fixed points; and

• the set G(λ ) of all attracting fixed points q associated with the iterated function in

(6.42) is not guaranteed to span the entire interval (0,1] and the gaps are characterized

by the system of equations

q(2) = g(q(2),µ,λ ) and
∂g(q(2),µ,λ )

∂q
= 1 . (6.49)

By manipulating (6.49), we obtain the equation in (6.23b) for determining q(2).
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Chapter 7

Concluding Remarks

F uture applications will increasingly rely on sharing time-sensitive information for

monitoring and control. Examples are abundant: monitoring mobile ground-robots

in automated fulfillment warehouses at Amazon [107,111] and Alibaba [89]; collision pre-

vention applications [61] for vehicles on the road [3,16,27,63]; path planning, localization

and motion control for multi-robot formations using drones [2, 4] and using ground-robots

[106]; multi-drone system for tracking a mobile spectrum cheater [88]; multi-drone system

for automated aerial cinematography [83]; multi-drone system for exploration of subter-

ranean environments [79]; multi-robot simultaneous localization and mapping (SLAM)

using drones [69, 77] and using ground-robots [75]; real-time surveillance system using a

fleet of ground-robots [80]; and data collection from sensors, drones and cameras for agri-

culture using the Azure FarmBeats IoT platform [56, 108]. In such application domains,

it is essential to keep the AoI low, as outdated information at the destination can lead to

system failures and safety risks.

In this thesis, we addressed the problem of minimizing AoI in wireless networks. In

particular, we considered a broadcast single-hop wireless network with a base station and

a number of nodes sharing time-sensitive information through communication links. We

formulated a discrete-time decision problem and used tools from stochastic control and

mathematical optimization to find network control algorithms with provable performance

guarantees and low computational complexity. Then, leveraging the theoretical results, we
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proposed practical algorithms and implemented them in FPGA-based Software Defined

Radios and/or Raspberry Pis to evaluate their performance in real operating conditions.

Next, we summarize the main contributions of the thesis.

7.1 Summary of contributions

Chapter 2. Age of Information in Wireless Networks

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate fresh packets on demand and transmit them via unreliable communication links.

We formulated the problem of optimizing transmission scheduling decisions with respect

to the Expected Weighted Sum AoI in the network.

First, we obtained the AoI-optimal policy using Dynamic Programming. We showed

that the computational complexity of such solution grows exponentially with the number

of sources N, making it suitable for small networks. For large networks, we developed

four low-complexity scheduling policies and derived performance guarantees for each of

them as a function of network parameters, in particular the network size N, the channel

reliabilities {pi}N
i=1 and the weights {wi}N

i=1. A summary of the main results follows:

• Maximum Age First policy is AoI-optimal for the case of symmetric networks, when

all links have the same channel reliability pi = p and weight wi =w. The performance

guarantee for general networks is given in Theorem 2.9;

• Stationary Randomized policy with βi =
√

wi/pi is 2-optimal for any network con-

figuration (N, pi,wi);

• Max-Weight policy with α̃i =
√

wi/pi is AoI-optimal for symmetric networks and

2-optimal for general networks; and

• Whittle’s Index policy is AoI-optimal for symmetric networks. The performance

guarantee for general networks is given in Theorem 2.21.

Simulation results show that both Max-Weight and Whittle’s Index policies outperform the

other scheduling policies in every configuration simulated, achieving near optimal infor-

mation freshness.
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To the best of our knowledge, this was the first work to derive performance guarantees

for scheduling policies that attempt to minimize AoI in wireless networks with unreliable

channels.

Chapter 3. Throughput Constrained AoI Optimization

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate fresh packets on demand and transmit them via unreliable communication links.

We addressed the problem of minimizing the Expected Weighted Sum AoI in the net-

work while simultaneously satisfying throughput requirements from the individual nodes.

Throughput requirements can either capture an attribute of the nodes or be used to enforce

fair allocation of resources in the network.

First, we derived a lower bound on the AoI performance achievable by any given net-

work. Then, we developed two low-complexity transmission scheduling policies, namely

Stationary Randomized and Drift-Plus-Penalty, and showed that both are 2-optimal for

any network configuration, while simultaneously satisfying any feasible throughput re-

quirements. Simulation results show that the Drift-Plus-Penalty policy outperforms other

scheduling policies in every configuration simulated, achieving near optimal information

freshness.

To the best of our knowledge, this was the first work to consider AoI-based policies that

provably satisfy throughput constraints of multiple destinations simultaneously.

Chapter 4. AoI in Wireless Networks with Stochastic Arrivals

In this chapter, we considered a broadcast single-hop wireless network with sources that

generate packets according to a stochastic process, enqueue them in separate (per source)

queues, and transmit them via unreliable communication links. We addressed the problem

of minimizing the Expected Weighted Sum AoI in the network.

First, we derived a lower bound on the AoI performance achievable by any given net-

work, operating under any queueing discipline. Then, we considered three common queue-

ing disciplines and developed both a Stationary Randomized policy and a Max-Weight

policy under each discipline. A summary of the main results follows:
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• Stationary Randomized policy for Single packet queues with optimal scheduling

probability µS
i ∝

√
wi/pi is 4-optimal for any network configuration (N, pi,λi,wi).

Notice that, contrary to intuition, the optimal scheduling probability µS
i is indepen-

dent of the packet arrival rate λi.

• Stationary Randomized policies for No queues and FCFS queues have optimal schedul-

ing probabilities µN
i and µF

i , respectively, that are sensitive to the packet arrival rate

λi, as shown in Theorems 4.8 and 4.10.

• Max-Weight policies for Single packet queues and No queues are shown in Theo-

rems 4.12 and 4.13 to outperform the corresponding Stationary Randomized Policies

with the same queueing discipline.

We evaluated the AoI performance both analytically and using simulations. Our approach

allowed us to evaluate the combined impact of the stochastic arrivals, queueing discipline

and scheduling policy on AoI. Numerical results show that the Max-Weight policy with

LCFS queues achieves near optimal performance in various network settings.

Chapter 5. WiFresh: AoI from Theory to Implementation

In this chapter, we proposed WiFresh: an unconventional architecture that achieves near

optimal information freshness for wireless networks of any size. The superior performance

of WiFresh is due to the combination of three elements: LCFS queues, Polling Multiple Ac-

cess mechanism, and Max-Weight scheduling policy. The choice of each of these elements

is underpinned by theoretical research. We proposed and realized two strategies for imple-

menting WiFresh: 1) WiFresh Real-Time, in which our architecture is implemented at the

MAC layer in a network of eleven FPGA-based Software Defined Radios using hardware-

level programming; and 2) WiFresh App which is a customization of WiFresh implemented

at the Application layer, without modifications to lower layers of the communication sys-

tem, in a network of twenty five Raspberry Pis using Python 3. A key advantage of WiFresh

App is that it can be easily integrated into time-sensitive applications that already run over

WiFi such as [2–4, 16, 27, 56, 63, 69, 75, 77, 79, 80, 83, 88, 89, 106–108, 111]. Our experi-

mental results showed that WiFresh can improve information freshness by two orders of
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magnitude when compared to an equivalent standard WiFi network.

To the best of our knowledge, this was the first experimental evaluation of a networked

system that scales gracefully in terms of information freshness.

Chapter 6. AoI in Random Access Networks

In this chapter, we studied AoI in networks employing Random Access mechanisms. We

considered a wireless network with a number of nodes generating packets according to a

Bernoulli process and employing Slotted-ALOHA or CSMA to transmit these packets to

the BS. We proposed a framework to analyze and optimize the average AoI in the wireless

network. In particular, we developed a discrete-time model and derived expressions for:

the time-average transmission probability, a lower bound on the inter-delivery interval, an

upper bound on the packet delay, and an (accurate) approximation for the average AoI

in the network. We then used the analytical expressions to optimize the Random Access

mechanism in terms of AoI. Furthermore, we implemented the optimized CSMA network

in a Software Defined Radio testbed and compared the AoI measurements with analytical

and numerical results in order to validate our framework. We showed that the analytical

results accurately track both the simulation and experimental results. Our approach allowed

us to evaluate the combined impact of the packet generation rate, transmission probability,

and size of the network on the AoI performance.

To the best of our knowledge, this was the first work to provide theoretical results on the

optimization of a CSMA network with stochastic packet generation and packet collisions.
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