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Probabilistic Models of Physical Reasoning

In order to reason about and interact with the world around us, we must understand how it

changes over time. Crucially, we consider not just one possible future, but a range of possible

outcomes: we can tell when a ball almost knocks another into a goal (Gerstenberg, Peterson,

Goodman, Lagnado, & Tenenbaum, 2017; Gerstenberg & Tenenbaum, 2016), when a tower of

blocks is precariously stacked and might fall down (Battaglia, Hamrick, & Tenenbaum, 2013), or

that we are unsure where an occluded object will reappear (Smith & Vul, 2015). This suggests

that our internal models of the physical world are probabilistic, translating uncertainty about the

world’s state or dynamics into a distribution of beliefs over possible future outcomes or latent

object properties.

In this chapter we demonstrate how techniques from probabilistic modeling can be used to

explain the predictions and inferences people make when reasoning about physical systems. We

first describe why physical reasoning is an interesting problem, and why a probabilistic framing is

important for tackling it. We then lay out one theory of probabilistic physical reasoning – the

Intuitive Physics Engine (IPE; Battaglia et al., 2013). We discuss how probabilistic modeling with

the IPE can explain a wide range of ways people reason about physics. Next we describe how

the mind might perform this reasoning efficiently, through approximations to both probabilistic

reasoning and the IPE. We end with current and future directions for probabilistic models of

physical reasoning.

The probabilistic nature of physical reasoning

In many other cases in this book, it is possible to exactly calculate the posterior probability

distributions necessary for probabilistic reasoning. Indeed, classic work demonstrating that

human judgments match Bayesian inference often uses analytic probabilistic models. For

example, when modelling how people integrate two sources of uncertain perceptual information,

researchers have used priors, likelihoods, and loss functions that result in a Bayesian solution

that is simply the weighted average of the observable information (Ernst & Banks, 2002; Körding

& Wolpert, 2004).

However, because of the inherent complexity of many physical processes and aspects of
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physical reasoning, analytic solutions cannot be used to solve many real-world problems. Instead

we must consider what sorts of approximations the mind makes – how knowledge is represented,

accessed and used in behavior – in order to efficiently solve these problems. Consider the

simple, analytically tractable case of determining the relative mass of two rigid objects from their

velocities before and after they collided with each other. While there are simple algebraic

expressions for calculating the relative mass if the velocities are known, accounting for perceptual

uncertainty in these situations greatly complicates the problem and makes pure analytic solutions

intractable (Sanborn, Mansinghka, & Griffiths, 2013). These equations become more difficult to

solve as the complexity of the system increases. For example, it’s impossible to analytically

predict the state of a system with three objects colliding (Diacu, 1996), much less precisely

characterize systems with complex dynamics like fluids. Yet people have no problems stacking

multiple dishes on top of each other, and regularly pour liquids from one container to another.

How then can people do probabilistic physical reasoning? Approximations of some sort seem

mandatory. Following from the work in the chapter on Rational Process Models (Chapter 11), it is

useful to look at the approximations to probabilistic inference from computer science and statistics

which have been used as algorithmic models of human behavior in tasks such as categorization,

decision making, and causal inference. These algorithms provide a tractable way of performing

probabilistic inference, and also make systematic errors that often match the errors people make.

Perhaps the simplest rational process model for probabilistic physical reasoning is the

exemplar model (Shi, Griffiths, Feldman, & Sanborn, 2010). Instead of maintaining an internal

physical model of the world, probabilistic physical reasoning could instead be performed by

remembering previous experiences and weighing them according to their similarity to the current

situation. In simple tasks such as inferring which of a pair of colliding objects is heavier by

observing their movement, a weighted average of only 50 prior experiences captured human-level

performance across various settings of the underlying physical variables (Sanborn et al., 2013).

But in more complex domains (e.g., predicting whether and in what direction a stack of blocks will

fall) the number of possible object configurations is very large. Yet even in such domains we can

still predict what will happen for configurations of objects that we have never seen before,

suggesting that the exemplar model cannot explain much complex physical reasoning. As we



PROBABILISTIC MODELS OF PHYSICAL REASONING 4

outline below, people seem to represent the external physical world with an internal physical

model that supports Bayesian inference. To make this Bayesian inference tractable, the mind

might use a number of approximations, including model-based sampling, learning a recognition

model for rapid inference, or using an approximate form of the physical model itself.

The ecological nature of physical reasoning

Physical reasoning is an attractive domain for studying how cognition uses complex,

probabilistic generative models for three reasons. First, people have extensive experience with

the physical world. Starting from infancy, we grow our understanding of physics from the building

blocks of “core knowledge” (Spelke & Kinzler, 2007) to mature physical intuitions according to

systematic developmental trajectories (Spelke, Breinlinger, Macomber, & Jacobson, 1992), driven

by consistent changes in the way that infants interact with the world (e.g., developing motor skills

to grasp objects; Baillargeon, 2002). Thus, by adulthood we would expect that interactions with

the world should be guided by consistent physical intuitions that are compatible with accurate,

Newtonian principles.1

Second, as researchers, we have access to normative computational models that can

determine what the future state of a scene will be. This is in contrast to other instances of

probabilistic cognition that rely on rich generative models (e.g., social cognition) for which it is

challenging or impossible to determine normative accounts of how the world behaves. Access to

this ground truth allows us to study when human inferences might deviate from the true future

state of the world, and whether these errors might be the result of a rational inference process

(e.g., Sanborn et al., 2013).

Finally, there are a set of computational models that serve as proxies for understanding how

people simulate physics. At the core of any probabilistic model of cognition is the forward causal

model that predicts how causes give rise to effects. This forward model allows us to calculate

likelihoods and posterior distributions (see Chapter 3). If researchers want to model human
1While there are many instances of human physical reasoning that rely on incorrect principles (e.g., Caramazza,

McCloskey, & Green, 1981; Gilden & Proffitt, 1989; McCloskey, Caramazza, & Green, 1980; Vasta & Liben, 1996), these

errors may be based on a separate cognitive system that is used for more abstract problems. For further discussion,

see Smith, Battaglia, and Vul (2018) and the section on “Errors in physical reasoning” later in this chapter.



PROBABILISTIC MODELS OF PHYSICAL REASONING 5

physical reasoning in a probabilistic framework, they need a causal model that approximates the

way the world works. Fortunately there exist a suite of models that are designed to approximate

realistic physical interactions: computer physics engines, such as those in games and graphics

software. Using these game engines to approximate the cognitive systems underlying physical

reasoning has led to successful modeling of human physical predictions (Battaglia et al., 2013;

Gerstenberg, Peterson, et al., 2017; Smith, Dechter, Tenenbaum, & Vul, 2013; Smith & Vul,

2013), and the shortcuts that game engine designers have taken to model physics both

realistically and quickly have provided ideas for how the mind performs efficient approximations of

physics (Ullman, Spelke, Battaglia, & Tenenbaum, 2017).

A mental model of physics

A key component of probabilistic cognition is the causal forward model that allows us to make

inferences by understanding how the world works. For instance, when two objects collide we can

reason about unobserved variables (the masses) based on observed variables (the trajectories)

(Sanborn et al., 2013). This can be considered a simple instantiation of Bayes’ rule, where we

reason about the causes (c) based on the observed effects (e):

P (c|e) ∝ P (e|c)P (c) (1)

A crucial part of this equation is the likelihood model P (e|c) which requires understanding how

effects follow from causes – for example, how likely is it that we would observe the objects’

trajectories for a given specification of the objects’ masses? This likelihood can be instantiated by

mental models of the world that provide us with information of how causes translate into effects

(Craik, 1943), potentially using a mechanism of approximate probabilistic simulation. But how are

these mental models for physical reasoning structured?

Extending prior research into spatial reasoning via continuous simulation, recent work has

suggested a method for performing this model-based physical reasoning, namely that people

have an Intuitive Physics Engine (IPE) that can simulate the world in a way similar to the game

physics engines underlying many modern video games. According to this theory, the IPE takes a

mental representation of the world and iteratively steps it forwards in time using approximately

correct physical principles. However, while game physics engines are deterministic, the IPE is
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probabilistic in order to account for uncertainty in both initial world conditions and physical

dynamics: people can never be perfectly certain of exactly how heavy an object is or how

collisions will resolve. The IPE therefore provides us with a belief distribution over possible

futures, such as where a thrown ball will end up, or the range of ways that a stack of blocks might

topple. We define the IPE as Φ, which can transform a world state s at a given time into a

distribution of future world states:

st+1 ∼ Φ(st) (2)

This belief distribution can be used as an input to other probabilistic cognitive models, forming a

bridge between perception and other cognitive systems.

Mental simulation and spatial reasoning

Many theories suggest that spatial reasoning relies on representations that contain the same

spatial information as real-world objects (Kosslyn, Ball, & Reiser, 1978, but c.f. Pylyshyn, 2002 for

alternate theories on the nature of spatial representations). These spatial representations can be

transformed via simulation: transforming the mental representations in a way similar to how their

real-world counterparts would change through time. For instance, if we are asked to determine if

two shapes are the same, the time it takes to make this judgment is related to the time it would

take to rotate the shapes into alignment, suggesting we are mentally performing this rotation

(Shepard & Metzler, 1971). If we are asked whether two edges of an unfolded paper cube will

touch when refolded, our reaction times are related to the time it would take to fold the cube

enough to check those edges (Shepard & Feng, 1972).

This mental transformation has two crucial components. First, the mental representations

and transformations that underlie this simulation must reflect the objects and transformations that

exist in the world (Fisher, 2006). If we wish to use simulation to understand how the world will

unfold, this correspondence is necessary to ensure the results of our simulations approximate

reality. Second, simulation acts in a step-wise fashion: one cannot predict a future state of the

world without predicting intermediate states (Moulton & Kosslyn, 2009).

The same cognitive systems that let us mentally traverse through space or rotate objects

might also include the capability of understanding how objects interact. Indeed, mental simulation
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underlies reasoning about mechanical events: our speed of reasoning about the kinematics of

pulley systems depends on the number of components that must be set in motion (Hegarty,

1992), and the time it takes to judge how turning a gear in a chain will affect gears further in the

chain depends on the number of intervening gears (until people discover rules that can shortcut

this process; Schwartz & Black, 1996b). However, while these tasks do involve reasoning about

physical events, they could be accomplished either by piece-wise simulation, or by sequential

reasoning about the components (e.g., using a causal logic to assess the interaction between

gear A and gear B, then gear B and gear C, etc.). We therefore turn to instances of physics

where the continuous dynamics of the scene are important – understanding how objects collide,

fluids pour, or things fly through the air – and discuss how a simulator that includes physical

principles accounts well for human judgments about these scenarios.

The Intuitive Physics Engine

Motivated by previous theories of mental models underlying spatial and mechanical

reasoning, Battaglia et al. (2013) proposed that human predictions about physical dynamics also

utilize a simulation-based mental model, which they termed the Intuitive Physics Engine (IPE).

While this mental model is theorized to reproduce the dynamics of the world well enough to make

useful predictions (Sanborn et al., 2013; Smith et al., 2018), it is not supposed to perform these

calculations analytically according to idealized physics; instead, the IPE is suggested to “favor

speed and generality over the degree of precision needed in engineering problems” (Battaglia et

al., 2013, pg. 18,328). These constraints are also found in a similar class of problems: modeling

physics for video games, which require dynamics that are good enough to be acceptable to the

game players, but also fast enough to run in real-time. These game physics engines function by

eschewing analytic solutions, and instead simulating physics in a step-wise fashion with state

transition functions that are locally consistent without explicitly modeling fundamental physical

properties (e.g., conservation of energy; Gregory, 2014). The IPE is theorized to function in a

similar fashion, using step-wise, approximate physical principles to model the world (Ullman et

al., 2017).

Similar to game physics engines, the IPE takes as input a description of the state of the
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Figure 1. People perceive a scene through multiple sensory modalities (left) to form an internal

representation of the world. This is an object-centric representation, containing probabilistic

information about the locations, extents, and properties of objects (center ). The Intuitive Physics

Engine uses this representation to stochastically simulate ways the world might unfold using

approximately accurate dynamics (right). These simulations give rise to a range of possible future

states of the world that feed into other cognitive systems to make predictions, decisions, etc.

world, and yields as output simulations of hypothesized future world states. These state

representations are comprised of a set of object descriptions, as objects are a basic mental

building block (Spelke et al., 1992). Each object representation describes not just the shape,

position, or motion of the object, but also latent properties such as mass or friction. Put together,

the full state representation is similar to those used by computer-aided design programs to

represent scenes, but includes additional information needed to understand the causal

mechanisms that describe how the scene should unfold. However, unlike computer

representations of scenes, mental representations have different memory limitations and will not

include all items in a scene; instead the mind may represent only a limited set of objects that are

in motion and relevant to the judgments we must make (Ullman et al., 2017).

These object representations are multi-modal, drawing on information from vision, audition,

and touch. There is ample evidence that we can integrate information from vision and audition

(Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003) or haptics (Ernst & Banks, 2002; Yildirim &

Jacobs, 2013) to make non-physical judgments, which suggests that information from each of

these modalities is integrated into a single representation in the brain (Erdogan, Chen, Garcea,

Mahon, & Jacobs, 2016; Taylor, Moss, Stamatakis, & Tyler, 2006). Because the IPE relies on
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these integrated representations, it can also make predictions not just about how physics will

transform the visual location of objects over time, but also what will be heard or felt. Conditioning

on auditory information allows us to reason about material properties based on the sound of a

collision (Traer & McDermott, 2016), infer the number and type of objects in an opaque box that is

shaken (Siegel, Magid, Tenenbaum, & Schulz, 2014), or figure out in which hole a ball was

dropped in a plinko box by integrating the sequence of sounds with information about where

obstacles are positioned in the box (Gerstenberg, Siegel, & Tenenbaum, 2021).

One crucial difference between game physics engines and the IPE is that while game

physics engines are deterministic, both the inputs and outputs of the IPE are belief distributions

over states of the world. This distribution of beliefs over world states S comes from two sources.

First, there is perceptual uncertainty in constructing mental models of the world: we are unable to

exactly perceive the properties of objects given our sensory input (such as their location and

velocity). In addition, the state transitions within the IPE are themselves stochastic, especially

around physical events such as collisions (Smith & Vul, 2013).

Thus the IPE can be thought of as a stochastic transition function over hypothetical world

states. Because both the input and the output of this model are of the same form, the same

queries on the current belief state of the world can be applied to hypothetical belief states – for

example, ‘Where is the ball now?’ is the same function applied to current beliefs as ‘Where will

the ball go after it is tossed?’ is to predictions of future world states. Thus we can define world

state queries Q such that the query on the current world state (Q(S)) and the query on the output

of the IPE (Q(Φ(S))) produce similar types of output. This provides a key link between perception

and higher level cognition, providing generalized output about hypothetical futures that we can

use for prediction, inference, planning, reasoning, and learning.

The physics engine in the brain. Within the brain, there are specialized neural regions

dedicated to performing ecologically important tasks like recognizing faces (Kanwisher,

McDermott, & Chun, 1997), or judging the mental states of others (Saxe & Kanwisher, 2003).

Understanding and interacting with the physical world is another task important for our survival,

so it might be expected that the brain dedicates cortical area to the IPE. Indeed, Fischer, Mikhael,

Tenenbaum, and Kanwisher (2016) found that there are areas of the brain that respond
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preferentially to making predictions about, or just watching physical events. Furthermore, these

brain regions encode information about physically relevant properties such as weight

(Schwettmann, Tenenbaum, & Kanwisher, 2019) or stability (Pramod, Cohen, Tenenbaum, &

Kanwisher, 2021), and are in fact the only parts of the brain from which this information can be

decoded .

These “physics areas of the brain” are located in pre-motor/supplementary motor cortex and

somatosensory association cortex, which is similar to brain regions that have been previously

implicated in spatiotemporal prediction (Schubotz, 2007), motor action planning (Chouinard,

Leonard, & Paus, 2005), and tool use (Goldenberg & Spatt, 2009). This further suggests that the

IPE acts as an interface between perception and other cognitive modules that can be used to, for

instance, plan our actions.

Errors in physical reasoning. To produce reasonably accurate predictions, the IPE is

believed to transform mental representations of the world using principles that are approximate

but generally capture how the world itself unfolds (Battaglia et al., 2013; Sanborn et al., 2013;

Smith et al., 2018). This claim is distinct from a separate body of literature that finds significant

errors in human reasoning about physical principles: that we display errors when reasoning about

ballistic motion (Caramazza et al., 1981; Hecht & Bertamini, 2000), inappropriately believe that

objects exiting curved tubes retain curvature in their motion (McCloskey et al., 1980), or fail to

understand how water acts in a tipped container (Kalichman, 1988).

However, these studies that find errors in physical reasoning typically use abstract diagrams

or ask for explanations of physical principles, both of which are thought to require more abstract,

rule-based reasoning than more realistic, predictive tasks (Schwartz & Black, 1996a).

Furthermore, tasks that rely on explicit reasoning about physical concepts activate a wider range

of brain areas (Jack et al., 2013) than tasks that use more perceptual or action-oriented

information (Fischer et al., 2016). Thus cases where people behave according to incorrect

physical principles may be instances of reasoning with a different cognitive system than the IPE

discussed here (for further discussion, see Hegarty, 2004; Smith et al., 2018; Zago & Lacquaniti,

2005).

This is not to say that the IPE always produces accurate predictions. As described later in
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this chapter, certain physical approximations produce biases and errors in predictions.

Furthermore, it is possible that there are physical principles that are encountered rarely or have

little impact on our predictions, and so are not accurately modeled by the IPE. However, for many

scenarios with relatively simple shapes and dynamics that are presented in a realistic fashion,

models that assume unbiased, accurate physical principles do a good job of explaining human

physical reasoning.

Human physical reasoning

As a probabilistic generative model, the IPE supports many different ways of reasoning about

the world. The simplest way is through prediction: running the model forwards on the current

state of the world, to form a belief about how the world will turn out. But principles of probabilistic

cognition suggest how the IPE can support various ways of reasoning about physics: inverting a

generative model to form inferences about the world; reasoning about counterfactual models of

the world to determine causality; conditioning on outcomes to plan our actions; updating models

of the world in light of new evidence, and so on. In the following sections, we provide evidence for

and explain how the IPE supports these various facets of cognition.

Prediction

Prediction is the simplest use of generative models of physics: running the IPE forwards and

querying the simulated outcomes to make judgments about possible future states of the world.

Here, probabilistic reasoning allows us to make graded predictions across a wide variety of

scenarios. For example, we may predict how towers fall (Battaglia et al., 2013), balls bounce

around (Deeb, Cesanek, & Domini, 2021; Gerstenberg, Peterson, et al., 2017; Smith et al., 2013;

Smith & Vul, 2013, 2015) or roll down slopes (Ahuja & Sheinberg, 2019; Ceccarelli et al., 2018),

objects fly under ballistic motion (Smith et al., 2018), and fluids pour (Bates, Yildirim, Tenenbaum,

& Battaglia, 2019; Kubricht et al., 2016, 2017).

This is equivalent to developing a posterior belief over future world states (St) given the

current belief over the world state (S0) and the physics engine (Φ):
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Figure 2. The IPE as a generative model can support a variety of ways of reasoning about

physics via probabilistic cognition. Prediction is running the IPE forwards and querrying the

results. Inference requires conditioning belief based on how well a world with the relevant

parameters would match observations. Causal reasoning requires comparing the expected result

of hypothetical worlds without the causal agent to actual observations. Planning involves

selecting actions that are expected to produce the desired outcome.

p(St) = p(St|S0,Φ)p(S0) (3)

Because these equations are often analytically intractable, in most cases the prior and

posterior beliefs are approximated using Monte Carlo methods: treating a belief distribution as a

collection of samples from a probability distribution (S = [s0, s1, ...sn]; cf. Kahneman & Tversky,

1982). In this way each sampled state can be iteratively updated with the physics engine until a

final state is reached (where Φ∗ indicates iteratively applying the physics engine):

st
i = Φ∗(s0

i ) (4)

Battaglia et al. (2013) applied this approach to understand physical prediction. In this work,

participants viewed images of block towers like those in Figure 3A, and were asked to predict

whether the tower will fall or remain stable under the effects of gravity. They found that
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Figure 3. Instances of probabilistic physical prediction. A. The IPE captures predictions about

general events such as stability. For instance, even though the tower with a red outline is stable,

both people and an IPE model treat it as unstable (right) because small changes in the location

or pose of almost any block will cause it to come crashing down (Battaglia et al., 2013). B.

Uncertainty in the IPE is driven both by noise in perception and accumulating stochasticity

throughout prediction (top), which gives rise to a distribution over possible paths that objects

might take (bottom; Smith & Vul, 2013). C. Probabilistic prediction can also explain judgments of

how fluids pour, by approximating the fluid with a set of interacting particles. This can differentiate

between water (top) and honey (bottom) by modeling more viscous liquids as having stronger

inter-particle forces (Bates et al., 2019).

participants’ stability judgments could be better captured by a probabilistic simulation model than

alternative, feature-based heuristics (such as the height of the tower). This model assumes that

an observer has perceptual uncertainty about the exact location of the different blocks in the

tower, and uses a deterministic IPE to simulate how the world will unfold under these different

initial conditions. Since each initial scene will have a slightly different block configuration, the

output of the IPE is a distribution over possible future scenes. Participants’ judgments are then

explained by aggregating the IPE’s predictions across these scenes, such as the average

proportion of blocks that fall. The same model also explained participants’ physical intuitions

across a variety of other tasks that included judging in which direction the tower will fall, or where

objects would be more likely to fall off a table if it was bumped; conversely, no single

feature-based heuristic could capture performance across all of these tasks.

Smith and Vul (2013) explored the extent to which noise in physical dynamics themselves
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affected participants’ physical predictions, using a task in which participants were asked to view a

ball bouncing around a computerized table and predict where that ball would travel while

occluded. Like Battaglia et al. (2013), Smith and Vul assumed that participants may have

perceptual uncertainty about the exact position and velocity of the ball when it disappeared

behind the occluder, but they also investigated dynamic sources of uncertainty: that the ball’s

trajectory would be perturbed in each time step, and additionally perturbed whenever the ball

collided with a wall (Fig 3B). They found that assuming uncertainty in how the physical dynamics

will unfold over time was critical for explaining participants’ predictions in this task, which implies

that the physical transition function Φ is itself stochastic. In other experiments, this uncertainty in

dynamics was also required to explain participants’ judgments about their overall uncertainty

about their own predictions (Smith & Vul, 2015), and how people update their predictions as a

scene unfolds (Smith et al., 2013).

The proposal of the Intuitive Physics Engine has been extended beyond rigid bodies, to soft

bodies, cloths, and fluids. As early as five months of age, infants demonstrate rich expectations

about the dynamics of fluids and other non-solid substances, distinct from their expectations

about solids (e.g. Hespos, Ferry, Anderson, Hollenbeck, & Rips, 2016). Van Assen, Barla, and

Fleming (2018) found that the human visual system supports accurate inferences about fluid

viscosity, which can be modeled as hierarchical estimation over mid-level visual features, such as

“compactness”, “elongation”, “pulsing”, and “clumping.”

Recent work has suggested that people understand these fluid dynamics using simulation

(Bates et al., 2019; Kubricht et al., 2016, 2017). Bates et al. (2019) asked participants to predict

how liquids with different viscosities (water and honey) would flow down a set of obstacles, and

judge what proportion of that liquid would fall into a bucket on the ground. They found that

participants’ predictions were well-approximated by a model that captures the complex dynamics

underlying fluid motion through representing the liquid by a number of interacting particles. The

results showed that participants’ predictions were sensitive to the liquid’s viscosity, making

different predictions for how honey will flow, or how water will spill (Fig. 3C). Relatedly, a model of

fluid dynamics with uncertain viscosity was used to explain people’s intuitions about the angle at

which a filled container would start to pour out a liquid (Kubricht et al., 2016) or sand (Kubricht et
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al., 2017, but see also Schwartz & Black, 1999).

Inference

It is clear how to use a forward model like the IPE to make predictions about the world: start

with a set of initial conditions and run the IPE forwards. However, people can make inferences

about the hidden states of a physical system just by observing how it unfolds, which requires

using the IPE to make judgments in the opposite direction.

These inferences are naturally captured by Bayesian models of cognition. Here we define a

set of latent properties (l) that may not be directly observable (e.g., object weight or elasticity),

and observable properties (o) that may or may not change over time, such as object shape,

position, or velocity. Thus a scene is a collection of latent and observed properties (st = [ot, l]).

After watching a scene unfold, posterior beliefs over the latent properties can be calculated by a

simple application of Bayes’ rule, conditioned on how the observed scene properties have

unfolded:

p(l|ot) ∝ p(ot|l, o0,Φ)p(o0|l)p(l) (5)

Sanborn et al. (2013) demonstrates how this approach can explain biases in judgment

arising from human physical inferences. When observing two rigid objects colliding on a

computer screen, people can infer the relative masses of the objects from observing their

velocities, which requires reasoning backwards from these observed velocities to the masses that

would have caused that collision. These mass judgments have been found to depend on the

elasticity of the collision: when the collision is especially bouncy, people are more likely to

correctly judge the heavier object to be heavier than when they observe a less elastic collision

between two objects of the same masses. But according to the laws of mechanics, the relative

masses of two objects can be calculated just from observations of the starting and ending

velocities and should not depend on the elasticity of the collision. This dependence on an

“irrelevant” variable has in the past been taken as evidence that we do not use accurate physical

principles in these situations (Gilden & Proffitt, 1989; Todd & Warren Jr, 1982). However, viewing

this mass judgment through the lens of probabilistic reasoning shows that the sensitivity to

elasticity is not necessarily due to a simple heuristic or errors in understanding Newton’s laws of
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Figure 4. Probabilistic models support our ability to make judgments about latent physical

properties such as mass. A. A graphical model used to infer the masses (m) and elasticity (e) of

two blocks colliding based on the initial and final velocities (u & v) which are perturbed by

perceptual noise (ε; left). This noisy inference model explains why people’s mass judgments are

biased by the elasticity of the collision (right; Sanborn et al., 2013). B. Since the tower is stable,

we judge that the purple blocks must be heavier than the green blocks, because if they were not

we would expect some of the blocks to fall (Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016). C.

We might expect wooden blocks to be lighter than iron ones; however, if we see a block with a

wood texture launching a block with an iron texture, we quickly update our beliefs about their

relative weights (Yildirim, Smith, Belledonne, Wu, & Tenenbaum, 2018).

motion. Instead, collisions with slower speeds (which result from inelastic collisions) are simply

harder to distinguish than collisions with faster speeds as a result of perceptual uncertainty.

Similarly, people seem to be biased towards assuming that objects in motion are heavier than

stationary objects (Stocker & Simoncelli, 2006); adding a prior expectation that objects move

slowly results in an interaction with Newtonian mechanics that captures this bias. In this way,

human judgments are consistent with Bayesian inference using an accurate model of collision

dynamics (Fig. 4A; Sanborn, 2014; Sanborn et al., 2013).

People are also able to infer relative masses from scenes with more complex arrangements
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of objects – for example, towers of blocks (Fig. 4B) – and even update their beliefs about these

relative masses across trials (Hamrick et al., 2016). These impressive feats of physical inference

are not limited to vision, or to adults. Before they are one year old, infants understand that objects

that compress a pillow are heavier than those that don’t (Hauf, Paulus, & Baillargeon, 2012). And

by shaking a box, children can infer what objects there are inside, and how many of them there

are. Children can even use information about what they would expect to hear to determine how

difficult a discrimination task would be, without having to physically shake the box. For instance,

children know that two different pencils will make similar noises when shaken in a box, and so

this is a difficult discrimination task, but a pencil and a cotton ball will make distinct noises and so

presents an easier choice (Siegel et al., 2014).

Inferences about physical properties can in turn recalibrate the simple perceptual judgments

on which they seem to be based. For example, if people see a slope with a shallow slant, but

observe a ball bouncing off of the slope as if it were steep, they will adjust their perception of the

orientation of the slope to be steeper, consistent with the behavior of the ball (Scarfe &

Glennerster, 2014). This inference suggests that people use physical inference to build internal

world representations that are consistent between their direct perception and their observations

of dynamics.

Causal reasoning

Two billiard balls, ball A and ball B, collide with one another, and ball B goes into the pocket

of the billiard table. Did ball A cause ball B to go into the pocket? Is it sufficient to notice that the

two balls collided to answer this question about causation, or is more required? In philosophy

there are two large families of theories that try to analyze what causation is. According to process

theories of causation, causes bring about effects via a spatio-temporal contiguous process, for

example, via the transmission of physical force (Dowe, 2000). According to dependence theories

of causation, causes and effects are related via probabilistic or counterfactual dependence, such

that for c to qualify as a cause of event e, e would not have happened if c hadn’t happened (see

Gerstenberg & Tenenbaum, 2017; Waldmann, 2017).

Both of these families of theories have had a large influence on psychological theorizing
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about causation. The force dynamics model developed by Wolff (2007) is a process theory that

suggests that people judge an event to be causal based on the force transferred between the

agent and patient. For example, to decide whether ball A was the cause of ball B going into the

pocket, this theory suggests that we look at the configuration of forces associated with the patient

and agent at the time of collision. This theory has been used to map various force configurations

onto descriptions like ‘caused’ or ‘helped’ (Wolff, 2007; Wolff, Barbey, & Hausknecht, 2010).

Crucially, the force dynamics model suggests that people consider only what actually happened

in order to judge whether an event was causal.

Dependence theories, on the other hand, predict that people’s judgments about causality are

based on what might have happened in a counterfactual situation in which the causal event had

been absent or different. The belief in what would have happened is often represented as a

distribution over possible alternative outcomes, and many variants of probabilistic theories of

causation exist that aim to capture people’s inferences about the strength of a relationship

between putative cause and effect (Cheng, 1997; Griffiths & Tenenbaum, 2005; Jenkins & Ward,

1965). Counterfactual theories of causation naturally capture causal relationships between

particular sets of events, such as whether the bump of the table caused the tower to fall, or

whether the gust of wind that happened at the same time would have been sufficient to bring

about the same result. These theories posit that c is a cause of event e to the extent that a

counterfactual outcome e′ would be different if c were removed from the scene s:

CAUSE(c→ e) ∝ P (e′ 6= e|s, remove(c)) (6)

Gerstenberg, Goodman, Lagnado, and Tenenbaum (2021) developed the counterfactual

simulation model of causal judgment to quantitatively capture dependence theories. According to

this model, people make causal judgments by comparing what actually happened with what

would have happened in a relevant counterfactual situation. For example, when asked to say

whether ball A caused ball B to go into the pocket, the model not only considers that the two balls

collided and that ball B went into the pocket, it also considers what would have happened if ball A

hadn’t been present in the scene. The model predicts that an observer’s causal judgments will

increase the more certain she is that the outcome would have been different if the cause hadn’t
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Figure 5. Probabilistic models allow us to determine what might have happened in the absence

of a possible cause. A. Instances where ball A certainly (1), maybe (2), or did not (3) cause ball B

to go through the gate. B. The counterfactual simulation model suggests that we make

judgments about ball A’s causal relevance by simulating what would have happened to ball B if

ball A had not been there and comparing the outcome in this counterfactual situation to what

actually happened. This model predicts human causal judgments well. C. Supporting this theory,

when making causal judgments people spontaneously look towards where ball B would have

gone without ball A (Gerstenberg, Peterson, et al., 2017).

been present in the scene (see Fig. 5A&B).

It’s worth making explicit what’s assumed to be involved in this process. In order to make

causal judgments under a counterfactual theory, people first observe what actually happened.

They then go back in time (mentally) and make a change to the scene in order to undo the causal

event of interest (e.g. by mentally “removing” the candidate cause ball from the scene). Finally,

they predict what the outcome in this counterfactual situation would have been through simulating

the counterfactual course of events (see Fig. 2). This distribution over different counterfactuals

arises naturally from the Intuitive Physics Engine. In some of the counterfactual scenarios, the

outcome might be the same as what actually happened (i.e. ball B would still have gone into the

pocket even if ball A hadn’t been there; example 3 in Figure 5A), whereas in others, the outcome

might have been different. People’s causal judgments were well-explained by the counterfactual

simulation model’s uncertainty about whether the cause made a difference to whether or not the

outcome happened. The more certain participants were that the outcome would have been

different, the more they said that the candidate caused the outcome to happen (Gerstenberg,

Goodman, et al., 2021).

Gerstenberg, Peterson, et al. (2017) tested a key prediction of the counterfactual simulation

model: that people reach their causal judgment by spontaneously simulating what would have
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happened if the cause hadn’t been present in the scene. They asked people to watch video clips

of two balls colliding (A and B) and judge whether ball A caused or prevented ball B from going

into a goal while using eye-tracking to determine where people looked as they made these

judgments. As predicted by the model, participants looked not only at the balls, but also where

ball B would have gone if ball A had not been in the scene. Importantly, these same

eye-movements were not observed in a condition in which participants were asked only to make

a judgment about what actually happened. So, the counterfactual simulations were specifically

recruited in the service of making causal judgments, but without any explicit instruction in the

experiment to consider counterfactual contrasts. Extensions of the counterfactual simulation

model have shown how it captures people’s judgments about whether something almost

happened as a function of how much a causally relevant variable would have needed to be

changed (e.g., the force with which a ball is kicked; Gerstenberg & Tenenbaum, 2016), and to

what extent a single block in a tower is responsible for the tower’s stability (by simulating what

would happen if the block was removed from the tower; Gerstenberg, Zhou, Smith, &

Tenenbaum, 2017).

Planning and action selection

Being able to make predictions and inferences about the physical world is about more than

reasoning: it also supports rich interaction with physical systems. Specifically, a model of the

physical world like the IPE can also be used to choose the best sequence of actions to take in a

given scenario. This process of action selection on the basis of a model is referred to as planning

(Sutton & Barto, 2018), and has been found to occur in the context of physical reasoning at

multiple levels of abstraction, ranging from low-level motor control to high-level problem solving.

A large body of work has shown that the motor system represents forward models of how

motor commands affect the motion of our bodies, the dynamics of external objects, and how our

bodies might interact with those objects (Davidson & Wolpert, 2005; Flanagan & Wing, 1997;

Kawato, 1999; Miall & Wolpert, 1996; Wolpert & Kawato, 1998; Wolpert, Miall, & Kawato, 1998).

These forward models are used by the motor system to compute optimal actions or trajectories

as follows. First, the forward models estimate possible current states in the world, either through
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Bayesian inference (Wolpert, 2007) or through a filtering procedure like a Kalman filter (Grush,

2004). After an action is taken, these forward models compute expectations about what the next

state of the world will be, and combine these expectations with actual sensory data to compute a

posterior distribution over states. This distribution over states can be used to compute the

expected cost or reward of possible actions, marginalizing over all possible states. Action

selection consists of computing this expected cost (L) for all possible actions (a ∈ A), and then

choosing the action (a∗) with the lowest cost (including action costs and costs of not

accomplishing our goals) based on the IPE (Φ∗(S)) across all plausible states (s ∈ S; Wolpert,

2007):

a∗ = arg min
a∈A

∑
s∈S

L(a,Φ∗(s))p(s) (7)

In addition to cases where the current state of the world is uncertain, forward models also aid

in computing the costs of actions when future states are uncertain. For example, Dasgupta,

Smith, Schulz, Tenenbaum, and Gershman (2018) showed that when trying to launch a ball into a

goal, people make predictions about where the ball will end up given a particular action. Where

the ball ends up determines the utility of the action: if the ball makes it into the goal, there is net

positive utility for accomplishing the objective, while if the ball misses the goal, a cost is incurred.

To actually choose which actions to evaluate, Dasgupta et al. (2018) used a model of

decision-making known as Bayesian optimization (Hernández-Lobato, Hoffman, & Ghahramani,

2014) and showed that this model not only predicted people’s action evaluations, but also

captured how they combined information from both mental simulations and real physical

experiments. S. Li et al. (2019) also showed how physical simulations can be used to aid in

computing an intrinsic reward that encourages exploratory behaviors necessary to uncovering

causal properties of a physical system, similar to those produced by human participants.

However, even with a model that provides an estimate of the utility of an action, it is not

always clear which actions should be considered in the first place: there are always many things

we could do, but the vast majority of those actions will not be useful. While in theory action

selection can be accomplished by exploring the space of possible actions and conditioning on

those that are successful (see Fig. 2, lower-right), in reality it is impossible to consider the
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outcome of every possible action that could be taken. Allen, Smith, and Tenenbaum (2020)

studied how people choose and use tools to accomplish goals in physical problem solving with a

large space of possible actions. They find characteristics of rapid trial-and-error problem solving:

people search stochastically but in a structured way at first, then exploit promising solutions to

quickly solve these problems. Allen et al. (2020) propose that this rapid search requires not just a

model to assess actions, but also prior expectations about what general sorts of actions are likely

to be successful to avoid considering useless actions, and generalization mechanisms that take

in both simulated expectations and real-world observations to update posterior beliefs about what

might be useful actions to take.

In physical problem-solving tasks that require multiple steps—such as stacking blocks into a

tower—a model of physical dynamics can be used to score plans depending on physical

constraints. For example, Yildirim, Gerstenberg, Saeed, Toussaint, and Tenenbaum (2017)

examine a block-stacking task in which a set of blocks must be assembled into a given target

configuration. To model this task, they first search for a symbolic plan specifying which blocks

should be stacked with which hands and in what order, and then score plans according to the

physical stability of the tower in each step (along with other geometric and spatial constraints).

Yildirim et al. (2017) showed that this model captures how likely human participants are to use

one or two hands to solve the task, suggesting that this choice in humans may also be informed

by estimates of physical stability. Yildirim et al. (2019) demonstrated how an extension of the

model which takes into account physical effort and physical risk accurately captures people’s

intuitions about how difficult it would be to build certain block towers .

Finally, it is worth noting that planning is not necessarily limited to scenarios involving

physical reasoning, and an exciting direction for future work is to combine insights from the

literature on non-physical planning and learning with forward physical models like the IPE. For

example, hippocampal replay and preplay during spatial navigation tasks in rats strongly

resemble rollouts of a forward model (Ólafsdóttir, Barry, Saleem, Hassabis, & Spiers, 2015;

Pfeiffer & Foster, 2013), and various theories have suggested that this replay occurs during a

consolidation process of model-based experience into model-free action policies (Mattar & Daw,

2018; Momennejad, Otto, Daw, & Norman, 2017). Related work has explored how people trade
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off between model-based and model-free accounts of learning in environments with

non-stationary rewards (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Dolan & Dayan, 2013;

Gläscher, Daw, Dayan, & O’Doherty, 2010; Keramati, Smittenaar, Dolan, & Dayan, 2016; Kool,

Cushman, & Gershman, 2016). While such work examines the use of models during learning

processes, other work has explored the use of planning at decision-time, looking at how people

construct and traverse trees of possible future states (Huys et al., 2012; Solway & Botvinick,

2015; van Opheusden, Galbiati, Bnaya, Li, & Ma, 2017). A number of recent advances in AI

suggest other possible mechanisms for model-based planning (Hamrick, 2019), which could be

integrated with models like the IPE to build process-level models of physical planning and action

selection. Indeed, recent work combining model-based planning with physical models has

demonstrated how to build AI systems that can reason about complex physical scenes, such as

deciding how to stack blocks into a tower (e.g. Bapst et al., 2019; Fazeli et al., 2019; Janner et al.,

2019). Such methods, when combined specifically with an IPE model, may also prove useful in

explaining how people interact with everyday physical scenes.

Learning models of physics

We discussed earlier how an IPE can be used for inference about the dynamic variables that

led to a particular observation. The logic is relatively simple to see in the case of simple

hypotheses over single variables. For example, if an object is knocked with a certain force in a

frictionless environment, according to an approximate simulation, the mass m of that object

determines its trajectory t (giving us the likelihood p(t|m)). We can then use a prior (m) and

standard Bayesian inference to reason about the mass given a trajectory, p(m|t) ∝ p(t|m)p(m).

However, the trajectory is determined not just by the mass, but also by a whole physics engine

(Φ) that includes background assumptions about the way that dynamic variables such as mass

are affected by forces, how objects interact, how collision dynamics work, how joints constrain

entities, and so on. It would be more correct to state p(m|t,Φ) ∝ p(t|m,Φ)p(m).

The physics engine encapsulates our knowledge about the world in a way that goes beyond

a specific situation involving, say, a particular tower of blocks. As such, other parts of the world

may be targets of inference as well, using a logic that is similar to that used for inferring the mass
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of a single block. If we label a particular instantiation of a physics engine as Φ = φ (assuming

now that Φ includes both m and any other possible variables), the broader inference is

p(φ|t) ∝ p(t|φ)p(φ). Of course, it is highly unlikely that we are reasoning about all aspects of the

physics engine in a given situation, and a hierarchical scheme can be useful here, in which the

top-most level of the hierarchy assumes only the existence of objects, properties, and dynamics

laws, but without assuming the specifics (Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018).

As one moves down the hierarchy, specific types of properties may be hypothesized and learned

(e.g., the property of elasticity), as well as specific dynamic laws (e.g. a force of attraction or

repulsion). Finally, at the lowest level of the hierarchy, particular parameters can be hypothesized

and learned (e.g., the specific strength of the attraction).

This general notion of hierarchical learning can provide a ‘blessing of abstraction’ for learning

over many domains. For instance, a programmer designing a new video game will often adapt an

off-the-shelf physics engine for their specific purpose rather than redesigning the full machinery

from scratch. In similar fashion, when learning how to play a new game or encountering a new

physical situation, humans likely assume much of their already learned (or pre-packaged)

routines and variables, and learn the specific parameters and functions necessary to generate

the stimuli in the new situation. Encountering two-dimensional video-games for the first time likely

requires modifying the higher levels of an IPE hierarchy, but once modified many new

two-dimensional video-games represent ‘more of the same,’ at least at an abstract level. Coming

up with the notion of a global force pulling things downwards may be onerous the first time, for

example, but it can then be widely applied across many situations.

Even for small and simple domains, the space of possible laws and properties can be quite

large (see Ullman et al., 2018, for a simple two-dimensional world with few laws and objects and

many possible ‘physical theories’). And even with a useful physical prior – say in the form of a

reasonable posterior over the upper levels of a hierarchical IPE representation – a new physical

situation will still present a learner with a hypothesis space that is too large for exact inference

over all possible physical parameter settings, dynamic laws, and relevant properties. One method

for exploring this space is to posit hypotheses driven by low level features of the scene (Ullman et

al., 2018), then interact with the world to explicitly test those hypotheses. Bramley, Gerstenberg,
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Tenenbaum, and Gureckis (2018) found that when people are asked to judge, for instance,

whether and which objects repelled or attracted each other, those who were able to interact with

the scene performed “experiments” that provided good evidence to discriminate between the

different forces, and were more likely to learn the correct hypothesis than others who passively

watched a scene – even if it was the same scene generated by one of the people who interacted

with the world. This active exploration also seems to be crucial for developing an understanding

of the world: infants who have not yet developed the motor skill to grasp objects but are given

“sticky mittens” that allow them to pick up objects will later interact with objects in a manner as

sophisticated as older infants with grasping skills (Needham, Barrett, & Peterman, 2002).

Together, this suggests that active learning is a method that we use to efficiently learn about and

explore the world.

Efficient physical reasoning

While the previous section demonstrates the various ways in which the IPE can be used

within the framework of probabilistic cognition to explain different facets of human physical

reasoning, features of physics and the IPE make it such that applying generalized probabilistic

algorithms to these problems is computationally intractable. First, because there are no analytic

equations to describe how physics unfolds except in the most trivial scenarios (Diacu, 1996),

general probabilistic prediction requires running the IPE forward a limited number of times to

approximate the posterior belief about the future state of the world. Second, generalized

probabilistic inference algorithms require applying the likelihood function – here, the IPE –

hundreds or thousands of times to produce a well-formed posterior distribution, or even more if

the algorithm is initialized poorly. Yet we use the IPE to make predictions and inferences about

physics in real time. In this section, we describe possible shortcuts the mind might take to more

efficiently approximate probabilistic physical reasoning.

Sampling simulations

A sample is a random value drawn from a probability distribution. Because the IPE is a

probabilistic system (Battaglia et al., 2013; Smith & Vul, 2013), every simulation from the IPE is a
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sample from the probability distribution over future states of the world, conditioned on current

observations. The most straightforward way to use samples from the IPE is through a brute-force

Monte Carlo approximation, in which a large number samples are drawn from the IPE to give a

reasonable expectation of the future (see Chapter 6 for further details). For example, Battaglia et

al. (2013) and Smith and Vul (2013) used large numbers of simulations (48 and 500, respectively)

to form predictions and explain how many people behave in aggregate. However, using such a

large number of samples from the IPE seems rather at odds with limits on an individual’s working

memory and attention. Do people really sample tens or hundreds of mental simulations before

making a decision?

There is a priori reason to think that people may not require a large number of simulations to

make a decision. Vul, Goodman, Griffiths, and Tenenbaum (2014) performed a theoretical

analysis asking what an optimal decision-making agent ought to do under time constraints.

Specifically, if an agent has a limited amount of time to make as many decisions as possible, how

many samples should be taken per decision? The answer is a trade-off between the utility of

each correct decision, the amount of time it takes to draw a sample, and the reliability of each

sample. Intuitively, if it takes a lot of time to take a sample, then fewer decisions can be made,

thus resulting in lower utility. However, if each sample is very noisy, then decisions are more likely

to be wrong and therefore it might be advantageous to take more samples. Through a formal

analyses of this trade-off, Vul et al. (2014) found that in plausible scenarios it can actually be

optimal for an agent to only take a single sample to support a decision. Making a decision based

on a single sample also naturally explains the classic cognitive bias of probability matching: in

experiments in which people are asked to predict whether a high-probability or low-probability

outcome will occur, they tend to predict the outcomes according to their probabilities, rather than

always predicting the high-probability outcome as they should (Vulkan, 2000).

To determine the number of samples that people require from the IPE to support physical

judgments, Hamrick, Smith, Griffiths, and Vul (2015) ran an experiment in which participants had

to predict whether a ball would go through a hole. Crucially, they varied the difficulty of each trial

by changing the size of the hole (i.e., either small or large) or the margin by which the ball would

go through or miss the hole. On some trials the ball would go through or miss the hole with high
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probability according to the IPE (e.g., 90% or 10% chance of going through the hole) while on

others it was very unclear whether it would go through (e.g., closer to 50% chance). Participants

in this experiment took longer to make judgments when the IPE predictions were very uncertain,

suggesting perhaps that they were taking more samples in these cases.

Through a model of response time based on an optimal model of decision making known as

the sequential probability ratio test, Hamrick et al. (2015) showed that differences in their

participants’ response times could be due to a process in which samples are accumulated until a

particular level of confidence is reached. Through this model, they showed that while the number

of samples varied across stimuli depending on their difficulty, on average the number of samples

ranged from two to four per decision. These results corroborate other more informal analyses by

Battaglia et al. (2013) and Hamrick et al. (2016) suggesting that their participants relied on one to

six simulations from the IPE to make decisions about towers of blocks. Thus, although each

individual simulation from the IPE might be expensive, these results suggest that people

can—and do—rely on only a few simulations to still achieve reasonable levels of accuracy in their

judgments.

A number of questions remain regarding the computational efficiency of sampling from the

IPE as well. If each sample taken from the IPE is actually a noisy physical simulation, then there

are additional parameters that can be set which affect the amount of time it takes to run that

simulation. For example, there is a choice of how long each simulation should be run for (e.g.,

how many time steps). Another simulation parameter that can be adjusted is the level of detail

the simulation should be run at (e.g., the length of each time step). Similar analyses of the

speed-accuracy trade-off can be performed to answer these questions, and are exciting

directions for future research.

Rapid inferences

A long standing tradition in psychology has been to treat perception as inference: if we have

a generative model of optics, we can condition on our retinal inputs to understand how objects

are segmented in the world and where they are located (Von Helmholtz, 1867). This tradition has

been carried forwards to suggest that people perceive latent physical properties (e.g., mass) from
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dynamic scenes by conditioning those variables based on how well their observations match

what they should expect to see based on their IPE with different settings of those parameters

(Hamrick et al., 2016; Sanborn et al., 2013). In practice, this inference is often carried out by

‘analysis-by-synthesis’ (Yuille & Kersten, 2006): setting the initial conditions of the scene (e.g.,

the masses and densities of objects), running the IPE forwards, then perturbing those initial

conditions via a process like MCMC until the predictions of the IPE match the observations.

However, this approach has been criticized for being computationally infeasible for cognition, as

in the general case it requires running the generative model hundreds or thousands of times to

form a good posterior estimate over those latent physical variables. This approach would clearly

be at odds with the findings that people use only a handful of physical simulations in most

scenarios (as described in the prior section).

If the mind is to produce these inferences as rapidly as it does, it must therefore have ways of

speeding up this inference process. One method for doing so is to initialize the inference process

with an intelligent guess from bottom-up features (Yuille & Kersten, 2006). Poor initializations

require running the generative model to assess model parameterizations that are unlikely to

explain the world; conversely, a good initialization can speed up inference by ensuring each

sample from the generative model is informative. Models that implement this rapid initialization

via pattern recognition (using deep networks; Wu, Yildirim, Lim, Freeman, & Tenenbaum, 2015)

or trained features (Ullman et al., 2018) have been found to describe human inferences better

than either pattern recognition or full reasoning over the space of hypotheses.

The analysis-by-synthesis approach to inference traditionally is applied to problems with a

fixed amount of information – for example, judging relative masses after observing a full video of

two objects colliding (Sanborn et al., 2013; Wu et al., 2015). But physical events by their nature

are dynamic, unfolding over time. Yildirim et al. (2018) demonstrate that human inferences about

weight change along with the unfolding observations from the world. Furthermore, they suggest

that additional approximations to the inference process are required to explain how these

judgments change over time. Following the theory of Rational Process Models (Griffiths, Vul, &

Sanborn, 2012, Chapter 11), they suggest that these inference dynamics can be explained by a

model based on particle filters, in which belief about masses is formed as a limited set of
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hypotheses that are tracked and updated over time. But they also propose another possible

explanation: that people might have an approximate inverse IPE that can go directly from

observations to latent scene causes. This is similar to other proposals for amortized inference

over generative models (Le, Baydin, & Wood, 2016; Stuhlmüller, Taylor, & Goodman, 2013),

which suggest that we can use our IPE to imagine scenes that can be used to train an

approximate inverse model. This inverse model will be less flexible than analysis-by-synthesis,

but will also be much more efficient, and therefore might be useful to have for inference tasks we

must do often or quickly (e.g., judging mass in common scenarios). Determining what

approximations the mind uses for online physical inferences therefore remains an open area of

research.

Physics hacks and game engine approximations

Many of the approximations that are relevant for IPEs are also relevant for general efficient

inference schemes, including sampling and the heuristic use of bottom-up features. However, an

IPE may also contain domain-specific conceptual approximations, useful for physical reasoning.

Engineers that develop physics-engines for video games work under the constraint of generating

‘good enough’ simulations in real time, at everyday scales. Such engineers are not working to

create a high-fidelity model of fluid dynamics, or cloud mechanics, or molecular interactions, but

rather to make a splash of water look reasonable enough. In order to achieve this, engineers use

principled workarounds and shortcuts to overcome limitations of time, memory, and computation.

Such workarounds are useful regardless of the specific implementation language or environment

of the physics engine (for general game engine concepts, see Gregory, 2014). As the human

mind is under similar constraints of simulating physically-plausible objects at everyday scales with

a limited computational budget, we may find a convergent conceptual evolution between the

workarounds and notions used in physics engines, and those used by the IPE. Below, we focus

on two examples of major short-cuts and approximations, but see Ullman et al. (2017) for more

detail.

Consider first the notion of shape as opposed to body in physics-engine software. The shape

of an object is what is eventually rendered on the screen, while the body of an object is what is
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used for actual dynamic calculations and collision-detection-and-resolution. The body is often an

approximation of the shape, making use of bounding boxes and convex hulls (see Fig. 6). As a

simplifying example, consider a character in a video game hurling an ornate vase at a wall. While

the player may see rendered on the screen an embellished object flying towards the wall (the

shape), from the point of view from a physics engine, it would be a waste of resources to exactly

and accurately simulate every ridge and dip in the vase as it flies and makes contact with the

wall. The complex shape of the vase is represented instead by a simple convex hull (the body), or

even a box. Such a hull is much easier to store in memory, and it is easier to check when this hull

overlaps with another hull or surface to trigger a collision event. Physical reality does not make

such a distinction, of course, but the shape/body split is a useful conceptual scheme in a

game-engine that runs on hardware with finite memory and computational power, and it may be

advantageous for the mind to have such a split as well. Such an approximation may also help to

explain why young infants do not use detailed shape representations to track object identity as it

moves in space, even though they can distinguish them perceptually (Smith et al., 2019; Ullman

et al., 2017; Xu, 2005; Xu & Carey, 1996). While game engines do not often set object bodies in

a dynamic way, one can imagine the mind making different body approximations depending on

the computational budget and task at hand. Figuring out when a vase will strike a surface with

limited time to spare, a person may approximate the vase using only a coarse bounding box. By

contrast, attempting to grasp a vase by the handle would require a more fine-grain body

approximation that takes into account the ‘hole’ the handle makes in the convex hull.

Another major way that game physics engines save on memory and computation is by

assigning entities to the categories static or dynamic. Static items are those that are immobile –

objects like the ground or walls – whereas dynamic objects can move and be affected by forces.

Crucially, static objects are not treated as large dynamic masses, but instead have undefined

mass and so are unaffected by collisions and other forces. As with body and shape, this

distinction between static and dynamic entities obviously does not exist in real physics. But it is

an extremely useful approximation from an engineering perspective (e.g., it would be wasteful to

calculate the infinitesimal effect that dropping an object on the ground has on the motion of the

Earth), and so one that the IPE might make use of. Such a distinction can help explain why
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(a) (b) 

Figure 6. Difference between (a) visual shape and (b) physical body representations of an entity

in a game engine. The body is an approximation of the meshes used to represent the shape, for

example with a convex hull or bounding box. Images are based on an object file created by user

kc8qzo on BlendSwap (https://www.blendswap.com/blend/4906).

extended surfaces are used earlier in development for navigation compared to everyday objects

(Hermer & Spelke, 1994; S. A. Lee & Spelke, 2008), why shifting a wall causes changing posture

and loss of balance in children and adults (D. N. Lee & Aronson, 1974), and why even very young

infants expect an object made of disparate parts to move together when it is lifted, but not to take

the floor with it (Spelke, Breinlinger, Jacobson, & Phillips, 1993).

There are other such concepts and shortcuts that help to organize a simulation and simplify

computation, and some of them seem to explain otherwise puzzling psychological phenomena

(see Ullman et al., 2017). And the inspiration can flow in the other direction – by studying the

principled concepts and workarounds the IPE uses, cognitive scientists can help to develop

useful tools for engineers that develop game engine simulations. Of course, it is possible that

many of the concepts and workarounds in game physics engines are only the result of explicit

development by engineers, with no correlate in the IPE. But given the similar need to create

approximate physical representations, it is a connection worth exploring.
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Future directions

Learning physical principles

There is a large body of work that has studied how infants develop an understanding of the

physical world (for an overview, see Baillargeon, 1994, 2004; Kinzler & Spelke, 2007; Spelke et

al., 1992, and Chapter 19). These studies find that as early as they can be tested, infants have a

concept of “objects” that includes guiding principles such as the fact that solid objects do not

disappear and cannot move through one another Baillargeon (1987). At the same time, many

studies find that the intuitive understanding of physics develops throughout childhood. How then

is the Intuitive Physics Engine learned?

The machine learning community has helped shed light on this question by introducing

several approaches for training models from observed experience to predict the physical

dynamics of objects and materials over time.

The “NeuroAnimator” (Grzeszczuk, Terzopoulos, & Hinton, 2000) introduced the idea of

training neural networks to mimic the observed local dynamics of articulated physical systems

(e.g., how a simulated robot arm’s limbs move). Two similar recent approaches—“interaction

networks” (Battaglia, Pascanu, Lai, Jimenez Rezende, & Kavukcuoglu, 2016) and the “neural

physics engine” (Chang, Ullman, Torralba, & Tenenbaum, 2016)—used neural networks to

approximate object dynamics and force relations in physical systems which could be expressed

as graphs, such as n-body gravitational systems, mass-spring systems, and rigid body dynamics

with collisions. These models explicitly represented objects by the nodes of a graph, and the

relations (i.e. the possibility that two objects could interact) by the edges. The models are trained

by regressing from an input physical state at time t to a target physical state at time t+ 1. The

output of the model could then be fed back in as input, iteratively, to produce a long simulated

trajectory.

More recent extensions of these learned physical forward models take images as input and

use recurrent neural networks (Watters et al., 2017) and hierarchical representations of a

physical system (Mrowca et al., 2018), and can learn to simulate or make inferences about

non-rigid materials and fluids (Bouman, Xiao, Battaglia, & Freeman, 2013; Guevara et al., 2018;
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Y. Li, Wu, Tedrake, Tenenbaum, & Torralba, 2018).

These models can also be used for making inferences and planning in physical systems. For

example, Sanchez-Gonzalez et al. (2018) used a more powerful version of interaction networks,

termed “graph networks”, to learn forward models of real and simulated robotic systems, which

were then used to control the robot based on model predictions in an efficient manner. They also

showed that a recurrent graph network architecture could be used to infer unobservable

properties of a system from their effects on observable properties. Zheng, Luo, Wu, and

Tenenbaum (2018) used a similar approach to infer properties such as mass and restitution. And

Kipf, Fetaya, Wang, Welling, and Zemel (2018) introduced a probabilistic approach to inferring

the structure of complex physical systems, where binary latent random variables represent the

presence or absence of relations among entities.

What is perhaps most interesting is that these types of graph-based dynamics models are

not specific to modeling physical systems, and can also learn non-physical dynamics, such the

movements and interactions among intentional agents (Hoshen, 2017; Sukhbaatar, Szlam, &

Fergus, 2016; Sun, Karlsson, Wu, Tenenbaum, & Murphy, 2019; Tacchetti et al., 2018),

suggesting a method for joint physical and social prediction.

However, despite the flexibility of these learned models, they are not easily interpretable,

which makes it difficult to understand how they might represent and use physical constants that

are required by the IPE (e.g., gravity or mass). While there are preliminary studies of what

physical knowledge might be captured by these models (e.g., Piloto et al., 2018; Riochet et al.,

2018), further work is required to understand how learned models of physics capture human

physical concepts.

Combining simulation with rule-based reasoning

This chapter has focused on the IPE as the forward model of physics that people use, as its

stochastic nature makes it easily interpretable within the framework of probabilistic cognition. But

there are also theories of physical reasoning that suggest people do not use simulation for

physical reasoning, and that this reasoning is instead based on a set of axioms and logical rules

(DiSessa, 1993; Hayes, 1979). These logic based theories have been used to explain how
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people reason about containment relationships (Davis, Marcus, & Frazier-Logue, 2017), use

(biased) rules to judge whether objects will balance on a beam (Siegler, 1976), or use heuristics

to predict how water will settle in a tipped container (Vasta & Liben, 1996).

Although simulation theory and rule-based reasoning make very different assumptions about

the underlying representations and mental processes that support physical reasoning, they

describe separate capabilities that we are able to bring to bear depending on the situation to

understand the world. For instance, Smith et al. (2018) found that when people are asked to

catch an object in ballistic motion, their predictions are consistent with simulations from an IPE,

but when those same people are asked to draw the motion of objects in identical situations, their

drawings demonstrate idiosyncratic biases. This result supports theories that suggest that we

typically use simulation in scenarios that are more dynamic and realistic, but use rules and

heuristics when encountering more abstract diagrams or explicit problems (see also Hegarty,

2004; Schwartz & Black, 1996a; Zago & Lacquaniti, 2005).

The cognitive systems that underlie logical reasoning are often posed as mostly

deterministic, which makes them difficult to reconcile with probabilistic cognition. It is therefore

important to understand how simulation and rules can be combined into a probabilistic

framework. Prior work has focused on how people can learn these rules from simulation and

feedback, where it is easy if the rule is physically relevant (Schwartz & Black, 1996b), but more

difficult with unrelated cues (Callaway, Hamrick, & Griffiths, 2017). These findings often assume

that once a good rule is learned, it will supplant the use of simulation (Schwartz & Black, 1996b).

But there are many scenarios where we do not use just simulation or just rules. For instance,

there are also cases for which logical analysis of a scene provides a clear answer but people still

rely in part on simulation. When predicting the motion of a ball that is contained within a box it

should be easy to judge that the ball will never reach an area outside the box based on the

containment relationships alone (Davis et al., 2017), but people will at least sometimes use

simulation to make those judgments (Smith et al., 2013; Smith, de Peres, Vul, & Tenenbaum,

2017). Similarly, there are situations where people use rules that are biased and less accurate

than physical simulation: the rules that people use for balance judgements produce biases that

privilege weight over leverage for comparing torques around a center point (Siegler, 1976), but
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these biases cannot be derived from an IPE (Marcus & Davis, 2013). In these cases, people must

choose between inaccurate but cheaper heuristics versus more accurate but more cognitively

expensive simulation. While there have been initial proposals for how this trade-off is performed

(e.g., based on an implicit cost / benefit comparison; Smith et al., 2018), it is an open question

how people choose between and combine these different systems for physical reasoning, and

how this combination of systems fits within the general framework of probabilistic cognition.

Joint physical and social reasoning

Intuitive physics and intuitive psychology deal with seemingly different domains – objects and

agents, things and people. Even infants have diverging expectations when an entity is seen as a

physical body compared to a perceiving agent, and some cognitive development researchers

propose that different reasoning systems form two separate modules for handling these separate

domains (Kinzler & Spelke, 2007), with a classification scheme that triggers different expectations

depending on the type of entity that is being considered. Ongoing work in cognitive neuroscience

has also identified dissociation in brain region activity when processing physical and social

scenes (Fischer et al., 2016; Isik, Koldewyn, Beeler, & Kanwisher, 2017). However, even if these

two domains are handled by two different computational modules, they must work in concert to

produce reasonable interpretations of common scenes. Agents are physical beings that are

subject to physical constraints, and these constraints help make sense of the goals, beliefs, and

intentions of agents. Consider for example a simple scene in which 10-month olds see an agent

jump over a barrier to get to a goal (Gergely, Nádasdy, Csibra, & Bíró, 1995). When the goal is

removed, both adults and infants expect the agent to make a bee-line for the goal, rather than

repeat the spatio-temporal trajectory it took previously (jumping over a now non-existent barrier).

Such an expectation is obvious and intuitive, but only if we take agents to have goals, to act

efficiently to achieve their goals, and – crucially for the current point – to not be able to pass

through solid barriers.

Working with the framework of Bayesian Theory of Mind to intuitive psychology (Baker,

Jara-Ettinger, Saxe, & Tenenbaum, 2017; Baker, Saxe, & Tenenbaum, 2009, Chapter 14), the link

between psychological and physical reasoning happens in several ways. First, physics provides
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the baseline transition function for the world, needed for planning actions. That is, in order to plan

an agent needs to know P (s′|s, a), the probability of moving to a new state s′ conditioned on

being in a specific state s and taking a specific action a (which may be not to act at all). In general

such a transition function is arbitrary, and can apply to any planning context (e.g. it can describe

the possible legal moves in an abstract game of tic-tac-toe), but in a real-world dynamic context

this transition function is provided in part by the IPE (’If I throw this apple, what will happen?’). By

inverting such a planning procedure, people can work backwards to reason about the goal that

generated that plan (and see Holtzen, Zhao, Gao, Tenenbaum, & Zhu, 2016, for an

implementation that infers people’s hierarchical goals from videos of them moving in an everyday

environment).

Second, physics provides a natural notion of cost, that can be used to estimate the reward of

the agent. A great deal of psychological reasoning can be reduced to the Naive Utility Calculus

(Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016):

U(a, s) = R(s)− C(a) (8)

Here the utility U of an agent is determined by the reward of a state s and the cost of an

action a. If we have a good estimate for C, we can reason about the likely rewards that drove an

agent to pay that cost (see Chapter 14, Section 1.1 for further details). There can be different

types of cost, coming from mental effort, opportunity cost, temporal discounting, and so on. But a

basic, natural type of cost is physical effort. The more an agent is willing to physically exert itself

to get to a particular state s, the more that s must be worth. Even young infants can infer value

from cost in this way, reasoning that if an agent was willing to climb a steep hill to get to Goal A,

but only a shallow hill to get to Goal B, then A must be worth more to the agent than B (Liu,

Ullman, Tenenbaum, & Spelke, 2017, although more work is needed to establish whether the

physical effort here is related to force or distance). In a social situation, young children can use a

similar calculus to reason that if a person A is unwilling to spend some small amount of physical

effort to help B, then person A must not really like B (Jara-Ettinger et al., 2016). In this way, the

IPE and Naive Utility Calculus can jointly provide a unified computational framework for

explaining the everyday inferences we make about the plans of others given their physical
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constraints (see also, Sosa, Ullman, Tenenbaum, Gershman, & Gerstenberg, 2021).

Conclusion

We regularly reason about our physical world by making predictions about what will happen

next, updating our beliefs about the properties of objects, and planning how we will act. While

these tasks often intuitively seem effortless, performing them requires both rich generative

models of the world and the capability to deal with the underlying uncertainty in perception and

dynamics. Probabilistic models of cognition can help us explain how we can simulate physics

under uncertainty, and how those simulations support a range of ways of reasoning about the

world. Conversely, studying physical reasoning can help develop an understanding of how the

mind approximates Bayesian principles in complex domains, as many of the problems we solve

easily are in principle computationally intractable. Thus physical reasoning is a quintessential

domain to use and extend probabilistic models of cognition.
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subjects: Misconceptions about trajectories of objects. Cognition, 9(2), 117–123.

Ceccarelli, F., La Scaleia, B., Russo, M., Cesqui, B., Gravano, S., Mezzetti, M., . . . Zago, M.

(2018). Rolling Motion Along an Incline: Visual Sensitivity to the Relation Between

Acceleration and Slope. Frontiers in Neuroscience, 12. doi: 10.3389/fnins.2018.00406

Chang, M. B., Ullman, T., Torralba, A., & Tenenbaum, J. B. (2016). A compositional object-based

approach to learning physical dynamics. arXiv preprint arXiv:1612.00341.

Cheng, P. W. (1997). From covariation to causation: A causal power theory. Psychological

Review , 104(2), 367–405.

Chouinard, P. A., Leonard, G., & Paus, T. (2005). Role of the primary motor and dorsal premotor

cortices in the anticipation of forces during object lifting. Journal of Neuroscience, 25(9),

2277–2284.

Craik, K. J. W. (1943). The nature of explanation. Oxford, UK: University Press, Macmillan.

Dasgupta, I., Smith, K. A., Schulz, E., Tenenbaum, J. B., & Gershman, S. J. (2018). Learning to

act by integrating mental simulations and physical experiments. bioRxiv , 321497.

Davidson, P. R., & Wolpert, D. M. (2005). Widespread access to predictive models in the motor

system: a short review. Journal of neural engineering, 2(3), S313.



PROBABILISTIC MODELS OF PHYSICAL REASONING 40

Davis, E., Marcus, G., & Frazier-Logue, N. (2017). Commonsense reasoning about containers

using radically incomplete information. Artificial Intelligence, 248, 46–84.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based

influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215.

Deeb, A.-R., Cesanek, E., & Domini, F. (2021). Newtonian Predictions Are Integrated With

Sensory Information in 3D Motion Perception. Psychological Science, 32(2), 280–291. doi:

10.1177/0956797620966785

Diacu, F. (1996). The solution of the n-body problem. The Mathematical Intelligencer , 18(3),

66–70.

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and instruction, 10(2-3),

105–225.

Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312–325.

Dowe, P. (2000). Physical causation. Cambridge, England: Cambridge University Press.

Erdogan, G., Chen, Q., Garcea, F. E., Mahon, B. Z., & Jacobs, R. A. (2016). Multisensory

part-based representations of objects in human lateral occipital cortex. Journal of cognitive

neuroscience, 28(6), 869–881.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a

statistically optimal fashion. Nature, 415(6870), 429.

Fazeli, N., Oller, M., Wu, J., Wu, Z., Tenenbaum, J., & Rodriguez, A. (2019). See, feel, act:

Hierarchical learning for complex manipulation skills with multisensory fusion. Science

Robotics, 4(26), eaav3123.

Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy

of intuitive physical inference. Proceedings of the national academy of sciences, 113(34),

E5072–E5081.

Fisher, J. C. (2006). Does simulation theory really involve simulation? Philosophical Psychology ,

19(4), 417–432.

Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and

control: evidence from grip force adjustments during movements of hand-held loads.

Journal of Neuroscience, 17 (4), 1519–1528.



PROBABILISTIC MODELS OF PHYSICAL REASONING 41

Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking the intentional stance at 12

months of age. Cognition, 56(2), 165–193.

Gerstenberg, T., Goodman, N., Lagnado, D., & Tenenbaum, J. (2021). A counterfactual

simulation model of causal judgment for physical events. Psychological Review . doi:

10.1037/rev0000281

Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2017).

Eye-tracking causality. Psychological science, 28(12), 1731–1744.

Gerstenberg, T., Siegel, M., & Tenenbaum, J. (2021). What happened? Reconstructing the past

through vision and sound. doi: 10.31234/osf.io/tfjdk

Gerstenberg, T., & Tenenbaum, J. B. (2016). Understanding “almost”: Empirical and

computational studies of near misses. In A. Papafragou, D. Grodner, D. Mirman, &

J. C. Trueswell (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science

Society (pp. 2777–2782). Austin, TX: Cognitive Science Society.

Gerstenberg, T., & Tenenbaum, J. B. (2017). Intuitive theories. In M. Waldmannn (Ed.), Oxford

handbook of causal reasoning (pp. 515–548). Oxford University Press.

Gerstenberg, T., Zhou, L., Smith, K. A., & Tenenbaum, J. B. (2017). Faulty towers: A hypothetical

simulation model of physical support. In G. Gunzelmann, A. Howes, T. Tenbrink, &

E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science

Society (pp. 409–414). Austin, TX: Cognitive Science Society.

Gilden, D. L., & Proffitt, D. R. (1989). Understanding collision dynamics. Journal of Experimental

Psychology: Human Perception and Performance, 15(2), 372.

Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: dissociable

neural prediction error signals underlying model-based and model-free reinforcement

learning. Neuron, 66(4), 585–595.

Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645–1655.

Gregory, J. (2014). Game engine architecture. AK Peters/CRC Press.

Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive

Psychology , 51(4), 334–384.

Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic



PROBABILISTIC MODELS OF PHYSICAL REASONING 42

models of cognition. Current Directions in Psychological Science, 21(4), 263–268.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and

perception. Behavioral and brain sciences, 27 (3), 377–396.

Grzeszczuk, R., Terzopoulos, D., & Hinton, G. (2000). Neuroanimator: fast neural network

emulation and control of physics-based models. University of Toronto.

Guevara, T., Pucci, R., Taylor, N., Gutmann, M., Ramamoorthy, S., & Subr, K. (2018). To stir or

not to stir: Online estimation of liquid properties for pouring actions. In Neural information

processing systems (neurips), modeling the physical world: Perception, learning, and

control workshop.

Hamrick, J. B. (2019). Analogues of mental simulation and imagination in deep learning. Current

Opinion in Behavioral Sciences, 29, 8–16.

Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., & Tenenbaum, J. B. (2016). Inferring mass in

complex scenes by mental simulation. Cognition, 157 , 61–76.

Hamrick, J. B., Smith, K. A., Griffiths, T. L., & Vul, E. (2015). Think again? the amount of mental

simulation tracks uncertainty in the outcome. In Cogsci.

Hauf, P., Paulus, M., & Baillargeon, R. (2012). Infants Use Compression Information to Infer

Objects’ Weights: Examining Cognition, Exploration, and Prospective Action in a

Preferential-Reaching Task. Child Development , 83(6), 1978-1995. doi:

10.1111/j.1467-8624.2012.01824.x

Hayes, P. J. (1979). The naive physics manifesto. Expert systems in the microelectronic age.

Hecht, H., & Bertamini, M. (2000). Understanding projectile acceleration. Journal of

Experimental Psychology: Human Perception and Performance, 26(2), 730-746. doi:

10.1037/0096-1523.26.2.730

Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical

systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5),

1084.

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences,

8(6), 280–285.

Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young



PROBABILISTIC MODELS OF PHYSICAL REASONING 43

children. Nature, 370(6484), 57.

Hernández-Lobato, J. M., Hoffman, M. W., & Ghahramani, Z. (2014). Predictive entropy search

for efficient global optimization of black-box functions. In Advances in neural information

processing systems (pp. 918–926).

Hespos, S. J., Ferry, A. L., Anderson, E. M., Hollenbeck, E. N., & Rips, L. J. (2016).

Five-month-old infants have general knowledge of how nonsolid substances behave and

interact. Psychological science, 27 (2), 244–256.

Holtzen, S., Zhao, Y., Gao, T., Tenenbaum, J. B., & Zhu, S.-C. (2016). Inferring human intent from

video by sampling hierarchical plans. In Intelligent robots and systems (iros), 2016 ieee/rsj

international conference on (pp. 1489–1496).

Hoshen, Y. (2017). Vain: Attentional multi-agent predictive modeling. In Advances in neural

information processing systems (pp. 2701–2711).

Huys, Q. J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in

your head: how the pavlovian system sculpts goal-directed choices by pruning decision

trees. PLoS computational biology , 8(3), e1002410.

Isik, L., Koldewyn, K., Beeler, D., & Kanwisher, N. (2017). Perceiving social interactions in the

posterior superior temporal sulcus. Proceedings of the National Academy of Sciences,

201714471.

Jack, A. I., Dawson, A. J., Begany, K. L., Leckie, R. L., Barry, K. P., Ciccia, A. H., & Snyder, A. Z.

(2013). fmri reveals reciprocal inhibition between social and physical cognitive domains.

NeuroImage, 66, 385–401.

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B., Finn, C., & Wu, J. (2019). Reasoning

about physical interactions with object-oriented prediction and planning..

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The naïve utility calculus:

Computational principles underlying commonsense psychology. Trends in cognitive

sciences, 20(8), 589–604.

Jenkins, H. M., & Ward, W. C. (1965). Judgment of contingency between responses and

outcomes. Psychological Monographs: General and Applied , 79(1), 1–17.

Kahneman, D., & Tversky, A. (1982). The simulation heuristic. In D. Kahneman & A. Tversky



PROBABILISTIC MODELS OF PHYSICAL REASONING 44

(Eds.), Judgment under uncertainty: Heuristics and biases (pp. 201–208). New York:

Cambridge University Press.

Kalichman, S. C. (1988). Individual differences in water-level task performance: A

component-skills analysis. Developmental Review , 8(3), 273–295.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human

extrastriate cortex specialized for face perception. Journal of neuroscience, 17 (11),

4302–4311.

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current opinion in

neurobiology , 9(6), 718–727.

Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016). Adaptive integration of habits into

depth-limited planning defines a habitual-goal–directed spectrum. Proceedings of the

National Academy of Sciences, 113(45), 12868–12873.

Kinzler, K. D., & Spelke, E. S. (2007). Core systems in human cognition. Progress in brain

research, 164, 257–264.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for

interacting systems. arXiv preprint arXiv:1802.04687 .

Kool, W., Cushman, F. A., & Gershman, S. J. (2016). When does model-based control pay off?

PLoS computational biology , 12(8), e1005090.

Körding, K., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427 ,

244-247.

Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial

information: evidence from studies of image scanning. Journal of experimental psychology:

Human perception and performance, 4(1), 47.

Kubricht, J., Jiang, C., Zhu, Y., Zhu, S.-C., Terzopoulos, D., & Lu, H. (2016). Probabilistic

simulation predicts human performance on viscous fluid-pouring problem. In Proceedings

of the 38th annual conference of the cognitive science society (pp. 1805–1810).

Kubricht, J., Zhu, Y., Jiang, C., Terzopoulos, D., Zhu, S.-C., & Lu, H. (2017). Consistent

probabilistic simulation underlying human judgment in substance dynamics. In Proceedings

of the 39th annual meeting of the cognitive science society (pp. 700–705).



PROBABILISTIC MODELS OF PHYSICAL REASONING 45

Le, T. A., Baydin, A. G., & Wood, F. (2016). Inference compilation and universal probabilistic

programming. arXiv preprint arXiv:1610.09900.

Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants.

Perception & Psychophysics, 15(3), 529–532.

Lee, S. A., & Spelke, E. S. (2008). Children’s use of geometry for reorientation. Developmental

science, 11(5), 743–749.

Li, S., Sun, Y., Liu, S., Wang, T., Gureckis, T., & Bramley, N. (2019). Active physical inference via

reinforcement learning.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., & Torralba, A. (2018). Learning particle dynamics

for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint

arXiv:1810.01566.

Liu, S., Ullman, T. D., Tenenbaum, J. B., & Spelke, E. S. (2017). Ten-month-old infants infer the

value of goals from the costs of actions. Science, 358(6366), 1038–1041.

Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition?

Psychological science, 24(12), 2351–2360.

Mattar, M. G., & Daw, N. D. (2018). Prioritized memory access explains planning and

hippocampal replay. Nature Neuroscience, 21(11), 1609.

McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of

external forces: Naive beliefs about the motion of objects. Science, 210(5), 1139–1141.

Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural

networks, 9(8), 1265–1279.

Momennejad, I., Otto, A. R., Daw, N. D., & Norman, K. A. (2017). Offline replay supports

planning: fmri evidence from reward revaluation. bioRxiv , 196758.

Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: mental imagery as mental

emulation. Philosophical Transactions of the Royal Society of London B: Biological

Sciences, 364(1521), 1273–1280.

Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L. F., Tenenbaum, J., & Yamins, D. L.

(2018). Flexible neural representation for physics prediction. In Advances in neural

information processing systems (pp. 8813–8824).



PROBABILISTIC MODELS OF PHYSICAL REASONING 46

Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infantsâĂŹ exploratory skills:
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