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Abstract—The Age-of-Information (AoI) metric has been
widely studied in the theoretical communication networks and
queuing systems literature. However, experimental evaluation
of its applicability to complex real-world time-sensitive systems
is largely lacking. In this work, we develop, implement, and
evaluate an AoI-based application layer middleware that enables
the customization of WiFi networks to the needs of time-sensitive
applications. By controlling the storage and flow of information in
the underlying WiFi network, our middleware can: (i) prevent
packet collisions; (ii) discard stale packets that are no longer
useful; and (iii) dynamically prioritize the transmission of the
most relevant information. To demonstrate the benefits of our
middleware, we implement a mobility tracking application using
a swarm of UAVs communicating with a central controller via
WiFi. Our experimental results show that, when compared to
WiFi-UDP/WiFi-TCP, the middleware can improve information
freshness by a factor of 109x/48x and tracking accuracy by a
factor of 4x/6x, respectively. Most importantly, our results also
show that the performance gains of our approach increase as the
system scales and/or the traffic load increases.

I. INTRODUCTION

Emerging time-sensitive applications increasingly rely on
collaborative multi-agent systems. Examples are abundant:
search and rescue missions using a team of unmanned aerial
vehicles (UAVs), smart factories with connected automated
machinery, and smart city intersections with connected self-
driving cars. In such application domains, it is essential that
agents communicate in a timely manner about changes in the
environment and adapt their behavior accordingly. A major
roadblock in deploying these applications in the real-world
is that traditional communication networks were not designed
to support large-scale multi-agent system that need to share
time-sensitive information to collaborate effectively.

WiFi is a common choice for deploying time-sensitive
applications. Some examples include: automated fulfilment
warehouses at Amazon [1], vehicle-to-everything communica-
tion in New York City [2]–[4], and various multi-agent systems
using teams of UAVs and ground robots [5]–[15]. WiFi is
attractive for deploying such systems because it is inexpen-
sive, tried-and-true, and readily available in sensors, cameras,
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UAVs, and robotic platforms. However, it is well-known
that WiFi’s performance degrades sharply as the network
size scales and traffic load increases. This is due to WiFi’s
Carrier-Sense Multiple Access (CSMA) distributed random
access mechanism that works well for small-scale underloaded
networks, but not for large-scale systems with stringent latency
or freshness requirements. When a larger number of sources
attempt to transmit using distributed random access, the higher
probability of packet collisions leads to lower throughput and
higher latency, which can result in degraded performance (or
even failure) of the time-sensitive application.

Our contributions: (1) Middleware design. We develop a
networking middleware that makes WiFi networks customiz-
able, allowing system designers to easily tailor WiFi to the
needs of specific time-sensitive applications. Our middleware
drives the underlying distributed WiFi network to behave as a
network with centralized resource allocation and with custom
queues at the sources. By controlling the storage and flow of
information in the WiFi network, the middleware: (i) prevents
packet collisions; (ii) dynamically prioritizes the transmissions
that are most valuable to the application; and (iii) discards stale
packets that are no longer useful to the application before they
are ever transmitted, thus alleviating congestion.

The networking middleware has two distinct features. First,
it is implemented at the application layer, without (any)
modifications to lower layers of the networking protocol
stack. The middleware runs over UDP/IP and standard 802.11
WiFi, making it easy to customize and integrate to existing
time-sensitive applications that are already implemented using
WiFi, such as [1]–[15]. Second, the middleware is designed
around the idea of information freshness, specifically the Age-
of-Information (AoI) metric. The AoI captures the freshness
of the information from the perspective of the destination, in
contrast to the long-established packet delay that represents the
latency of a particular packet. The networking middleware
can leverage AoI to prioritize transmissions to destinations
with stale information. Keeping information fresh is critical
for time-sensitive applications, especially those that rely on
cooperative multi-agent systems.

Our contribution: (2) WiSwarm implementation. To
demonstrate the performance improvement that can be achie-
ved by customizing the WiFi network, we implement Wi-
Swarm: an instantiation of our networking middleware for
a mobility tracking application that relies on a collabora-
tive UAV swarm. Following the recent growing interest in
computational offloading to enhance the scale of multi-agent



Fig. 1: Flight experiment with five UAVs.

robotics applications [16], we implement a mobility tracking
application composed of several small and inexpensive UAVs
and one leader node with high compute power. Each UAV
senses the environment (e.g., collects video) and transmits this
contextual information to the leader node. The leader node
consolidates the information from the UAVs and transmits
trajectory updates that allow the UAVs to track the moving
objects. Clearly, it is essential to keep the contextual informa-
tion at the leader node and the trajectory updates at every
UAV as fresh as possible, since outdated information loses its
value and can lead to system failures (e.g., UAV losing track
of an object) and safety risks (e.g., UAV collisions).

We evaluate WiSwarm in flight experiments with up to five
sensing-UAVs (see Fig. 1), and in stationary experiments
with up to fourteen Raspberry Pis (RasPis) emulating UAVs.
We collect data from nearly 4 hours of flight tests and
400 hours of stationary tests. We also provide a video [17]
summarizing the setup and results from our flight experiments.
Our experimental results show that WiSwarm significantly
outperforms WiFi in terms of throughput, information fresh-
ness, tracking performance, and scalability. The stationary
experiments with fourteen sources shows that WiSwarm im-
proves information freshness by a factor of 109, and tracking
error by a factor of 4. The flight tests show that mobility
tracking with WiFi can support at most two sensing-UAVs
while WiSwarm can support at least five sensing-UAVs under
similar conditions.

To the best of our knowledge, this is the first work
to develop and implement an application-layer solution
that optimizes information freshness in the wireless net-
work without requiring modifications to lower layers of
the networking protocol stack and, also, the first work
to experimentally evaluate the impact of an AoI-based
solution in a real-world time-sensitive application.

The remainder of this work is organized as follows. In
Sec. II, we introduce the AoI metric and describe the middle-
ware. In Sec. III, we describe the design and implementation
of WiSwarm. In Sec. IV, we evaluate the performance of
WiSwarm in flight tests and stationary experiments. Finally,
in Sec. V, we conclude and discuss future work.

Fig. 2: AoI-based application layer Networking Middleware.

Fig. 3: AoI evolution.

II. NETWORKING MIDDLEWARE FOR INFORMATION
FRESHNESS

In this section, we describe a networking middleware (il-
lustrated in Fig. 2) that customizes WiFi to the needs of the
important and broad class of time-sensitive applications that
rely on multi-agent systems. In these applications, agents (also
called followers) collect and transmit time-sensitive informa-
tion to a central compute node (also called the leader). The
leader consolidates the received information and coordinates
the followers’ behavior in a timely manner. Naturally, it is
critical to keep information in the network as fresh as possible.
We formally define the Age-of-Information metric in Sec. II-A.
In Sec. II-D, we describe the middleware design based on the
considerations in Secs. II-A, II-B, and II-C.

A. Age-of-Information Metric

AoI is an end-to-end metric that characterizes how old
the information is from the perspective of the destination
[18]. Consider a multi-agent system in which updates from
followers are time-stamped upon generation. Let τi(t) be the
largest time-stamp of an update from follower i received by the
leader by time t. The AoI associated with follower i is defined
as Ai(t) := t − τi(t). The AoI increases linearly with time
when no updates are delivered, representing the information
getting older. At the moment a fresher update from follower i
is received by the leader, the value of τi(t) increases and the
AoI reduces to the delay of the received update. This evolution
of the AoI metric with time is illustrated in Fig. 3.



Over the past decade there has been a rapidly growing body
of works analyzing AoI in different contexts (see surveys
in [19]–[21]). Several theory-oriented papers have analyzed
AoI in queuing systems [18], [22]–[26] and proposed novel
network control mechanisms [27]–[33] that could potentially
be leveraged in real-world applications.

More recently, a few works [34]–[41] have considered
system implementations. These system-oriented works can be
separated into two categories: (i) measurement of AoI in real
networks [34], [35]; and (ii) evaluation of communication net-
works that attempt to minimize AoI by looking at congestion
control [36], traffic engineering [37], and medium access using
Software Defined Radios (SDRs) [38]–[41]. However, there
has been no prior work on the experimental evaluation of the
impact of an AoI-based networking solution in a real-world
time-sensitive application, which is the focus of this work.

B. Customizable Queueing at the Followers

Data generation and queueing have significant impact on
information freshness. The follower middleware architecture
illustrated on the left in Fig. 2 receives updates at rates that are
determined by sensors/applications, then it time-stamps and
enqueues these updates. Upon receiving a polling request from
the leader, the follower middleware releases a single update
via UDP/IP to lower layers of the network protocol stack. Our
middleware incorporates two key ideas from the AoI literature
to enable information freshness - a mechanism to control the
update generation rate, and an implementation of Last-In First-
Out (LIFO) queues.

First-In First-Out (FIFO) queues are the default queuing
implementation in most communication networks. However,
to manage AoI, they require careful control of the arrival rate.
If updates are generated at a low rate, then the information
updates are too infrequent. On the other hand, if updates are
generated at a very high rate, then the FIFO queue will often be
backlogged and fresh updates will have to face large queueing
delays. To address this problem, we implement a rate control
mechanism at the followers that can be used when applications
use FIFO queues.

Rate Control: To adjust the update generation rate, the rate
control mechanism only updates its queue at fixed intervals
of time, dropping any updates generated in between. This
mechanism ensures that the middleware only accepts new
updates at the desired rate. Note that finding the optimal
generation rate for a given network setup is a nontrivial task,
as the optimal rate depends on the network’s topology, traffic
load, link reliability, and Medium Access Control (MAC)
mechanism. To illustrate the impact of the generation rate
on information freshness, we plot in Fig. 7(a) the AoI of a
standard WiFi system (that uses FIFO queues at the MAC
layer) with different update generation rates, including the
optimal rate which is obtained by grid search.

LIFO Queues: Last-In First-Out (LIFO) queues transmit
the most recently generated update first, making them ideal
for applications that rely on the knowledge of the current state
of the system, such as mobility tracking. When an update is

generated, the LIFO queue simply replaces the old head-of-
line update with the fresh update. A higher update generation
rate at the followers can only lead to fresher updates at the
leader and, hence, a lower AoI. LIFO queues have been
shown to be optimal for minimizing AoI in a wide variety
of network settings [26], [42]. However, LIFO queues are
rarely implemented at the transport, MAC, or physical layers
in practice. Our middleware supports both FIFO and LIFO
queues at the application layer, while also supporting rate
control, providing the system designer with two important
tools to manage AoI.

C. Customizable Transmission Scheduling at the Leader
The multiple access mechanism controls the method by

which followers and leader share information using the limited
communication resources. WiFi employs a distributed random
access mechanism that works well for small-scale underloaded
networks. However, for large-scale congested networks, it
leads to excess packet collisions that in turn lead to lower
throughput and higher latency, and ultimately poor perfor-
mance for real-time applications.

We design the leader middleware, illustrated on the right
in Fig. 2, to: (i) prevent packet collisions; (ii) enable dynamic
prioritization of the transmissions that are most valuable to
the application; and (iii) facilitate integration with existing
multi-agent systems that use WiFi. The middleware drives
the underlying distributed WiFi network to behave like a
centralized network with support for polling. Specifically, the
leader middleware coordinates the flow of information in the
network by sending polling packets to the followers selected
for transmission. At every decision time t, the leader selects
the next follower to poll based on an application-centric
transmission scheduling policy π, which can be a function
of the current AoI of the followers Ai(t), the reliability of
the WiFi links pi(t), where pi(t) ∈ (0, 1] represents the
probability of a successful transmission from follower i to the
leader, and the application-defined priority weights wi(t) ≥ 0,
which represent the relative importance of each follower’s
information to the overall application goal. For example, in
a mobility tracking application, the estimated velocities of the
moving objects can be assigned as application weights wi(t),
since faster objects may require more updates than slower
objects in order to achieve the same tracking performance.

To capture application priorities and information freshness,
we define the expected time-average of the weighted sum of
AoIs across the entire network as

1

T
E

[
N∑
i=1

(∫ T

t=0

wi(t)Ai(t)dt

)]
, (1)

where N is the number of followers, T is the time-horizon,
and the expectation is with respect to the randomness in the
link’s reliability pi(t) and the policy π.

Many theoretical works [27]–[30] have studied the structure
of scheduling policies that attempt to minimize objective
functions of the form (1). A key take away from these works is
that, given the knowledge of the application weights wi(t), link



reliabilities pi(t), and information freshness Ai(t) of every
follower i, the Whittle’s Index Policy is a near-optimal solution
to the problem of minimizing (1). The Whittle’s Index Policy
selects, at every decision time t, the follower i∗ that satisfies

i∗ ∈ argmaxi
{
wi(t)pi(t)A

2
i (t)

}
, (2)

with ties being broken arbitrarily. Intuitively, the Whittle’s
Index Policy is polling the followers associated with high
application weights, reliable WiFi links, and outdated infor-
mation at the leader.

Recent works have developed similar Whittle’s Index Poli-
cies to address generalizations of (1). Specifically, [30] ad-
dressed the problem of minimizing general non-decreasing
cost functions of AoI, fi(Ai(t)), as opposed to simply mini-
mizing Ai(t), and [31] considered network settings with time-
varying, unknown and even adversarial application weights
wi(t). This suggests that Whittle’s Index Policies are re-
markably robust and can be applied to a wide variety of
applications. Moreover, the Whittle’s Index Policy has low
computational complexity: it only requires solving the maxi-
mization in (2) and computing estimates of wi(t), pi(t), and
Ai(t).

D. Middleware Design

We describe the networking middleware illustrated in Fig. 2,
which incorporates both the application-centric queueing at the
followers and transmission scheduling at the leader.

Followers collect information updates about their immedi-
ate environment (e.g., video, pictures, laser scans, and temper-
ature) and about their own platforms (e.g., position, attitude,
velocity, and battery level). These updates are sent to the
follower middleware to be prepared for transmission.

The rate control mechanism decides whether each update
is discarded or enqueued. The follower middleware time-
stamps each update that is not discarded at the time of
collection and enqueues them. These time-stamps are used to
compute Ai(t) = t − τi(t) at the leader upon delivery. The
queuing discipline, update rates, and queue buffer sizes can
be controlled by the middleware to satisfy the requirements of
the application.

When the follower receives a polling packet, it releases
a single information update from its queue. Assuming that
the update does not exceed the maximum length of the UDP
payload (or any threshold set by the system designer), the
released update can be simply forwarded via UDP/IP to lower
layers of the networking protocol stack. However, if the update
is too large, then the middleware divides the update into
fragments. Fragments are stored in a separate FIFO queue and
then transmitted one-by-one to the leader. Each fragment is
transmitted via UDP/IP over standard WiFi. Since the maxi-
mum WiFi frame length can be smaller than the UDP payload
size, it is possible that WiFi will require multiple successful
over-the-air transmissions to deliver a single fragment to the
leader. If WiFi fails to deliver a fragment, the middleware
attempts to re-transmit the fragment using an error-control
mechanism based on acknowledgements at the fragment level.

The Leader’s responsibilities include coordinating both the
flow of information in the WiFi network and the followers’
behavior. To do so, the leader manages the generation and
transmission of polling packets and control information. Since
follower’s updates are transmitted only upon reception of a
polling packet, the leader has almost full control of the flow
of information in the WiFi network, irrespective of the number
of followers and the amount of data they generate.

The leader uses the Whittle’s Index Policy (2) to decide the
next follower to poll. After transmitting a polling packet, the
leader waits for the reception of a fragment. If this waiting
period exceeds a timeout interval (e.g., 300milliseconds), the
attempt is assumed to have failed. Upon receiving a fragment
or after a timeout, the leader prepares for the transmission of
the next polling packet.

Prior to transmitting the next polling packet, the leader takes
a series of steps that depend on whether the received fragment
was the final fragment of an information update or not. If
the received fragment from follower i was not the final one,
then the leader middleware simply updates pi(t). On the other
hand, if the received fragment was the final, then the leader: (i)
updates pi(t); (ii) combines fragments to obtain the original
information update; (iii) extracts the associated time-stamp
and updates Ai(t); (iv) sends the information update to the
application for processing; and (v) updates both wi(t) and the
control information based on the results of this processing.

To estimate pi(t), the leader computes p̂i(t) = Di(t)/W,
where Di(t) is the number of polling packets which received a
successful response from follower i out of the last W polling
packets sent to it. To accurately compute Ai(t) = t − τi(t),
where t is the current time measured by the leader and τi(t) is
the largest time-stamp received from follower i, the clock at
follower i should be synchronized with the leader’s clock. The
middleware performs periodic clock synchronization across all
followers and the leader, at every 120 seconds using NTP [43].

After performing the necessary updates, the leader middle-
ware transmits a new polling packet to the selected follower.
The latest control information is broadcast to all followers
along with every polling packet.

III. WISWARM: DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of WiSwarm which is an instantiation of the networking
middleware for information freshness discussed in Sec. II
tailored to a mobility tracking application.

A. Mobility Tracking Application

Consider a setting where multiple UAVs are tracking mov-
ing objects on the ground. Clearly, outdated information about
the position of the objects has a direct impact on the tracking
capability of the UAVs. Ideally, the UAVs would like to receive
fresh information about the objects continuously. One simple
system design that achieves this goal consists of UAVs with
high on-board computational power that are able to process
video frames acquired from their cameras to detect and track
objects. The continuous stream of images is processed locally,



Fig. 4: Mobility tracking application implemented using mul-
tiple sensing-UAVs and a leader compute node.

adding almost no delay, which keeps the UAVs updated about
the position of the objects. A critical drawback of this approach
is the prohibitively high cost of deploying numerous UAVs
with high on-board computational power.

The separation of computing and sensing allows for more
scalable system design - with one leader-node that has plenty
of on-board computational power, and numerous low-cost
sensing-UAVs that have little computational power but can
effectively collect sensor data and communicate over a wire-
less network. Figure 4 illustrates an example of this system
design approach. In general, the leader node could be an
UAV with a powerful on-board computer such as a Jetson
TX2, a compute node located at the wireless edge, or even
a cloud server performing high-speed inference and sending
back control commands.

In our specific implementation of the mobility tracking
application, the sensing-UAVs capture video of the immediate
environment below them and send the captured video frames
(without any pre-processing) to the leader compute node. The
leader processes the received frames, infers the position of the
objects, and sends trajectory updates to the sensing-UAVs via
WiFi. The main challenge of this design approach is to manage
the limited wireless resources efficiently in order to keep
information at the UAVs as fresh as possible. WiSwarm, an
instantiation of our networking middleware, ensures informa-
tion freshness and scalable tracking performance by carefully
controlling the flow of information over the network.

Next, we describe the different individual components in-
volved in our application - the mobile objects to be tracked,
the sensing-UAVs, the leader compute node. We also discuss
how WiSwarm is implemented at the sensing-UAVs and the
leader compute node.

B. Mobile Objects
We use small autonomous cars equipped with RasPis (3B)

as the moving objects whose mobility is tracked by the UAVs.
Figure 5(b) shows one such car, with the ArUco marker tag
on top, which is used for uniquely identifying and tracking
the position of the cars by the leader compute node.

C. Follower Sensing-UAVs
The sensing-UAV consists of two subsystems: a quadcopter

drone and a RasPi (Zero W). Figure 5(a) shows a sensing-
UAV with a RasPi on board the quadcopter drone, along with
its sensing and communication peripherals.

(a) (b)

Fig. 5: (a) Sensing-UAV. (b) Autonomous car with an identi-
fying ArUco marker on top.

RasPi (Zero Ws) have very little computation capability (1
GHz single-core CPU and 512 MB RAM), but can effectively
interact with multiple sensors and also communicate over
WiFi. They are also extremely cost-efficient ($10), making
them ideal for use in the sensing-UAVs. Each UAV is also
equipped with a micro-controller unit (MCU) that runs state
estimation and flight control algorithms. The state estimator
combines measurements from an on-board inertial measure-
ment unit (IMU) with global position and orientation measure-
ments. These global measurements are obtained from a motion
capture system and received by an Xbee WiFi module mounted
on the UAV. When motion capture data is not available, the
Xbee module can be replaced by an alternative data source,
such as a global navigation satellite system (GNSS) receiver.

The RasPi is connected to a camera that captures video of
the area below the UAV. Along with each frame, the RasPi also
collects the position and orientation at which the frame was
collected by asking for this information from the MCU using
an asynchronous serial connection. Following the discussion
in Sec. II-B, we know that fresh frames are the most useful
for tracking, so we set the queuing discipline at the sensing-
UAVs to be LIFO and the buffer size to be such that it can
accommodate only one frame at a time.

The RasPi is connected to the leader compute node over
2.4 GHz WiFi using a high gain (8 dBi) antenna. Whenever
the RasPi receives a polling packet, it transmits the most
recent update in its LIFO queue to the compute node. The
RasPi also collects the control information transmitted by the
compute node which contains the times and locations (in
global coordinates) where the UAV should be in the future
in order to track the moving object. The RasPi sends these
waypoints over the serial connection to the UAV MCU. The
UAV MCU then plans and executes a trajectory that reaches
the specified waypoints at the specified future time instants. It
does this by interpolating the waypoints to obtain a continuous
trajectory that is followed using the flight control algorithm
described in [44]. This completes the control loop.

D. Leader Compute Node

The compute node collects video-frames received from
sensing-UAVs in response to polling requests. These video-
frames are stored in separate LIFO queues - one for each
sensing-UAV. The compute node runs an image processing
thread which goes over the queues maintained by WiSwarm



in a round-robin manner and processes the received video-
frames whenever it finds a non-empty queue.

For each video-frame, the image processing thread attempts
to locate the car that the UAV was assigned to track. If the car
is found, it uses the relative location of the tag in the frame
and the absolute position and orientation at which the frame
was captured to compute the global coordinates of the car.
The thread also keeps a record of the last known locations of
the car. Using the current and previous locations, the image
processing thread obtains: (i) the relative velocity between the
car and the sensing UAV; and (ii) a list of future waypoints
and the time-stamps at which it expects the car to reach these
coordinates. In our implementation, we use a simple linear
extrapolation scheme to predict future waypoints.

The image processing thread sends the waypoints and time-
stamps to WiSwarm along with information about the relative
velocity between the car and the sensing-UAV. WiSwarm uses
the relative velocity information to update its application-
defined priority weights

wi(t)← αwi(t
−) + (1− α)v̂i(t), (3)

where v̂i(t) is the estimate of relative velocity between the car
and the associated sensing UAV, and α = 0.8. Since velocity
estimates are noisy and car velocities are time-varying, we
use an exponential moving average motivated by the adaptive
AoI-based scheduling algorithms proposed in [31]. WiSwarm
updates link reliabilities pi(t) by using the number of success-
ful fragment deliveries, as described in Sec. II-D.

With updated application weights wi(t) and link reliabilities
pi(t), WiSwarm uses Whittle’s Index Policy (2) to select
the sensing-UAVs that need to be scheduled for transmission
most urgently. Together with the unicast transmission of a
polling packet, WiSwarm broadcasts the most recent list of
future waypoints and time-stamps for every sensing-UAV.
This repeated broadcast ensures redundancy in the delivery
of control information.

IV. EVALUATION

In this section, we evaluate the performance of both WiFi
and WiSwarm for the mobility tracking application. We per-
form our experiments in a dynamic indoor campus space with
multiple external sources of interference such as WiFi base
stations, mobile phones, and laptops. Throughout this section
when we refer to WiFi, we mean 2.4 GHz WiFi.

In our evaluation, we consider two experimental setups:
(i) Stationary experiments, which involve up to fourteen
RasPis running an emulated version of the mobility tracking
application and sending video-frames to a central Compute
Node. These experiments involved hardware-in-the-loop and
allowed us to test a variety of network sizes, update generation
rates, scheduling policies, frame resolutions, packet sizes and
interference conditions. (ii) Flight experiments, which involve
interfacing the RasPis with UAVs and conducting real mobility
tracking experiments. These allowed us to test how WiSwarm
performs with mobile agents, at longer distances, and in the

Fig. 6: Screenshot from the videos used to simulate car move-
ment during stationary experiments. The tags are programmed
to perform random walks with time-varying velocities. The
virtual UAVs need to keep track of the tags. On the right, two
examples of 224x224 frames sent to the Compute Node by
the RasPis based on their current virtual UAV locations.

presence of significant interference. They also illustrate the
drawbacks of using WiFi more clearly.

Baseline. To demonstrate the performance improvement of
WiSwarm, we compare it with two baseline WiFi systems,
namely WiFi-TCP and WiFi-UDP. Both systems collect video
frames from the application layer at a fixed rate, packetize
them, store them in FIFO queues, and send these packets over
standard WiFi to the Compute Node. TCP uses its congestion
control mechanism to adjust the number of packets in flight,
while UDP simply forwards packets. In all of our stationary
experiments, we found that accommodating the entire video
frame within a single UDP packet (i.e., with no fragmentation)
was the best choice in terms of tracking error.

For flight experiments, we consider an optimized version
of WiFi-UDP as the baseline. Our flight tests showed that
mobility tracking with WiFi-UDP and WiFi-TCP with fixed
video frame rate (e.g., 50 fps) was not possible for more than a
single sensing-UAV. To get mobility tracking to work with two
sensing-UAVs, we had to carefully tune the frame generation
rate (to 5 fps) and the UDP packet size (to 6 kB per fragment).
This is due to the high congestion and unreliability caused by
high generation rates and large packets, which caused tracking
failures. Further, we also had to tune RTS/CTS thresholds.
Despite all of this optimization, WiFi-UDP was only able to
enable tracking for at most two UAVs at a time, as we show
in the discussion on flight experiments.

A. Stationary Experiments

In this section, we discuss the performance improvements of
WiSwarm over WiFi for three different metrics: (i) AoI, (ii)
throughput, and, most importantly, (iii) tracking error. Each
data-point in the following discussion represents 16 minutes
worth of experiments, split into 4 batches of 4 minutes each.
We calculate the time-average of the performance metric over
the entire 4 minutes of each batch and then the mean and
standard deviation across batches.

Experimental Setup. The experiments involve multiple
RasPis running an emulated virtual UAV application. This
application does two things. First, each RasPi has a video
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Fig. 7: (a) AoI and (b) tracking error of baseline WiFi-TCP
and WiFi-UDP plotted against the update generation rate of
each of the N = 6 emulated UAVs.

simulating the movement of cars stored on it. Using this
video, the RasPis create cropped frames of size 224x224,
based on the current location of the virtual UAV, which
capture the local Field-of-View (FoV). These video frames
are generated at a specified rate that can be set using the rate
control mechanism, and are forwarded to WiFi or WiSwarm
for delivery. The frames are stored as unencoded grayscale
yuv images (1 byte per pixel), so each video frame is 49 kB
in size. Second, the application decodes the control packets
received from the Compute Node and updates the virtual
UAV’s location by moving between control waypoints at a
specified speed. Figure 6 shows a frame from the video used
for simulating movement of the car tags, along with two
examples of 224x224 frames that the RasPis send to the
Compute Node for processing.

Figure 7 plots the mean AoI and tracking error per UAV
for both WiFi-TCP and WiFi-UDP as the frame generation
rate at the RasPis increases. This plot is for a system with 6
transmitting RasPis. Note that lower AoI and lower tracking
error are preferred in terms of performance.

We make two important observations from Fig. 7. First,
the performance of both WiFi-TCP and WiFi-UDP degrades
when the generation rate is high, since the network becomes
congested. Second, WiFi needs optimization of the generation
rate at the application layer to be anywhere close to working
in practice. This optimization is challenging since it needs to
be at the application layer and also adjust quickly to changes
in the traffic load and link reliability, which can vary due to
external interference. This is true for both TCP and UDP, i.e.
TCP congestion control was unable to adjust to the optimal
rate on its own.

Next, we compare the performance of WiSwarm with
both fixed-rate versions of WiFi and rate-optimized versions
of WiFi. We choose the frame generation rates from the
set {1, 3, 5, 7, 10, 15, 20, 25, 50, 100} fps and the number of
RasPis from the set N ∈ {2, 4, 6, 8, 10, 12, 14}. We find the
best performing rates for each value of N from the rate set
(based on tracking error).

To the best of our knowledge, there are no general purpose
systems that can do application layer rate control for a
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Fig. 8: Mean AoI per UAV plotted for (a) fixed-rate (50 fps)
and (b) optimized rate WiFi, as well as WiSwarm, as the
number of UAVs increases.
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Fig. 9: Tail (95th percentile) AoI per UAV plotted for (a) fixed-
rate (50 fps) and (b) optimized rate WiFi, as well as WiSwarm,
as the number of UAVs increases.

wide variety of real-time applications, so the rate-optimized
WiFi systems are overly optimistic baselines. Despite this,
WiSwarm achieves significant performance gains over both
fixed-rate and optimized rate versions of WiFi-TCP and WiFi-
UDP.

AoI. Figure 8 plots the mean AoI per UAV as the system
size N increases. More sources in the system means more
congestion, more packet collisions (in WiFi) and hence poor
performance and scalability. We see this clearly in Fig. 8(a),
where we compare the baseline versions of WiFi-UDP and
WiFi-TCP to WiSwarm. The baseline versions of WiFi have
fixed update generation rate of 50 fps at each source while
WiSwarm uses the maximum generation rate of 100 fps. Mean
AoI improves by 16x for N = 8 and by almost 50x for
N = 14 compared to fixed-rate WiFi. A major cause of the
poor performance of WiFi is buildup of FIFO queues once
the network becomes congested. Fixed-rate TCP eventually
starts outperforming fixed-rate UDP for larger N , due to its
congestion control mechanism. WiSwarm does not suffer from
the congestion problem due to the LIFO queues.

Figure 8(b) compares rate-optimized versions of WiFi-TCP
and WiFi-UDP with WiSwarm. We observe that mean AoI
still improves by 1.5x for N = 8 and 2.2x for N = 14.
While the FIFO queues in WiFi are no longer congested due
to careful tuning of the frame generation rates, there are still
packet collisions due to the distributed nature of the CSMA
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Fig. 10: Mean Throughput per UAV plotted for (a) fixed-rate
(50 fps) and (b) optimized rate WiFi, as well as WiSwarm, as
the number of UAVs increases.

protocol and external interference sources. WiSwarm avoids
these collisions by centralizing medium access scheduling
decisions and prioritizing sources with higher AoI.

Since AoI combines the idea of service regularity with
latency, we are also interested in the tail of information
freshness. Figure 9 plots the performance of baseline WiFi
systems and WiSwarm for the 95th percentile of AoI, i.e. the
value of AoI which is only exceeded 5% of the time during
an entire experiment. We observe very similar gains as mean
AoI. For fixed rate, we observe an 18x reduction at N = 8
and 36x reduction at N = 14. For rate-optimized, we observe
a 1.2x reduction at N = 8 and a 1.7x reduction for N = 14.
Note that the tail AoI is important for our tracking application
in addition to mean AoI, since a worse tail suggests a higher
probability of the car going out of the UAV’s Field-of-View
leading to lost tracking.

Throughput. Figure 10 plots the mean throughput per UAV
for each of the considered systems as the number of UAVs
increases. From Fig. 10(a), we observe that both fixed-rate
WiFi-TCP and WiFi-UDP have higher per UAV throughput
than WiSwarm. However, this doesn’t help in getting better
AoI (as we saw earlier) or tracking performance (as we will see
later). This supports the idea that high throughput alone
is not sufficient and AoI is the right metric to optimize
for in such real-time applications. For the rate-optimized
versions of WiFi, we see a performance improvement in
mean throughput per-UAV since WiSwarm can avoid packet
collisions and deliver higher rates than the distributed CSMA
mechanism while also ensuring lower AoIs. For N = 8,
WiSwarm achieves 1.2x higher throughput and for N = 14,
it achieves 2.7x higher throughput.

Tracking Error. This is where we see how all the pieces of
our system design come together to deliver better application
performance. Figure 11 plots the mean tracking error (in pix-
els) per UAV as the number of UAVs increases, for WiSwarm
and WiFi implementations. From Fig. 11(a), which shows
the fixed-rate baselines, we observe that tracking performance
improves by 12x for N = 8 and 4x for N = 14. From
Fig. 11(b), with rate-optimized WiFi versions, we observe that
tracking error is reduced by 2x at N = 10 and 4x at N = 14
with WiSwarm. We also note that the gap in performance
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Fig. 11: Mean Tracking Error per UAV plotted for (a) fixed-
rate (50 fps) and (b) optimized rate WiFi, as well as WiSwarm,
as the number of UAVs increases.

Fig. 12: Two Examples of 160x160 grayscale video frames
sent by the RasPis during flight experiments.

between WiSwarm and the WiFi baselines increases with the
system size. In other words, the performance of WiFi-TCP
and WiFi-UDP degrades much more quickly with N leading
to poor scalability.

B. Flight Experiments

While the stationary experiments allowed us to test our
system in great detail and provide extensive comparisons, they
did not involve implementing the application on real UAVs
tracking actual mobile targets in a dynamic environment. Our
flight experiments address exactly this setting. Broadly, we
will observe that the mobility of UAVs and higher degree
of interference leads to worse wireless connectivity and, in
turn, more congestion and packet collisions for WiFi. This
allows us to bring the robustness of WiSwarm into focus. We
provide a video describing the setup and results from the flight
experiments at [17].

Experimental Setup. In the flight tests, we replace the
internal antenna of the RasPis with an external high-gain
(8 dBi) antenna to improve range and reliability when the
UAVs fly. We fly up to 5 UAVs at a time in our experiment
space which is roughly 20 meters x 10 meters in size. The
mobile objects are autonomous cars with RasPi 3Bs shown
in Fig. 5(b). We program these cars to move in different
polygonal trajectories over time and also stop occasionally at
random for a few seconds. These trajectories are unknown to
the UAVs and the Compute Node, and the job of the UAVs
is to track the cars as closely as possible. Figure 1 depicts



Fig. 13: Coordinates of sensing-UAVs and target cars in 2-D
and 3-D, for a two drone flight experiment running WiSwarm.

the setup for an experiment involving 5 UAVs tracking the
corresponding cars.

We configure the Pi-Cameras at the UAVs to generate video
frames at the maximum possible rate, which is 90 frames
per second. For WiSwarm, we utilize this full rate, while for
WiFi, we choose the optimized rate by using rate control.
The video frames are 160x160 unencoded grayscale images
in the yuv format (1 byte per pixel), with a total size of 25
kB per frame. Figure 12 shows two examples of frames sent
to the Compute Node by RasPis from the flying UAVs during
different experiments.

The sensing-UAVs implement a controller that requires
knowledge of their own global position and orientation to be
able to plan desired trajectories. A Motion Capture (MoCap)
system provides this information to the UAVs (also via 2.4
GHz WiFi). These MoCap messages are sent to the UAVs in
UDP messages at 30 messages/second and each message con-
tains timestamp, position, and orientation of a single vehicle
in 45 bytes. So the MoCap network usage is approximately
1.3 kB/s (or 11 kb/s) per UAV. Importantly, the MoCap system
runs completely independently from the WiSwarm and WiFi
systems and causes a low level of persistent interference in
the channel. Thus, results from our flight experiments are a
good measure of robustness of WiSwarm and WiFi to external
interference.

Results. Figure 13 plots the coordinates of the sensing-
UAVs and the target cars over time, for a two drone WiSwarm
experiment, in both 2-D and 3-D. Similarly, Fig. 14 plots
the coordinates of the sensing-UAVs and the target cars over
time, for a two drone WiFi experiment. It is easy to see that
WiSwarm allows for far better tracking than WiFi even for
just two UAVs. This is further supported by the histograms of
AoI and tracking error plotted in Fig. 15. The lower tracking
error for WiSwarm is due to the fact that it can achieve lower
AoI, and hence deliver fresher information.

We summarize the results of all of our flight experiments in
Tables I and II. We average over 4 minutes of flight data for
each experiment. Our main observation is as follows: while
WiFi allows tracking for up to two UAVs at a time,
WiSwarm can easily allow tracking for up to five UAVs
at a time. In fact, when there are more than two sources in
the system, WiFi is unable to deliver more than a handful
of packets and essentially no UAV control is possible. The

Fig. 14: Coordinates of sensing-UAVs and target cars in 2-D
and 3-D, for a two drone flight experiment running optimized
WiFi-UDP.

(a) (b)

Fig. 15: Histograms of (a) AoI and (b) tracking error for flight
experiments with two UAVs, comparing WiSwarm with WiFi.

main reason for this is the high level of packet collisions for
WiFi. WiSwarm is relatively robust to the unreliable wireless
channels, interference and mobility issues encountered in flight
experiments, due to our scheduler design that avoids packet
collisions and prioritizes AoI.

Number of Drones 1 2 3 4 5

WiFi-UDP (Optimized) 0.43 1.85 - - -
WiSwarm 0.39 0.30 0.39 0.35 0.36

TABLE I: Average tracking error per sensing-UAV (in meters).

Number of Drones 1 2 3 4 5

WiFi-UDP (Optimized) 0.10 0.19 - - -
WiSwarm 0.08 0.09 0.11 0.12 0.16

TABLE II: Average AoI per sensing-UAV (in seconds).

V. CONCLUSION

In this paper, we propose an AoI-based networking middle-
ware that enables the customization of WiFi networks to the
needs of time-sensitive applications that rely on multi-agent
systems. By controlling the storage and flow of information
in the underlying WiFi network, the middleware can pre-
vent packet collisions and dynamically prioritize transmissions
aiming to optimize information freshness. The middleware is
implemented at the application layer, facilitating customization
and integration to existing systems To demonstrate the benefits
of our middleware, we implement a mobility tracking appli-
cation using a swarm of sensing-UAVs communicating with a
central controller via WiFi. Our experimental results show that
our middleware can improve information freshness and, as a



result, tracking accuracy by more than one order of magnitude
when compared to an equivalent system that uses plain WiFi.
Our flight tests also show that the middleware improves
scalability of the mobility tracking application. Interesting
extensions of this work include consideration of a distributed
middleware architecture.
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