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Abstract

Human scene understanding involves not just localizing objects,
but also inferring the latent causal properties that give rise to
the scene – for instance, how heavy those objects are. These
properties can be guessed based on visual features (e.g., mate-
rial texture), but we can also infer them from how they impact
the dynamics of the scene. Furthermore, these inferences are
performed rapidly in response to dynamic, ongoing information.
Here we propose a computational framework for understanding
these inferences, and three models that instantiate this frame-
work. We compare these models to the evolution of human
beliefs about object masses. We find that while people’s judg-
ments are generally consistent with Bayesian inference over
these latent parameters, the models that best explain human
judgments are approximations to this inference that hold and
dynamically update beliefs.
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Introduction
When we observe a scene, we do not just see what objects
are where, we also perceive ‘invisible’ properties of objects
that are causally responsible for our observations. If we see
a scene with two blocks like in Fig. 1 (left), we might ini-
tially infer that the wooden block on the left is lighter than
the iron block based on assumed material properties. While
we are able to judge properties like mass or viscosity from
visual material texture alone (Harshfield & DeHardt, 1970;
Van Assen, Barla, & Fleming, 2018), we can also extract this
information from physical dynamics when material properties
are not given (Hamrick, Battaglia, Griffiths, & Tenenbaum,
2016; Kubricht et al., 2016; Sanborn, Mansinghka, & Griffiths,
2013; Schwettmann, Tenenbaum, & Kanwisher, 2018). And
when visual material and dynamics come into conflict, we
can update our initial assumptions. For instance, if a wooden-
looking block collides with an iron block and launches it (e.g.,
Fig. 1, right), we would revise our beliefs to assume that the
wooden-looking block was heavier.

Human judgments about mass from dynamic scenes have
often been formalized as Bayesian inference over unobserved
variables, conditioned on the observed dynamics (Hamrick
et al., 2016; Sanborn et al., 2013). Because physics is a sys-
tem that has analytic solutions in only the simplest cases, this
inference is often done in practice by ‘analysis-by-synthesis’
(Yuille & Kersten, 2006): setting the initial scene configura-
tion (e.g., weights of objects) and running that imagined scene
forwards, then adjusting via stochastic search (e.g., Markov
Chain Monte Carlo) until our predictions match our obser-
vations. But with a large prior space and a naı̈ve inference
algorithm, this process needs excessive computation, requiring
the predictive model be run thousands of times to produce an
accurate posterior belief. This amount of simulation seems
cognitively implausible – it is estimated that to make predic-
tions, we only use a handful of samples from our internal

Figure 1: A ‘surprising’ collision. If we observe a wooden block on
a ramp with an iron block at the bottom (left), we expect the iron
to stop the wood upon collision (center). Seeing the wooden block
launch the iron one (right), lets us update our beliefs about the actual
masses of the two blocks.

model of physics (Battaglia, Hamrick, & Tenenbaum, 2013;
Hamrick, Smith, Griffiths, & Vul, 2015). How does the mind
implement these computations to efficiently judge latent phys-
ical parameters?

To answer this question, we first formalize the computa-
tional problem implied in this inference, and propose two
cognitively plausible models that solve this problem: a ra-
tional process model (Griffiths, Vul, & Sanborn, 2012) that
provides an approximate solution to Bayesian inference based
on particle filters, and an ‘Inference Network’ that amortizes
the inference calculations for judging mass in familiar scenes
based on recurrent neural networks. We then measure the time
course of human inferences in scenes where signals about
weight from visual and dynamic properties are in conflict (sim-
ilar to Fig. 1). We find that both approximations describe
the course of human inferences better than an Ideal Observer
model, suggesting ways that people might perform these infer-
ences in real time.

Formalizing dynamic physical inference

Computational formulation Following Battaglia et al.
(2013), we formalize the generative process as being a com-
bination of physics and graphics applied to a true underlying
world state (Fig. 2A): at each point in time, the world state
transitions according to physics and gives rise to an observable
image based on graphics.

In the case of rigid-body physics, we can instantiate this
model by defining every scene as a collection of objects (oi 2
O), each with three broad properties that affect both physics
and graphics: the geometric properties (g), including the size
and shape; the material properties (m), which describe the
visual texture and also give clues about non-visible properties
such as density; and the state (st ), which describes the position,
rotation, and velocity of the objects. Thus each object is
defined as o

i = {g
i,mi,si

t
}.

Intrinsic object properties such as the geometry and material
are assumed to be stable over time. However, the state of
each object evolves according to a rigid-body physics engine
that considers all object properties: St = p(Gt�1,Mt�1,St�1).
Images are produced at each time step from a graphics engine,
It = g(O,R), where R denotes fixed rendering parameters such
as viewpoint and lighting (Fig. 2B).

Figure 2: A. Schematic of a generative process formalizing the formation of dynamic scenes. B. Schematic of our generative model. Latent
variables are geometry, material, and state properties of objects in the sensory environment. A physics engine evolves the state of the objects in
time. A graphics engine renders each state. Both the Ideal Observer and Sequential Rational Process models invert this generative model to
infer latent properties C. Schematic of the Inference Network model. This model was designed to learn an inversion of the generative model
from (B).

Inference with an Ideal Observer model Given a video,
physical scene understanding can be cast as Bayesian inference
in this generative model to infer a posterior distribution over
latent object properties (where d is the Dirac delta function):

P(O|I0:T ,p(·),g(·)) µ P(I0:T |O,p(·),g(·))P(O)dpdg. (1)

We assume an Ideal Observer (IO) performs this inference
by extracting the ground truth geometry G from the images,
whereas object states St (positions and velocities) are nois-
ily observed at each time point (Smith & Vul, 2013). The
visual material texture can also provide clues to the relevant
physical material properties, which we instantiate as a biased
prior over those values based on the ground truth material
properties (e.g., objects that look like iron are likely to have
high densities, whereas wooden objects are more likely to
be less dense). From this information, the IO jointly infers
the material properties, as well as the true object positions
and velocities according to Eq. 1. This IO model is assumed
to be resource-unbounded in both memory and computation,
performing exact Bayesian inference over the latent properties
at each point in time.

A rational process approximation While the IO model
provides a computational-level theory (Marr, 1982) to the
problem of physical inference, it is ill-suited to real-time infer-
ence in dynamic scenes. Exact inference of P(O|I0:T ) requires
recalculating this value at each time point, as there is no way of
updating P(O|I0:T�1) to exactly determine the belief distribu-
tion over O at the next time point. Moreover, it is unrealistic to
assume that there are no computational or memory limitations
as perception unfolds in real life.

The theory of Rational Process Models (Griffiths et al.,
2012) suggests that the mind might use approximations to
exact Bayesian inference similar to the algorithmic Bayesian
approximations from statistics and computer science. One
approximate algorithm that is well-suited for integrating prob-
abilistic information over time is particle filtering. This algo-
rithm holds beliefs over a limited number of hypotheses, and
sequentially updates this distribution of belief based on obser-
vations. Particle filters have also previously been proposed to
explain human belief updating with incremental information

(Levy, Reali, & Griffiths, 2009; Sanborn, Griffiths, & Navarro,
2010). We therefore propose the Sequential Rational Process
(SRP) model based on a particle filter approximation to the
inference problem as a cognitively plausible solution.

The Inference Network Even though the SRP model pro-
vides a more plausible method of dynamic belief updating
for online physical inference, it is not clear how its various
components (e.g., its use of a software physics engine to sim-
ulate forward dynamics as well as its propose-and-evaluate
cycles) can be implemented using real or artificial networks
of neurons. The Inference Network accomplishes the latter by
compiling the steps of inference in the particle filter algorithm
in a neural network. This is accomplished in the spirit of the
inference compilation (Le, Baydin, & Wood, 2016) where
the network is structured according to the overall conditional
independence structure in the generative model. We use a
structured recurrent neural network that takes videos as inputs
and integrates information arising from appearances and mo-
tions of objects over time to make inferences about all of the
latent variables, {G,M,S}. Apart from these latent variables,
we also introduce interpretable auxiliary variables A: the atten-
tion parameters. These parameters determine which object’s
state should be updated and what regions of the image should
be attended for its relevant evidence.

Fig. 2C shows a detailed view of IN’s architecture. It con-
sists of three components. First, the Graphnet in its general
form aims to represent the physics of the state and to com-
pute a prediction of the next state based on the current state
(Battaglia, Pascanu, Lai, Rezende, & Kavukcuoglu, 2016).
This is akin to running the physics engine one step forward in
the particle filtering algorithm to collect predictions. Second,
an LSTM performs integration of evidence over time and on-
line belief updates. This aims to capture the resampling stage
in particle filters. Third, we use the CNN to process input
video frames. See the Appendix for further details.

Human inferences over time
We evaluate these three models as explanations of human
physical inference on a basic yet rich dynamical scenario:
judging relative masses between two objects involved in a

Battaglia, Hamrick, Tenenbaum (2013)
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Dynamic Physical Inference Results

• Human scene understanding involves inferring 
latent causal properties – e.g., objects’ mass

• These properties can be inferred in real-time 
from (1) texture, (2) object dynamics

• How do we do this “online” updating?
• Test via incongruencies in texture, dynamics

2. Sequential Rational Process

3. Inference Network

• Approximation using Particle Filters
• Resource constrained: 4 hypotheses at a time

• Learns 
approximate 
inverse function

• Plausible neural 
mapping?
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“Analysis by Synthesis:” reconstructing the scene 
that gives rise to sense inputs

• Bayesian inference provides rich, causal explanations of sensory inputs 
supporting physical scene understanding

• Dynamic inference driven by efficient, approximate algorithms
• IN provides starting point for understanding physical inference in the brain

• Watch videos of 
dynamic collisions

• Judge relative 
masses
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of human judgment over time
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Figure 3: Three matched trials with human and model judgments. The initial image along with the end state for both the congruent and
incongruent versions are displayed on top, with the ramp and ground objects magnified. Plots show average human (dots, with bars representing
the 95% CI) and model (dashed line) relative weight ratings for each time point. Both the SRP and IN models captured evolving human
judgments, while the IO model typically shifted its judgments suddenly upon observing a collision.

collision (Fig. 1). Prior research has found that people are
able to discriminate object masses from their dynamics in
these scenarios (Wu, Yildirim, Lim, Freeman, & Tenenbaum,
2015; Schwettmann et al., 2018), but has not investigated the
dynamic nature of these inferences. By providing ‘incongru-
ent’ scenes where the information about mass from shape and
material texture differs from the information provided by the
collision dynamics, we can measure how people update their
beliefs about mass over time, and how this compares to the
unfolding belief distributions from each model.

Methods We recruited 160 participants from Amazon’s Me-
chanical Turk using the psiTurk framework (Gureckis et al.,
2016), who were each compensated $2.50.

To match human judgments to model performance, we
asked participants to view a video of an object sliding down
a ramp and colliding with another object on the ground (see
Fig. 3), until the ‘lights were turned off’ and the screen went
dark. Based on this observation, participants were asked to
judge whether the object on the ramp was lighter or heavier
than the object on the ground. This judgment was registered
using a sliding scale from ‘ground object much heavier’ on
the left to ‘ramp object much heavier’ on the right, with ‘same
weight’ delineating the midpoint.

The experiment began with instructions to introduce partic-
ipants to the task and response methodology, followed by a
comprehension check and five example stimuli (identical for
all participants) for familiarization. Participants then observed
their set of 120 stimuli in a randomized order.

Stimuli Stimuli were produced using the Blender rendering
engine as the graphics module, with the Bullet rigid-body
physics engine as the physics transition model (Blender Online
Community, 2018). In all cases, there was a brick block of

a fixed size, density, and position on the ground; participants
were notified that this object would not change. On the ramp,
the object could be either a block or puck shape, made of
wood, brick, or iron, and had a randomly set size. This ramp
object was placed in the middle of the ramp in depth, randomly
positioned up the slope. True densities for the objects were set
in a 1:2:8 ratio for wood, brick, and iron respectively.

We created 48 ‘incongruent’ scenarios with density drawn
from either a ‘high’ or ‘low’ density distribution, and 48 ‘con-
gruent’ scenarios such that the friction and density of the
ramp object were set to the true material properties. Each of
these scenes with incongruent densities (incongruent-matched)
was matched to one of the scenes with congruent densities
(congruent-matched), such that the ramp object’s visual tex-
ture, size, shape, and initial position were identical. We created
72 additional ‘congruent’ scenarios (congruent-unmatched) to
ensure that incongruent scenes were surprising to participants,
for a total of 168 scenarios.

To investigate how human mass judgments evolve over time,
we made four videos from each scenario, differing in when the
screen went dark: one turning black the frame before the colli-
sion of the two objects (‘pre-collision’), one changing 200ms
after the collision (‘post-collision’), one cutting halfway be-
tween the time when the collision occurred and when all mo-
tion would stop (‘halfway’), and one ending 200ms after both
objects had come to rest (‘full’).

Trials were counterbalanced such that each participant only
observed one video length from each of the matched trial pairs,
while keeping a constant proportion of material types, shapes,
and video lengths within each condition. Therefore, partici-
pants each observed 72 ‘congruent-unmatched,’ 24 ‘congruent-
matched,’ and 24 ‘incongruent-matched’ trials, so that the
incongruent trials were only 20% of the total trials.

Cong. Incong. Cong. Incong.

Figure 4: A. Correlations between model predicted log-mass ratios and human ratings each trials. While the relationship between model
predictions and human judgments for congruent (blue) and incongruent (red) trials are relatively similar in the SRP and IN models, this
relationship is noisier and more biased in the IO model, suggesting the IO is a worse explanation of general human predictions. Black dashed
lines indicate regression lines for congruent-unmatched trials used to calculate RMSE. B. RMSE between model predicted ratings and average
participant ratings. Model predicted ratings were fit with a linear model using the unmatched congruent trials. The IO model performs worse
than the SRP and IN models on out-of-sample fits (both matched congruent and incongruent), suggesting that only the two approximate
inference models generalize the relationship between weight judgments and ratings appropriately.

Empirical results Participants were able to recover the rel-
ative weight of objects under normal conditions; across all
congruent trials, average ratings were highly correlated with
the true log-mass-ratio between the ramp and ground objects
(r = 0.74, t(478) = 24, p ⇡ 0). Participants were also sensi-
tive to the dynamics of the scene; excluding the pre-collision
videos (where we expect no difference), the difference be-
tween human ratings in each matched trial was well-correlated
with the actual difference in log-masses of the congruent and
incongruent matched objects (r = 0.93, t(46) = 17.6, p ⇡ 0).
However, the difference between ratings for matched trials
was not static over time (post: 15.1, half: 13.4, full: 19.7,
F(2,94) = 16.4, p = 7.9 ⇤ 10�7). This suggests that people
incrementally integrate information about the dynamics of a
scene to update their physical beliefs.

Models of dynamic inference
Model implementation We tailored all three models for
the experimental ramp scenario. The models only tracked
the dynamics of the two objects on the ramp and ground:
O = {o

R,oG}. The object geometries consisted of a categori-
cal shape type (block and puck) and continuous height, width,
and depth parameters. The object material properties included
density and friction; given the geometry and material, mass
was calculated as the volume times the density. State proper-
ties included object positions and velocities.

The IO and SRP models were not image-computable; in-
stead, the state space (position and velocity for each object)
was directly observed with Gaussian noise. The prior over log-
density was a truncated Normal distribution centered around
the true log-density of objects with the corresponding mate-
rial texture. The physics model was the same physics engine
used to generate the stimuli. The IO model performed infer-
ence using MCMC with an MH proposal function. The SRP
model was implemented as particle filtering with 4 particles

to implement memory/computational limitations,⇤ with reg-
ularized resampling and replacement from the prior to avoid
degeneracy (Arulampalam, Maskell, Gordon, & Clapp, 2002).

The IN model was a structured recurrent neural network
that was designed to perform inference compilation (Le et al.,
2016) on the world model. It consists of an encoder to extract
object state information Si from each image Ii, a Graphnet for
the objects and their relationship (Battaglia et al., 2016), an
LSTM that takes in the prior object information and the current
observations to integrate evidence, and finally a decoder to
extract information about M and S, as well as where to attend
at the next time step from the hidden state of the LSTM. The
model was then trained in a self-supervised fashion using sam-
ples from the same generative model as was used to produce
the stimuli. See the Appendix for further details.

Results Across all scenes, participants’ ratings could be
predicted well by the IO model (r = 0.89), the SRP model
(r = 0.93), and the IN model (r = 0.92), suggesting that all
models are grossly approximating human behavior (Fig. 4A).

However, while this relationship between model predic-
tions and human ratings seems consistent between the con-
gruent and incongruent trials for the SRP and IN models,
this relationship is inconsistent in the IO model. We can
quantify this relationship by calculating ‘model ratings’ as
a linear function of the model’s predicted log-mass-ratio for
each trial and time point. A good model of human physical
inferences should be able to explain human ratings using a
consistent mapping between its predictions and ratings. We
therefore fit these model ratings using only the congruent-
unmatched trials, so that we could test how those ratings ex-
tended to both the congruent-matched trials (as a natural cross-
validation with similar trials) and the incongruent matched
trials (as an extension to dissimilar trial types). As seen in

⇤We also fit models with 10 and 20 particles, but the model
performance was not qualitatively different.
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