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Example:
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AoI: time elapsed since the 
most recently delivered packet 
was generated.

Age of Information (AoI)
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AoI: time elapsed since the 
most recently delivered packet 
was generated.
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AoI: time elapsed since the 
most recently delivered packet 
was generated.
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AoI: time elapsed since the 
most recently delivered packet 
was generated.

At time t:  AoI = t − 𝜏(𝑡)
𝜏(𝑡) is the time stamp of the 
most recently delivered packet.

Relation between AoI, delay 

and interdelivery time?

Age of Information (AoI)
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• Example: M/M/1 queue

Controllable arrival rate 𝜆 and fixed service rate 𝜇 = 1 packet per second.

Minimum throughput requirement DOES NOT guarantee regular deliveries.

AoI, Delay and Interdelivery time
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• Example: M/M/1 queue

Controllable arrival rate 𝜆 and fixed service rate 𝜇 = 1 packet per second.

Low time-average AoI when packets with low delay are delivered regularly.

AoI, Delay and Interdelivery time

9[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?”, 2012.
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Network Model
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Network - Example
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Wireless Parking Sensor

Wireless Tire-Pressure 
Monitoring System

Wireless Rearview Camera



Network - Description
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Central Monitor

1

M

p1

pM

𝜶𝟏

𝜶𝑴

Sensors / Nodes
1) Central Monitor requires fresh data     

(low AoI)

2) Some sensors are more important than 
others (weights 𝜶𝒊)

3) Channel is shared and unreliable 
(probability of successful transmission 𝒑𝒊)



Network - Scheduling Policy
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Scheduling decision during slot k:

1) BS selects a single node i            
[𝑢𝑖 𝑘 = 1 and 𝑢𝑗 𝑘 = 0, ∀𝑗 ≠ 𝑖]

2) Selected node samples new data and 
then transmits [packet delay = 1 slot]

3) Packet is delivered to the BS wp 𝑝𝑖
[𝑑𝑖 𝑘 = 1 and 𝑑𝑗 𝑘 = 0, ∀𝑗 ≠ 𝑖]

1

M

p1

pM

𝜶𝟏

𝜶𝑴

Central Monitor

Sensors / Nodes

Class of non-anticipative policies Π. Arbitrary policy 𝝅 ∈ 𝚷.

𝝅



• Age of Information associated with node i
at the beginning of slot k is given by 𝒉𝒊(𝒌).

• Recall: selected node samples new data 
and then transmits [packet delay = 1 slot]

• Evolution of AoI:

Network - Performance Metric
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𝒉𝒊(𝒌)

Slots

Slots

Delivery of packets from 
sensor i to the BS

3
2
1

𝐡𝐢(𝒌 + 𝟏) = ቐ
𝟏,

𝒉𝒊 𝒌 + 1,

if 𝒅𝒊 𝒌 = 𝟏

otherwise



Network - Objective Function

• Expected Weighted Sum Age of Information when policy 𝜋 is employed:
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Network - Challenges
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1

M

p1

pM

𝜶𝟏

𝜶𝑴

Central Monitor

Sensors / Nodes
1) Scheduling policies must be low-complexity

in order to be meaningful

2) Evolution of AoI is not simple

3) Unreliability of the wireless channel makes 
scheduling more challenging

𝝅



Optimal Scheduling Policy for Symmetric Networks

Obs.: symmetry when 𝑝𝑖 = 𝑝 ∈ (0,1] and 𝛼𝑖 = 𝛼 > 0, ∀𝑖.
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Optimality of Greedy

• Greedy Policy: in slot k, select the node with highest value of 𝒉𝒊(𝒌).
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Theorem: for any symmetric network with 𝑝 ∈ (0,1] and 𝛼 > 0, the 
Greedy policy attains the minimum expected sum AoI, i.e.

Greedy = argmin
𝜋∈Π

𝛼

𝐾𝑀
𝔼 ෍

𝑘=1

𝐾

෍

𝒊=𝟏

𝑴

𝒉𝒊(𝒌)



Intuition of the proof: ideal channels

• Consider 𝑀 = 3 nodes and 𝑝 = 1 (ideal channels)

• Employ GREEDY policy. Deliveries are in green. 
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Intuition of the proof: ideal channels

• Consider 𝑀 = 3 nodes and 𝑝 = 1 (ideal channels)

• Employ GREEDY policy. Deliveries are in green. 

• Greedy achieves the lowest σ𝒊=𝟏
𝑴 𝒉𝒊(𝒌) in every slot k  Greedy is optimal.
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Intuition of the proof: coupling argument [3]

• Consider 𝑀 = 3 nodes and 𝑝 ∈ (0,1] (unreliable channels)

• Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.
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Intuition of the proof: coupling argument [3]

• Consider 𝑀 = 3 nodes and 𝑝 ∈ (0,1] (unreliable channels)

• Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.

• Goal is to show that Greedy achieves the lowest σ𝒊=𝟏
𝑴 𝒉𝒊(𝒌) in every slot k.
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Intuition of the proof: coupling argument [3]

• Consider 𝑀 = 3 nodes and 𝑝 ∈ (0,1] (unreliable channels)

• Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.
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Scheduling Policies for General Networks
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AoI from a different perspective

Lemma:

where 𝐼𝑖[𝑚] is the inter-delivery time of node i

and ഥ𝕄 𝐼𝑖 is the sample mean of 𝐼𝑖[𝑚].
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AoI from a different perspective

Lemma:

where 𝐼𝑖[𝑚] is the inter-delivery time of node i

and ഥ𝕄 𝐼𝑖 is the sample mean of 𝐼𝑖[𝑚].
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(delivery regularity)



Between any two deliveries:

Intuition of the proof:
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Between any two deliveries:

Hence, the time-average AoI is:

Intuition of the proof:
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Lower Bound

Lemma:

Theorem:

Proof: applying Fatou’s Lemma to the non-negative sequence 𝐽𝐾
𝜋 and then the 

generalized mean inequality ഥ𝕄 𝐼𝑖
2 ≥ ഥ𝕄 𝐼𝑖

2.
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• Next, we develop three different scheduling policies:
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Transmission Scheduling Policies

Scheduling Policy Technique
Optimality 

Ratio
Simulation

Result

Optimal Stationary 
Randomized Policy

Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy
Lyapunov

Optimization
2-optimal close to optimal

Whittle’s Index 
Policy

RMAB Framework 8-optimal close to optimal

𝐿𝐵 ≤ lim
𝐾→∞

𝔼 𝐽𝐾
𝑹 ≤ 2𝐿𝐵



Randomized Policies
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• Stationary Randomized Policy: 

in slot k, select node i with probability 𝝁𝒊.

• Clearly, 𝑑𝑖 𝑘 ~ 𝐵𝑒𝑟 𝝁𝒊𝒑𝒊 and 𝐼𝑖 𝑚 ~ 𝐺𝑒𝑜(𝝁𝒊𝒑𝒊) iid for node i

• Sequence of packet deliveries from node i is a renewal process:

Slots

σ𝑘 ℎ𝑖(𝑘) =
𝐼𝑖 𝑚

2+𝐼𝑖 𝑚

2

𝐼𝑖 𝑚 = 𝟒



Randomized Policies
• Stationary Randomized Policy: 

in slot k, select node i with probability 𝝁𝒊.

• Clearly, 𝑑𝑖 𝑘 ~ 𝐵𝑒𝑟 𝝁𝒊𝒑𝒊 and 𝐼𝑖 𝑚 ~ 𝐺𝑒𝑜(𝝁𝒊𝒑𝒊) iid for node i

• Sum of ℎ𝑖 𝑘 is a renewal-reward process:

• Period length 𝔼 𝐼𝑖 = 𝝁𝒊𝒑𝒊
−1

• Reward in a period is 𝔼 𝐼𝑖
2 + 𝐼𝑖 /2 = 𝝁𝒊𝒑𝒊

−2

Hence, by the elementary renewal theorem:
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𝜶𝒊
𝔼 𝑟𝑒𝑤𝑎𝑟𝑑

𝔼 𝑝𝑒𝑟𝑖𝑜𝑑
=

1

𝑀
෍

𝑖=1

𝑀
𝜶𝒊
𝝁𝒊𝒑𝒊

=
1

𝑀
෍

𝑖=1

𝑀

𝜶𝒊𝔼 𝐼𝑖
𝑹



Randomized Policies
• Stationary Randomized Policy: 

in slot k, select node i with probability 𝝁𝒊.

• Clearly, 𝑑𝑖 𝑘 ~ 𝐵𝑒𝑟 𝝁𝒊𝒑𝒊 and 𝐼𝑖 𝑚 ~ 𝐺𝑒𝑜(𝝁𝒊𝒑𝒊) iid for node i

• Sum of ℎ𝑖 𝑘 is a renewal-reward process:

• Period length 𝔼 𝐼𝑖 = 𝝁𝒊𝒑𝒊
−1

• Reward in a period is 𝔼 𝐼𝑖
2 + 𝐼𝑖 /2 = 𝝁𝒊𝒑𝒊

−2

Hence, by the elementary renewal theorem:
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Randomized Policies

Theorem: there exists R which is 2-optimal for any network configuration.

• Proof:

Recall that:

Policy that solves the minimization above yields some value of 𝔼 ഥ𝕄 𝐼𝑖
𝝅 . 

There exists R such that 𝔼 𝐼𝑖
𝑹 = 𝔼 ഥ𝕄 𝐼𝑖

𝝅 for all nodes. For this particular R, 
we have:

34

𝐿𝐵 =
1

2𝑀
min
𝝅∈Π

෍

𝑖=1

𝑀

𝜶𝒊𝔼 ഥ𝕄 𝐼𝑖
𝝅 +

1

2𝑀
෍

𝑖=1

𝑀

𝜶𝒊

lim
𝐾→∞

𝔼 𝐽𝐾
𝑹 =

1

𝑀
෍

𝑖=1

𝑀

𝜶𝒊𝔼 ഥ𝕄 𝐼𝑖
𝝅 ≤ 2𝐿𝐵



Randomized Policies

Theorem: there exists R which is 2-optimal for any network configuration.

• Optimal Stationary Randomized Policy: 

The optimal solution is 𝝁𝒊
∗ ∝ 𝜶𝒊/𝒑𝒊

Corollary: Optimal R* is 2-optimal.

35

𝝁𝒊
∗ =

1

𝑀
argmin
𝝁𝒊,∀𝑖

෍

𝑖=1

𝑀
𝜶𝒊
𝝁𝒊𝒑𝒊



Summary (so far…)

• Objective Function:

• Network Model:

36

1

M

p1

pM

𝜶𝟏

𝜶𝑴

min
𝜋∈Π

lim
𝐾→∞

𝔼 𝐽𝐾
𝜋 = min

𝜋∈Π
lim
𝐾→∞

1

𝐾𝑀
𝔼 ෍

𝑘=1

𝐾

෍

𝑖=1

𝑀

𝜶𝒊𝒉𝒊
𝝅(𝒌)

Policy Decision in slot k Performance

Greedy highest 𝒉𝒊(𝒌)
optimal when 

symmetric

Randomized node i wp ∝ 𝜶𝒊/𝒑𝒊 2-optimal

Max-Weight

Whittle’s Index𝝅



Max-Weight Policy

• Max-Weight is designed to minimize the Lyapunov Drift.

• Evolution of AoI:

• Equivalently: ℎ𝑖 𝑘 + 1 = ℎ𝑖 𝑘 1 − 𝒅𝒊(𝒌) + 1

ℎ𝑖 𝑘 + 1 = ℎ𝑖 𝑘 1 − 𝒄𝒊 𝒌 𝒖𝒊 𝒌 + 1
37

𝒉𝒊(𝒌)

Slots

3
2
1

𝐡𝐢(𝒌 + 𝟏) = ቐ
1,

𝒉𝒊 𝒌 + 1,

if 𝑑𝑖 𝑘 = 1

otherwise



Max-Weight Policy

• Lyapunov Function: is a constant

• Lyapunov Drift:

38

𝐿 𝑘 =
1

𝑀
෍

𝑖=1

𝑀

𝛽𝑖ℎ𝑖 𝑘 ,where 𝛽𝑖 > 0

Δ 𝑘 = 𝔼 𝐿 𝑘 + 1 − 𝐿 𝑘 ℎ𝑖 𝑘



Max-Weight Policy

• Lyapunov Function: is a constant

• Lyapunov Drift:

• Recall that:      ℎ𝑖 𝑘 + 1 = ℎ𝑖 𝑘 1 − 𝒄𝒊(𝒌)𝒖𝒊 𝒌 + 1

• MW policy:  in slot k, schedule node with highest value of 𝛽𝑖𝒑𝒊ℎ𝑖 𝑘
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Max-Weight Policy

Theorem: MW with 𝛽𝑖 = 𝜶𝒊/𝝁𝒊
∗𝒑𝒊 is 2-optimal for any network configuration

• MW policy with 𝛽𝑖 = 𝜶𝒊/𝝁𝒊
∗𝒑𝒊: 

in slot k, schedule node with highest value of 𝜶𝒊𝒑𝒊ℎ𝑖 𝑘 ≡ 𝜶𝒊𝒑𝒊ℎ𝑖
2 𝑘
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Max-Weight Policy

Theorem: MW with 𝛽𝑖 = 𝜶𝒊/𝝁𝒊
∗𝒑𝒊 is 2-optimal for any network configuration

• MW policy with 𝛽𝑖 = 𝜶𝒊/𝝁𝒊
∗𝒑𝒊: 

in slot k, schedule node with highest value of 𝜶𝒊𝒑𝒊ℎ𝑖 𝑘 ≡ 𝜶𝒊𝒑𝒊ℎ𝑖
2 𝑘

• Proof outline:

• MW minimizes drift while Optimal R* does not. Thus:

Δ𝑴𝑾 𝑘 ≤ Δ𝑹
∗
𝑘

• Manipulating the expression and substituting 𝛽𝑖 = 𝜶𝒊/𝝁𝒊
∗𝒑𝒊, gives: 

lim
𝐾→∞

𝔼 𝐽𝐾
𝑴𝑾 ≤ lim

𝐾→∞
𝔼 𝐽𝐾

𝑹∗

• Hence, Max-Weight is 2-optimal.
41



Summary (so far…)

• Objective Function:

• Network Model:
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Policy Decision in slot k Performance

Greedy highest 𝒉𝒊(𝒌)
optimal when 

symmetric

Randomized node i wp ∝ 𝜶𝒊/𝒑𝒊 2-optimal

Max-Weight highest 𝜶𝒊𝒑𝒊𝒉𝒊
𝟐(𝒌) 2-optimal

𝝅



Whittle’s Index Policy

A Markov Bandit is characterized by a MDP in which:

• 𝑢 𝑘 = 0 freezes the process and gives no reward;

• 𝑢 𝑘 = 1 continues the process with ℙ and gives reward 𝑟(ℎ(𝑘))

• In contrast, when the bandit is restless:

• 𝑢 𝑘 = 0 continues the process with ℙ0 and gives reward 𝑟0(ℎ(𝑘))

• 𝑢 𝑘 = 1 continues the process with ℙ1and gives reward 𝑟1(ℎ(𝑘))

• The AoI of each node evolves as a restless bandit. 
Hence, we can use the RMAB framework [2] to design an Index Policy.

43[2] P. Whittle, “Restless bandits: Activity allocation in a changing world”, 1988.



Whittle’s Index Policy

• For designing the Index Policy, we use the RMAB framework in [2].
• We relax our problem to the case of a single node i , 𝑀 = 1, and add a cost per 

transmission, 𝐶 > 0:

• The solution to this relaxed problem yields:
• Condition for indexability;

• Expression for the Whittle Index, 𝐶𝑖(ℎ𝑖(𝑘)).

• Challenges

44[2] P. Whittle, “Restless bandits: Activity allocation in a changing world”, 1988.
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Whittle’s Index Policy

• Consider the relaxed problem with a single node and cost per transmission C.

• Condition for Indexability:

• Let 𝒫(𝐶) be the set of states ℎ𝑖 𝑘 for which it is optimal to idle when the 
cost for transmission is C.

• The problem is indexable if 𝒫(𝐶) increases monotonically from ∅ to the 
entire state space as 𝐶 increases from 0 to +∞. 

• The condition checks if the problem is suited for an Index Policy.

45

min
𝜋∈Π

lim
𝐾→∞

1

𝐾
𝔼 ෍

𝑘=1

𝐾

𝜶𝒊𝒉𝒊 𝒌 + 𝐶𝒖𝒊 𝒌



Whittle’s Index Policy

• Consider the relaxed problem with a single node and cost per transmission C.

• Whittle Index:

• Given indexability, 𝐶(ℎ) is the infimum cost 𝐶 that makes both scheduling 
decisions equally desirable in state h. 

• 𝐶(ℎ) represents how valuable is to transmit a node in state h.
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1

𝐾
𝔼 ෍

𝑘=1

𝐾

𝜶𝒊𝒉𝒊 𝒌 + 𝐶𝒖𝒊 𝒌



Whittle’s Index Policy

• We establish that the problem is indexable and find a closed-form solution for 
the Whittle Index.

• Index Policy: in slot k, select the node with highest value of 𝐶𝑖 ℎ𝑖(𝑘) , where:
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Whittle’s Index Policy

• We establish that the problem is indexable and find a closed-form solution for 
the Whittle Index.

• Index Policy: in slot k, select the node with highest value of 𝐶𝑖 ℎ𝑖(𝑘) , where:

• Whittle’s Index is similar to Max-Weight: 𝜶𝒊𝒑𝒊ℎ𝑖
2 𝑘

• For Symmetric Networks: 

Whittle’s ≡ Max-Weight ≡ Greedy. [All optimal policies]
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Summary (so far…)

• Objective Function:

• Network Model:
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Policy Decision in slot k Performance

Greedy highest 𝒉𝒊(𝒌)
optimal when 

symmetric

Randomized node i wp ∝ 𝜶𝒊/𝒑𝒊 2-optimal

Max-Weight highest 𝜶𝒊𝒑𝒊𝒉𝒊
𝟐(𝒌) 2-optimal

Whittle’s Index highest 𝐶𝑖 𝒉𝒊(𝒌) 8-optimal𝝅



Numerical Results

• Metric:

• Expected Weighted Sum AoI : 𝔼 𝐽𝐾
𝜋

• Network Setup with M nodes. Node i has:

• weight 𝜶𝒊 = (𝑀 + 1 − 𝒊)/𝑀 [decreasing with i]

• channel reliability 𝒑𝒊 = 𝒊/𝑀 [increasing with i]

• Each simulation runs for 𝐾 = 𝑀 × 106 slots

• Each data point is an average over 10 simulations
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Remarks (so far…)

• We developed and evaluated low-complexity scheduling policies:

• Greedy, Optimal Stationary Randomized, Max-Weight and Whittle’s Index

• Obtained optimality ratios and validated their performance using 
Numerical Results

• Main ideas:

• Age of Information is a measure of information freshness

• Randomized Policy is the simplest possible policy and it is 2-optimal.

• Max-Weight and Whittle’s Index have near optimal AoI-performance.

• Next: Throughput versus Age of Information
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Long-term Throughput vs Age of Information
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Throughput

• The Throughput maximization problem is given by:

• Goal is to find the scheduling policy that 𝐦𝐚𝐱
𝝅∈𝚷

𝔼 𝑻𝑲
𝝅 .

• Optimal policy: in slot k, select node with highest value of 𝜶𝒊𝒑𝒊
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Throughput vs Age of Information

• The Throughput maximization problem is given by:

• The AoI minimization problem is given by:

• We want to compare the scheduling policies that solve each problem.
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• For a fixed vector of weights 𝜶, we have:

• We sweep 𝜶 and plot the results next:

• Red is for metrics associated with the Throughput policy 𝝅∗( Ԧ𝛼). 

• Green is associated with the AoI policy 𝜼∗( Ԧ𝛼).

Throughput vs Age of Information

Max Thr
solution

𝜼∗( Ԧ𝛼)
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Age of Info.

M = 2

K = 120

p1 = 1/3

p2 = 1/3

α varies

Policies that 
Optimize AoI

Policies that 
Optimize Throughput
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Throughput

M = 2

K = 120

p1 = 1/3

p2 = 1/3

α varies

AoI optimal policies are 
throughput optimal
(Pareto optimality)

Policies that 
Optimize AoI

Policies that 
Optimize Throughput
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Throughput

M = 2

K = 120

p1 = 1/3

p2 = 1/3
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q1 = 0.15
q2 = 0.15



Minimizing Age of Information 

subject to 

Minimum Throughput Requirements
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• Long-term throughput of node i when policy 𝜋 is employed is defined as:

ො𝑞𝑖
𝜋: = lim

𝐾→∞

1

𝐾
𝔼 ෍

𝑘=1

𝐾

𝑑𝑖
𝜋(𝑘)

• Minimum Throughput Requirements:  

ො𝑞𝑖
𝜋 ≥ 𝒒𝒊 , ∀𝑖

we assume that the set 𝒒𝒊 𝑖=1
𝑀 is feasible.

Minimum Throughput Requirement
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(Age of Information)

(Minimum Throughput)

(Channel Interference)

Optimization Problem

• Next, we consider:

• Stationary Randomized Policy;

• Max-Weight Policy.



Randomized Policies
• Stationary Randomized Policy: 

in slot k, select node i with probability 𝝁𝒊.

• Solution given by KKT Conditions.      Optimal R* is 2-optimal.
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Max Weight Policy

• Throughput debt at

the beginning of slot k:

• MW policy: in slot k, schedule node with highest value of

𝒑𝒊max 𝒙𝒊 𝒌 , 0 + 𝑉 𝜶𝒊/𝝁𝒊
∗ ℎ𝑖(𝑘)

Theorem: MW policy is 2 +
𝜖

𝑉
-optimal in terms of AoI and satisfies any 

feasible throughput constraints 𝒒𝒊.
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Same setup as before, but with 
𝑞𝑖 = 0.9 𝑝𝑖/𝑀 for each node
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Final Remarks

• We developed and evaluated low-complexity scheduling policies:

• Greedy, Optimal Stationary Randomized, Max-Weight and Whittle’s Index

• Obtained optimality ratios and validated their performance using 
Numerical Results

• Takeaways:

• Age of Information is a measure of information freshness

• Randomized Policy is the simplest possible policy and it is 2-optimal.

• Max-Weight has near optimal AoI-performance and it satisfies any 
feasible throughput constraints.
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