Two Generals’ Problem
Infinite handshakes are needed for both Generals to be sure that a consensus was reached.
One General Problem

General 1

Message

Enemy (p=0.01)

ACK

Only 2 handshakes are needed for General 1 to be sure about the reception of the message.

General 2
Automatic Repeat ReQuest (ARQ)

• Transmission with ACK

• Error detection (CRC)

• Error recovery with ARQ:
 – request retransmission of packets received with error

• Three common schemes
 – Stop & Wait
 – Go Back N
 – Selective Repeat Protocol (SRP)
ARQ Protocols: Stop & Wait
Stop and Wait Protocol

Transmitter

Sequence Number (SN)

Unreliable Channel

Request Number (RN)

Receiver

Packet 0
Accepted

Packet 1
Accepted

Packet 1
Requested

ACK for packet 0 is the same as Request for packet 1

Packet 2
Requested

Sends packet 1

ACK

Eytan Modiano
Slide 7
Stop and Wait Protocol

Packet 0 Accepted

Packet 1 Requested

Error

Timeout

Retransmit the request for packet 1 after timeout
Stop and Wait Protocol

- Packet 0: Accepted
- Packet 1: Error
- Receiver does not accept repeated packets
- Packet 1 Requested
- Timeout: Retransmit the same packet after timeout

Packet 0 NOT accepted
- The receiver resends the ACK
Stop and Wait Protocol: Exercise
Stop and Wait Protocol: Exercise
Stop and Wait Protocol - Algorithm

Algorithm at **sender**:
(with initial condition SN=0)

1) Accept packet from higher layer when available;
 Then, assign number SN to the packet

2) Transmit packet SN

3) Wait for an error free ACK from B
 i. if received and it contains RN>SN in the
 request # field, set SN to RN and go to 1

 ii. if not received within given timeout (TO), go to 2
Stop and Wait Protocol - Algorithm

Algorithm at **receiver:**
(with initial condition RN=0)

1) Whenever an error-free packet is received from A with a SN equal to RN, release received packet to higher layer and increment RN.

2) At arbitrary times, but within bounded delay after receiving any error_free frame from A, transmit a frame to A containing RN in the request # field.
Stop and Wait Protocol

• Packet numbering:
 – Sender: Sequence Numbers (SN)
 – Receiver: Request Numbers (RN)
 RN = j is the same as an ACK for packet j-1

• Sender transmits one packet at a time and waits for the respective ACK
 – Idle while waiting for ACK
 – Retransmits the packet after a timeout (TO)

• Receiver only ACKnowledges the packet it requested
 – Retransmits the last ACK after a timeout (TO)

• Does this mechanism work?
Correctness of Stop and Wait

• Informal proof that Stop and Wait is correct.

• **Correct**: a never-ending stream of packets can be delivered to B, in order and without repetitions or deletions.

• Proof is break into two parts: safety and liveness.
 – **Safe**: algorithm never produces an incorrect result
 – **Live**: it can continue forever (no deadlock)

• Assumptions:
 – Errors are detected by the CRC;
 – There is a probability \(q > 0 \) that each frame is received with no errors;
 – Link is initially empty;
 – Transmitter has SN=0 and receiver is awaiting the packet with SN=0.
Correctness of Stop and Wait

• SAFETY: show that no packet is ever released out of order or more than once
 – Start with packet ‘0’ and receiver does not increment its RN until ‘0’ is received; upon which it can only accept packet ‘1’, etc.

• LIVENESS: show that every packet is eventually released
 – The sender keeps sending a packet until it gets an ACK, so eventually every packet is correctly received

Note on packet numbering: packets are numbered modulo 2 (0 or 1)
• At any time, the received packet can only be RN or RN-1.
• Mod 2 numbering can be used to distinguish between these packets.
Numbering – Mod 2

- Sequence Number (SN)
 - 0
 - 1

- Request Number (RN)
 - 1
 - 0

- Time
 - 0
 - 1
 - 1

Timeout

- Packet 0 accepted
- Packet 1 requested
- Packet 1 requested
- Packet 0 NOT accepted. Receiver does not accept repeated packets. The receiver resend the ACK
- Packet 1 accepted

Eytan Modiano
Slide 17
Efficiency of Stop and Wait

High efficiency
When? Example?

\[E = \frac{D_{TP}}{S} \]

\[S = D_{TP} + D_P + D_{TA} + D_P \]

- \(D_{TP} = \) Packet time
- \(D_P = \) propagation time
- \(D_{TA} = \) ACK time
Efficiency of Stop and Wait – Examples

• 56kbps modem
 – Low propagation delay environment, distance = 5 miles ~ 8km
 \[D_p = \frac{8 \text{ km}}{3 \times 10^8} = 27 \mu s \]
 – \(R = 56,000 \text{ bps} \); Packet length = 1000 bits; ACK = 50 bits
 \[\Rightarrow D_{TP} = 17857 \mu s \; ; \; D_{TA} = 893 \mu s \]
 \[S = 18804 \mu s \Rightarrow \text{Efficiency} = \frac{17857}{18804} \approx 95\% \]

• High Speed Metropolitan Area Network
 – \(R = 100 \text{ Mbps} \), distance = 100 miles ~ 160km
 \[\Rightarrow D_{TP} = 10^{-5} \text{ seconds}, \; D_{TA} = 5 \times 10^{-7} \text{ seconds}, \; D_p = 5 \times 10^{-4} \text{ seconds} \]
 \[S = 10^{-3} \text{ seconds} \Rightarrow \text{Efficiency} = \frac{10^{-5}}{10^{-3}} = 1\% \]
Efficiency of Stop and Wait with Errors

Let P = the probability of an error in the transmission of a packet or in its acknowledgment.

No Error:

Error:
Efficiency of Stop and Wait with Errors

Let P = the probability of an **error** in the transmission of a packet or in its acknowledgment.

$$S = D_{TP} + 2D_p + D_{TA}$$

T_O = the timeout interval

X = the amount of time that it takes to transmit a packet and receive its ACK. This time accounts for retransmissions due to errors.

$$\mathbb{E}[X] = S + T_O \times \mathbb{E}[\text{# of errors}]$$

$$\mathbb{E}[X] = S + T_O \times P/(1 - P)$$

Efficiency = $D_{TP}/\mathbb{E}[X]$
Efficiency of Stop and Wait

Low efficiency
How to solve?

Round-trip time: S

$$E = \frac{D_{TP}}{S}$$
ARQ Protocols: Go Back-N
Go Back N – Efficiency

Supposing there are no transmission errors

\[E = \frac{D_{TP}}{S} \]

Round-trip time: \(S \)

Packet 1
Requested

\[N = 1 \]
Go Back N – Efficiency

\[N = 2 \]

Packet 1
Requested

\[E = \frac{2D_{TP}}{S} \]

Supposing there are no transmission errors
Go Back N – Efficiency

$N = 6$

Packet 1
Requested

$E = \min\left(\frac{ND_{TP}}{S}, 1\right)$

Round-trip time: S

The entire time-interval was utilized for transmitting data
Go Back N – Sliding Window

- Go Back N or Sliding Window Protocol
- Window size = \(N \)
 - Sender can transmit up to \(N \) packets without ACKnowledgement
 - Packet \(i+N \) cannot be transmitted before receiving the ACK with \(RN=i+1 \)
 - Window ranges from the last value of \(RN \) obtained from the receiver (denoted \(SN_{\text{min}} \)) to \(SN_{\text{min}}+N-1 \)

Receiver does NOT change. Receiver operates like in Stop and Wait.
 - Receive packets in order. Accepts ONLY the packet with \(SN=RN \)
 - Send \(RN = RN + 1 \) \(\Rightarrow \) ACK for all packets up to and including \(i \)
Go Back N – Sliding Window

Sender

<table>
<thead>
<tr>
<th>Max ACK received</th>
<th>SN$_{\text{min}}$</th>
<th>Next seqnum</th>
<th>SN$_{\text{max}}$</th>
</tr>
</thead>
</table>

Sender window
SN$_{\text{min}}$ to SN$_{\text{min}}$+N-1

- **Sent & Acked**
- **Sent Not Acked**
- **OK to Send**
- **Not OK to Send (out of range)**
Go Back N – Sliding Window – Example

For $N = 6$ High efficiency when no error occurs

Window

[0,5] [1,6] [2,7]

0 1 2 3 4 5 6
Go Back N – Sliding Window – Example

For $N = 3$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,2]</td>
<td>[1,3]</td>
<td>[2,4]</td>
</tr>
</tbody>
</table>

Had to retransmit the entire window due to the low N

Window $[3,5]$
Example of Go Back 7 ARQ

Bi-directional traffic and piggyback

Window

SN

Node A

RN

Node B

Packets delivered

<--Frame Header -------->

<table>
<thead>
<tr>
<th>SN</th>
<th>RN</th>
<th>Packet</th>
<th>CRC</th>
</tr>
</thead>
</table>

Eytan Modiano
Slide 31
Example of Go Back 7 ARQ

Packets are being transmitted in both directions.
Every packet has a Sequence Number.
Request Numbers are piggybacked.
Suppose node A (transmitter) starts with SN=0 and node B (receiver) starts with RN=0.
What are the missing values?
Example of Go Back 7 ARQ

The diagram illustrates a window mechanism for error control in a network. The window is divided into segments, and each segment represents a node communicating with another. The diagram shows the sequence of packets transmitted and acknowledged. The window [0, 6] indicates that nodes can transmit packets within this range, and the diagram tracks the delivery of packets from Node A to Node B through acknowledgments.
• **Entire window has to be retransmitted** after a forward error.
• Larger N, helps or makes it worse?
Example of Go Back 4 with (Reverse) Error

- When an error occurs in the reverse direction the ACK may still arrive in time.
- Packet 2 is retransmitted because RN = 4 did not arrive in time, however it did arrive in time to prevent retransmission of packet 3.
 - Larger N, helps?
Example of Go Back 4 with Long Frames

- Long frames in feedback direction slow down the ACKs.
- This can cause retransmissions.
- Larger N, helps?
Efficiency of Go Back N

- We want to choose N large enough to allow continuous transmission while waiting for an ACK for the first packet of the window,

$$N > \frac{S}{D_{TP}}$$

- Without errors the efficiency of Go Back N is,

$$E = \min\{1, \frac{N \cdot D_{TP}}{S}\}$$
Exercise

• **High-speed DSL Modem**
 - \(R = 10\text{Mbps} \), Packet = 1000 bits, ACK = 1000 bits, \(D_p = 100\mu\text{s} \)
 - \(D_{TP} = D_{TA} = D_p = 10^{-4} \text{ seconds} \Rightarrow S = 4 	imes 10^{-4} \text{ seconds} \)
 - Efficiency for \(N = 1 \)?
 - Min \(N \) such that Efficiency = 100%?

• **Geo satellite link**
 - \(R = 1\text{Mbps} \Rightarrow D_{TP} = D_{TA} = 10^{-3} \text{ seconds} \)
 - \(D_p = 0.12 \text{ sec} \Rightarrow S = 0.242 \text{ second} \)
 - Efficiency for \(N = 1 \)?
 - Min \(N \) such that Efficiency = 100%?
Efficiency of Go Back N with Errors

Assume: \[N = \left\lceil \frac{S}{D_{TP}} \right\rceil \quad \text{TO} = N*D_{TP} \quad P = \text{prob. error} \]

and when an error occurs, the entire window of N packets must be retransmitted.

Let \(X \) = the number of packets sent per successful transmission.

\[
E[X] = 1*(1-P) + (N+1)P(1-P) + (2N+1)P^2(1-P) + (3N+1)P^3(1-P) + \ldots \\
= (1-P) \left[(1 + P + P^2 + P^3 + \ldots) + NP \ (1+ 2P + 3P^2 + 4P^3 + \ldots) \right] \\
= (1-P) \left[\frac{1}{1-P} + \frac{NP}{(1-P)^2} \right] = 1 + N*P/(1-P)
\]

Efficiency = \(1/E[X] \)
Go Back N Requirements

Go Back N is guaranteed to work correctly, independent of the detailed choice of which packets to repeat, if:

1) System is correctly initialized
2) No failures in detecting errors (CRC)
3) Packets travel in FCFS order
4) Positive probability of correct reception (1-P)
5) Transmitter occasionally resends $S_{N_{\text{min}}}$ (e.g., upon timeout)
6) Receiver occasionally sends RN

Correctness:
- Safe: algorithm never produces an incorrect result
- Live: it can continue forever (no deadlock)
Notes on Go Back N

• No buffering of packets at the receiver

• Packets can be numbered modulo M where \(M > N \)
 – Because at most N packets can be sent simultaneously
 – What would happen if we numbered packets modulo \(N \)?

• The major problem with Go Back N is this need to re-send the entire window when an error occurs. This is due to the fact that the receiver can only accept packets in order.

• How can we solve this inefficiency?
ARQ Protocols: Selective Repeat Protocol
Selective Repeat Protocol (SRP)

- Selective Repeat retransmits **only** packets that are lost due to errors
 - Receiver **accepts packets out of order** and ACKnowledges them individually.
 - Since receiver must **release packets to higher layer in order**, the receiver must be able to buffer some packets.

SRP rules for window size W:
- Sender is the same as in Go Back N:
 - Transmits new packet if it is within W of ALL un-ACKed packets.
 - Retransmit un-ACKed packets after a timeout
- Receiver ACKs **each and every** correct packet
- Packets are numbered mod M where $M \geq 2W$
Example of SRP (W = 4) with Error

- Compare with Go Back N
Efficiency of SRP

• For **ideal SRP**, only packets containing errors will be retransmitted
 – Ideal is not realistic because sometimes packets may have to be retransmitted because their window expired. However, if the window size is set to be much larger than the timeout value then this is unlikely

• Assuming ideal SRP, efficiency = 1 - P
 \[P = \text{probability of a packet error} \]

• Notice the difference with Go Back N where

\[\text{efficiency (Go Back N)} = \frac{1}{1 + \frac{N \cdot P}{1-P}} \]

• When the window size is small performance is about the same, however with a large window, SRP is much better
 – As transmission rates increase we need larger windows and hence the increased use of SRP
Efficiency: Go Back N vs. SRP

• Consider a satellite link with:
 – N = 1000 packets
 – p = 0.01 (1% of packets in error)

• SRP efficiency = 1 – p = 99%
 – Note that this is true for all N

• Go Back N efficiency = 1/(1 + N*P/(1-P)) = 9%
 – Note that this would get worse as N gets larger
Why are packets numbered Modulo 2W?

- Lets consider the range of packets that may follow packet i at the receiver

Packet i may be followed by the first packet of the window (i-W+1) if it requires retransmission

Packet i may be followed by the last packet of the window (i+W) if all Of the ACKs between i and i+W are lost

- Receiver must differentiate between packets i-W+1 ... i+W
 - These 2W packets can be differentiated using Mod 2W numbering
Standard DLCs

- HDLC, PPP, LAPB (X.25), and SDLC are very similar
 - HDLC/SDLC developed by IBM for IBM SNA networks
 - PPP is commonly used for providing framing, error detection
- They all use bit oriented framing with flag = 01111110
- They all use a 16-bit CRC for error detection
- They all use Go Back N ARQ with N = 7 or 127 (optional)

SDLC packet

<table>
<thead>
<tr>
<th>flag</th>
<th>address</th>
<th>control</th>
<th>data</th>
<th>CRC</th>
<th>flag</th>
</tr>
</thead>
</table>

Multipoint SN,RN communication

- Older protocols (used for modems, e.g., xmodem) used stop and wait and simple checksums
Reliability in the Protocol Stack

Application

Presentation

Session

Transport

Network

Data link Control

Physical interface

Virtual link for reliable packets

Virtual bit pipe

Virtual network service

Virtual session

Virtual link for end to end packets

FEC/ARQ

ARQ

FEC coding

External Site

subnet node

subnet node

External site

phys. int.

physical interface

phys. int.

DLC

DLC

DLC

DLC