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Abstract

Recent work suggests that people predict how objects interact in a manner consistent with

Newtonian physics, but with additional uncertainty. However, the sources of uncertainty have not

been examined. In this study, we measure perceptual noise in initial conditions and stochasticity

in the physical model used to make predictions. Participants predicted the trajectory of a moving

object through occluded motion and bounces, and we compared their behavior to an ideal observer

model. We found that human judgments cannot be captured by simple heuristics and must

incorporate noisy dynamics. Moreover, these judgments are biased consistently with a prior expec-

tation on object destinations, suggesting that people use simple expectations about outcomes to

compensate for uncertainty about their physical models.
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1. Introduction

Predicting how the world will unfold is key to our survival and ability to function on a

daily basis. When we throw a ball, cross a busy street, or catch a pen about to fall off of

a desk, we must foresee the future physical state of the world to plan our actions. The

cognitive mechanisms that help us make these predictions have been termed “intuitive

physics” models.

Although human performance in physical prediction tasks tends to approximate real-

world (Newtonian) physics, it does not match exactly: People make systematic prediction

errors. While this has been taken as evidence that human models of intuitive physics are

non-Newtonian (e.g., McCloskey, 1983), more recently human behavior has been

explained by intuitive Newtonian physics models under uncertainty. On this account,

human predictions deviate from Newtonian mechanics because of stochastic error—uncer-

tainty about the initial positions or velocities of objects propagates through the non-linear
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physical model and causes variability and bias in final judgments. For instance, human

predictions about the stability of a tower of blocks or the most likely direction for that

tower to fall are consistent with a purely Newtonian model of physics with a small

amount of uncertainty in the initial positions of the constituent blocks (Hamrick, Battaglia

& Tenenbaum, 2011). Similar models of physics with perceptual noise have been used to

explain relative mass judgments in collisions (Sanborn, Mansinghka & Griffiths, 2009)

and infants’ expectations for object movement (T�egl�as et al., 2011).
There are numerous ways in which uncertainty can be introduced into intuitive physi-

cal reasoning. We broadly classify these into two categories: perceptual uncertainty and

uncertainty about dynamics. Perceptual uncertainty arises because initial measurements of

the location and velocity of objects is imperfect; this initial noise propagates through the

model. Uncertainty about dynamics reflects noise in the physical model itself. Real object

movement and collisions are perfectly deterministic only in an idealized system; in the

world, objects can deviate from their ideal path because of multiple, unknowable interac-

tions with the environment (e.g., a ball rolling across gravel will not move in a straight

line). Stochastic dynamics could thus reflect such environmental uncertainty.

The goal of the study was to disentangle the influence of initial noisy percepts and

noisy physics on human predictions of object dynamics. We compared human behavior

in a simple physical prediction task to a stochastic physics model with parameters reflect-

ing the different types of uncertainty.

2. Stochastic physics model

We designed a model to replicate stochastic physics in a simple environment: a ball

bouncing around a two-dimensional box. We based this model on idealized mechanics

but also incorporated the two sources of uncertainty: We added noise to the initial

position and velocity to capture perceptual uncertainty, while dynamic uncertainty was

captured by jitter in object movement over time, and variability in bounce angles.

2.1. Uncertainty parameters

The model was based on a simple two-dimensional physics engine customized to add

our sources of uncertainty. As physical uncertainty goes to zero, this model reduces to

laws from idealized mechanics: The ball would continue to move in a straight line at a

constant velocity until it hit a wall, at which point it would bounce elastically and with

angle of incidence equal to the angle of exit. Uncertainty was captured using four param-

eters, two for the perceptual error, and two for the stochastic error (see Fig. 1).

2.1.1. Perceptual uncertainty
At the start of the simulation, the ball’s position and velocity were based on where the

ball would be in a perfectly deterministic simulation, but with noise added. Position was

perturbed by isotropic two-dimensional Gaussian noise parameterized by standard
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deviation, rp. Noise in velocity direction was captured in a von Mises (circular normal)

distribution on direction of motion, parameterized by concentration (inverse variance) jv.
We did not consider uncertainty in the speed of the ball, as this would only affect the

timing of the ball’s movement but not its destination, which is the prediction we aim to

capture.

2.1.2. Dynamic uncertainty
Noise was added during the simulation in two ways. First, at each time step (1,000/s),

the direction of the ball was “jittered” by adjusting its direction using a von Mises distri-

bution with the concentration parameter jm. In addition, noise was added during each

bounce by assuming that the angle the ball bounced off of the wall was defined by a von

Mises distribution centered on the angle of incidence with a concentration parameter jb.

3. Experiment

We aimed to test model predictions against human data and to estimate uncertainty

parameters in intuitive dynamics. In this experiment, subjects predicted the trajectory of a

ball in a two-dimensional environment on a computer screen. This was performed in a

“Pong” game where participants tried to catch the ball with a paddle. Crucially, we

occluded the latter part of the ball’s movement, so that successful prediction of the final

position required the mental simulation of the object trajectory. We could estimate the

final position predicted by our stochastic physics model with different parameters, and

thus compare human behavior to model predictions under varying types and degrees of

uncertainty.

In this experiment, we parametrically varied both the distance the ball would travel1

and the number of bounces off of walls while occluded. If intuitive dynamics models are

deterministic, then the number of bounces will have no effect on human predictions. The

σp

κv

κb

κm

Fig. 1. Sources of uncertainty in the stochastic physics model. Each parameter refers to a different source of

noise: position noise (rp), velocity direction noise (jv), ongoing movement noise (jm), and noise added with

a bounce (jb).
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distance manipulation was designed to tease apart the contributions of perceptual uncer-

tainty about velocity and dynamic velocity noise.

3.1. Methods

Fifty-two UCSD undergraduates (with normal or corrected vision) participated in the

experiment for course credit.

Subjects used a computer mouse to control the vertical position of an on-screen

“paddle” to catch a moving ball. The ball moved according to the deterministic physics

underlying the stochastic physics model. Both the paddle and the ball were confined to a

1200 9 900 pixel area in the center of the screen. Each trial began with a display of only

the paddle, which subjects could move up and down. The paddle was 100 pixels in height

and was centered on the vertical position of the mouse before each trial (Fig. 2a). A

mouse click triggered the start of a trial. A ball would then appear on the screen, moving

at a constant velocity of 600 pixels/s. After the ball moved 400 pixels (667 ms), a gray

rectangle would occlude the portion of the screen containing the ball (Fig. 2b). During

this period, the ball would continue to move, bouncing perfectly elastically off of the

edges of the field, but would not be visible. Once the subjects caught the ball with the pad-

dle, or the ball broke the plane of the paddle, the trial would end and the occluder would be

removed, showing whether (and by how far) the subject missed the ball (Fig. 2c).

Upon clicking the mouse, the screen would clear and reset for the next trial. The number

of balls caught by the subject was always displayed in the upper right corner as a motiva-

tion to perform well.

Subjects were given 648 trials throughout the experiment. These 648 trials were identi-

cal for all subjects but were presented in a randomized order. Each trial had a particular

ball trajectory, generated by one of nine conditions. The nine trajectory conditions

crossed the distance the ball travelled while occluded (600, 800, or 1,000 pixels) with the

number of bounces (0, 1, or 2); there were 72 trials of each condition. The specific path

for each trial was generated prior to the experiment subject to the constraints of the con-

dition and the constraint that the final position was not in the top 20% or bottom 20% of

the enclosed area to avoid bias due to positioning the paddle at the ends of the screen.

(A) (B) (C)

Fig. 2. Diagram of a trial. (A) The ball moves unoccluded in a straight line. (B) Once the field is occluded,

the ball continues to move and the subject must predict where it will end. (C) The trial ends once the ball is

either caught or passes the plane of the paddle.
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Before starting the experiment, subjects were given seven trials without the occluder to

demonstrate how the ball would move, then six practice trials with the occluder.

For each trial, we recorded the position of the midpoint of the paddle once the ball

was caught or moved past the paddle. From this measure, we could calculate, for each

trial: (a) the average expected position of the ball and (b) the variance of predictions

around that expectation.

3.2. Subject performance

3.2.1. Accuracy
Subjects caught the ball on 43.8% of all trials. Individual subject accuracies varied

between 25.6% and 63.7% (chance was 11%). Accuracy also varied by trial condition:

Subjects were most accurate in the shortest, no bounce condition (69%) and least accurate

in the longest, two-bounce condition (32%).

Accuracy improved slightly over time, increasing from 42.7% in the first half of trials

to 44.9% on the second half (v2(1) = 15.9, p < .001). However, because this was a small

effect, and because in a logistic model predicting accuracy, trial order did not interact

with either distance (v2(2) = 0.72, p = .70) or number of bounces (v2(2) = 4.18,

p = .12), we do not try to account for this change.

3.2.2. Expected positions
In addition to decreasing accuracy, subjects also showed increasing bias in average

predictions as the distance or number of bounces increased. The mean final position of

the paddle for each trial shifted toward the center as compared to the final ball position

(see Fig. 3). The magnitude of this bias toward the center of the screen increased as

either distance or number of bounces increased (Table 1).

3.2.3. Variance of responses
The variability of subjects’ responses around the mean also increased with distance

and bounces, but only up to a ceiling—well below the maximum possible spread—once

subjects had to take into account even one bounce (Table 2).

4. Model application

The coarse results suggest that prediction error and variability increase with distance

or number of bounces. But they do not indicate which sources of uncertainty contribute

to intuitive physics predictions, nor do they explain why some trials within the same con-

dition produce greater bias and variability than others.

We aimed to tease these factors apart via our model of stochastic physics. By finding

the set of uncertainty parameters that best fits the empirical data, we can compare the

relative contribution of the perceptual uncertainty parameters to the dynamic uncertainty
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Fig. 3. Mean predicted paddle position versus path endpoint using deterministic physics as a function of trial

condition. Each point represents a separate trial.

Table 1

Percent of distance “shifted” from actual end ball position

toward center by trial condition

Distance

600 800 1000

Bounces

0 24% 44% 53%

1 23% 60% 70%

2 41% 63% 84%

Table 2

Average standard deviation (in pixels) of responses within a

trial by condition

Distance

600 800 1000

Bounces

0 65 76 94

1 111 115 114

2 115 111 121
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parameters. A good model should capture trial-level differences in subjects’ performance

and explain trial difficulty based on the interplay of different sources of uncertainty.

4.1. Simulation

We replicated the experimental task in the stochastic physics model, simulating the

same 648 trials. To mirror this task, each simulation started at the point of occlusion

(when subjects could no longer visually track the ball and must predict its path) and

ended when the simulated ball crossed the plane of the paddle. On each simulation, we

measured the position of the simulated ball along that plane. Because there is no analytic

form of the probability distribution over possible trajectories, we simulated each trial 500

times, thus estimating the predictive distribution for each trial via sampling.

No reasonable set of uncertainty parameters produced mean estimates of the final posi-

tion of the ball that were systematically shifted toward the center like the empirical data;

as long as Newtonian physics underlies the model, averaging over all simulation paths,

the mean ending position will be close to the actual endpoint for most trials, regardless

of the uncertainty parameters chosen.2 As the magnitude of the center bias scaled with

distance and number of bounces, we suspected that subjects were incorporating a prior on

final position, producing a center bias proportional to the uncertainty in their physics-

based predictions. People therefore appear to incorporate prior expectations with their

intuitive physics models.

We treated this bias as a simple Gaussian prior on the final ball position centered on

the middle of the screen, with standard deviation as a free parameter (rprior). One value

of this parameter was used for all trials and conditions.

The final distribution of predictions for each trial was calculated by combining the

center-prior with the distribution of predicted positions simulated by the stochastic physics

engine. We treated the distribution of predicted positions as a Gaussian and calculated their

mean and standard deviation. We could then calculate the mean and standard deviation of

the posterior distribution using Bayesian cue combination (e.g., Ernst & Banks, 2002):

r2post ¼
1

r2prior
þ 1

r2sim

 !�1

lpost ¼
xcenter
r2prior

þ lsim
r2sim

 !
� r2post

Using these equations, trials with greater simulation variance will be more affected by

the prior and will shift further toward the screen center. Thus, the model can account for

the center-bias in a manner sensitive to prediction uncertainty.

We found the maximum likelihood parameters to fit three quarters of the data (with an

equal number of trials from each of the distance by bounce conditions).3 We also fit two

other models: one with only perceptual uncertainty and prior parameters, and other with

only dynamic uncertainty and prior parameters. We compared these models based on the

likelihood of the quarter of the remaining (cross-validation) data.
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4.2. Model results

4.2.1. Model comparison
We designed the stochastic physics model to investigate how various sources of uncer-

tainty contribute to intuitive physics. Thus, we compared the model with both dynamic

and perceptual uncertainty to the two nested models with either dynamic or perceptual

uncertainty parameters alone to determine which sets of parameters were necessary to

best explain the data (see Fig. 4).

In addition, we tested how well any of the stochastic models captures human behavior

by comparing them to a “heuristic oracle” model with different parameters for each con-

dition. The heuristic oracle model assumes that people know the correct answer (thus

“oracle”) but produce errors that vary by condition without regard to individual trial

details (“heuristic”). These errors include some bias toward the center (given by a linear

relationship between average reported position and the deterministic end point) and

response variability distributed around that shifted position (with variance estimated inde-

pendently for each condition). In other words, the heuristic oracle model is a non-physical

error model. This model can capture the gross “shift” in expected position that was

observed in the data in each condition (see Fig. 3), but it does not treat the shift as an

inference done independently on each trial. The spread in responses was assumed to be

constant within each condition and was set at the average empirical standard deviation

from that condition. Like the stochastic models, this model was fit on three-quarters of

the trials and tested on the remaining data.

Table 3 shows cross-validation likelihood for the four models. All log-likelihoods are

shown as improvement over a baseline assuming that all data came from a single Gauss-

ian. In addition, we included a “perfect trial fit” model that knows the mean and standard

deviation of responses for each trial—this serves as the plausible upper limit on how well

different models might do. The full stochastic model does best, followed closely by a

Fig. 4. Sample simulation paths for one trial with each model. The gray lines represent individual simula-

tions; the black line represents deterministic simulation. There is no initial uncertainty in the dynamic model,

but it builds quickly over time, resulting in wavy paths. The initial position and velocity vary significantly in

the perceptual model, but once started, the simulation unfolds deterministically. The full model uses both

types of uncertainty and so has more certainty in starting positions than the perceptual model and straighter

paths than the dynamic model.
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model including only dynamic noise. Both the perceptual noise model and the non-physi-

cal model perform worse by many orders of magnitude.

The dynamic model performed nearly as well as the full model for two reasons. First,

the parameter representing error in the initial position (rp) was set to a small value in the

full model and explained very little of the variance in simulations. Second, much of the

noise in initial velocity direction (jv) can be captured by increasing dynamic velocity

noise (jm), and so we cannot say whether any initial velocity noise is required. The

model with only perceptual noise did quite poorly because subjects’ performance changed

with each additional bounce, and thus human performance cannot be captured without

dynamic uncertainty.

4.2.2. Trial-level simulations
Human predictions about individual trials within the same distance-by-bounce condi-

tion varied significantly: Some had much larger variations in responses or greater shifts

toward the center than others. These differences arose from trajectory characteristics other

than total distance traveled or number of bounces. For instance, it is harder to predict the

end position of a ball that bounces in a corner or balls that approach the paddle at a steep

angle. If the stochastic physics model is capturing characteristics of intuitive physics, then

it should capture this within-condition variability as well.

The full stochastic model fit the variation in mean paddle position across trials well

(r = .93), and slightly better than the predictions of the heuristic oracle model (r = .90). How-

ever, the difference between models is highlighted when considering individual conditions:

Although both models account for the mean position in the no-bounce conditions, only the full

model continues to perform well as bounces and distance are added (see Table 4).

Table 4

Correlation between model and empirical by-trial means within distance and bounce condition

Full Heuristic oracle

Distance Distance

600 800 1000 600 800 1000

Bounces

0 .99 .99 .99 .99 .99 .99

1 .86 .88 .85 .88 .77 .68

2 .89 .87 .82 .82 .68 .45

Table 3

Model prediction of left-out data

Model DLLH

Full 2,588

Dynamic 2,568

Perceptual 2,197

Heuristic oracle 2,326

Perfect trial fit 3,259
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The standard deviation of predictions from the full stochastic model was well corre-

lated with the standard deviation of subjects’ responses across trials (r = .79, see Fig. 5),

albeit with a tendency to overestimate. Moreover, the stochastic physical model also cap-

tures the variability across trials within each distance-by-bounce condition (Table 5).

Together, these results indicate that human uncertainty about final outcomes accumulates

in a manner qualitatively similar to that predicted by a stochastic physical model.

In the experimental data, the amount of mean-shifting for each trial is related to the

variance of the observations from that trial (Spearman’s rho = 0.30), suggesting that peo-

ple hedge their guesses toward the middle more as the amount of uncertainty increases.

A center-prior captures this behavior by causing more reliance on the prior when there is

a wider distribution of model simulations. This has the effect of shifting guesses more

toward the center when physical simulations are more uncertain. The stochastic physics

model captures this phenomenon by predicting trial-level differences in uncertainty and is

Table 5

Correlation between full model and empirical by-trial standard devia-

tions within condition

Distance

600 800 1,000

Bounces

0 .54 .43 .17

1 .53 .44 .30

2 .14 .16 .17

Fig. 5. Full model versus empirical standard deviation by trial. Each point represents a separate trial.
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thus better able to describe variation in human responses across trials than a constant

mean-shift for each condition (see Fig. 6).

4.3. Source of the center bias

Subjects positioned their paddle closer to the middle of the screen than where the ball

actually ended, and we suggest that this bias arises from subjects’ prior expectation that

the ball will end in the center. In this section we address alternate explanations for this

bias: Is the center bias arising from task demands and strategies for dealing with this dif-

ficult task? Or is such a bias learned over time? We argue that neither of these accounts

explains the bias we observe.

We assume that the middle of the paddle is each subject’s best guess for the end position

of the ball, but subjects could instead be attempting to minimize a loss function on the dis-

tance between each of the simulation outputs and where they place the paddle. Because pre-

dicted end-points under a physical model are somewhat skewed away from the edges

(toward the center) due to the physical non-linearities of bounces, estimated positions will

also be skewed toward the center relative to the modes of the distributions. However, these

effects do not explain subjects’ center shift. With a quadratic loss function (L2), the best

placement of the paddle would be the mean of the simulations (Strook, 2011, p. 43), but as

noted previously, the mean of the distributions was often centered on the end position of the

ball and does not account for the observed center bias (indeed, this is why we suspected that

Fig. 6. Full model predictions versus empirical mean position by condition. Each point is a separate trial.

The full model captures peoples’ empirical behavior (including the center bias) well over every trial

condition.
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subjects were using a center-prior). With a linear loss function (L1), the optimal paddle

placement is the median of the simulation distribution, and a skew toward the center makes

the median closer to the edges than the mean, predicting a relative edge bias. Although a

more exotic loss function (e.g., L4 or L8) might increase predicted center-shifting, an arbi-

trary choice of this function would require more explanation than a center-prior.

Subjects may also have failed to move their paddle on some trials or not moved it

quickly enough. Such a process would average out to yield an apparent center bias. If

subjects’ failure to move the paddle were exacerbated on more difficult trials, the center-

shifting would be greater on those trials. We can test for such failures to move the paddle

by assessing the autocorrelation between paddle positions on adjacent trials: On this

account, the autocorrelation should be related to the amount of center-shifting. As can be

seen in Table 6, this autocorrelation is low, although it does increase somewhat with the

distance or number of bounces. However, it does not increase as center-shifting does—
correlation with each condition’s center-shifting (Table 1) is low and not statistically sig-

nificant (Spearman’s rho = 0.25; one-tailed permutation test, p = .25). Thus, while move-

ment failures may contribute somewhat to the center-shifting, they cannot fully explain it.

To make the next trial easier, subjects may have positioned their paddle closer to the

center of the screen. This might make sense in a task where trials follow quickly after

one another and subjects have insufficient time to reposition the paddle between trials.

However, we did not enforce inter-trial times in the experiment; subjects were free to

move the paddle after each trial, and each trial was only started once the subject clicked

the mouse. Furthermore, as evidenced by low autocorrelations between paddle positions,

subjects do not appear to have any difficulty repositioning the paddle from one trial to

the next. Thus, it seems unlikely that such a strategy would benefit subjects.

Beyond this bias being imposed by task demands, it is possible that this expectation

about the ball’s movement was learned from the experiment. Each of the trials in the

experiment was created with the constraint that the ball would not cross the plane of the

paddle at the extreme ends of the screen; subjects may have noticed this fact and adjusted

their responses appropriately. In order to address this concern, we tested whether the cen-

ter-bias increased over the course of the experiment. We measured the amount of relative

center-shifting that each subject had for each trial, and regressed this against the trial

order, controlling for effects of the specific trial type; however, we found no evidence of

a linear relationship between order and amount of center-shifting (F(1,32996) = 0.139,

Table 6

Autocorrelation of paddle position with prior position

Distance

600 800 1,000

Bounces

0 .12 .14 .18

1 .14 .17 .13

2 .20 .20 .18
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p = .71). Moreover, the estimated slope of this line suggests that, if anything, the center

bias decreased over time.

Because the center-shifting behavior cannot be fully explained by task demands, and

because this behavior did not change over the course of the experiment, we believe

that the center bias is evidence of subjects’ prior expectations about the ball’s

movement.

5. General discussion

We found that human performance on a physical prediction task is captured by a

model of stochastic physics with a prior expectation about the final position of objects.

Furthermore, we found that bias and variability of human predictions are driven by uncer-

tainty about the dynamics: People use stochastic, rather than deterministic, physics to

make predictions. This result supports recent findings that people predict object dynamics

using unbiased intuitive physics models (e.g., Hamrick et al., 2011), and it suggests two

refinements to this view. First, the internal physics models themselves must be stochastic

rather than rely solely on perceptual uncertainty to demonstrate non-determinism. Second,

people do not directly use predictions from their physical models but combine them with

simple priors to produce rich behaviors.

Although we found that dynamic uncertainty contributes substantially to predictions in

this task, we do not know how people might adjust this uncertainty based on task

demands. In this experiment, the ball was easy to see (low perceptual uncertainty) and

the background was uniform (suggesting less perturbation during movement). Lower con-

trast between object and background might cause greater perceptual uncertainty; likewise,

backgrounds suggesting a rough surface might cause people to introduce more stochastic

movement error into their simulations. An interesting direction for future work is to

explore how people adjust the uncertainty within their intuitive physics models to account

for different expectations about the world.

We also found that people modulate their physical predictions via prior expectations

about the outcomes. Although these expectations could arise in many ways, here we were

able to capture human behavior well by using a simple expectation about the final posi-

tion: People believed that the ball was more likely to end up in the center of the screen.

This expectation might arise because in similar games such as air hockey opponents are

more likely to shoot the puck toward the goal in the center. However, it is also possible

that this is an approximation of other sorts of priors (e.g., objects tend to travel in a more

horizontal direction). More research is required to understand exactly what these prior

expectations are, how they develop, and under what conditions they become integrated

into models of intuitive physics. Regardless of the prior used, we think that this might

reflect a more general strategy that people may adopt to account for their uncertainty in

their internal physical model itself: By adjusting model predictions via a simple prior on

outcomes, behavior will be more robust to errors in the simulation model. A similar pro-

cess may suggest a means for combining model-based and model-free predictions
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(Gl€ascher, Daw, Dayan & O’Doherty, 2010): Learning simple expectations about the

world is a good hedge against model error.

Our models predicted systematically larger variances than those we observed. This

may be due to our simplistic choice of the shape of the prior. Gaussian cue combination

of the prior and simulated distributions produces dependence between variance and mean-

shift: A greater mean-shift arises only from greater variance. Thus, to best fit the pre-

dicted means, using a Gaussian prior required a biased variance estimate. Further work is

required to understand the priors people actually hold (e.g., Stocker & Simoncelli, 2006)

to refine the models that people use to simulate the world.

This work supports the hypothesis that intuitive physics models can be built upon a

Newtonian framework. Moreover, these models are not deterministic but incorporate

sources of dynamic uncertainty. Furthermore, people do not trust these models entirely

but combine their predictions with simple expectations about the outcome itself. Although

just a first step, this provides a framework for disentangling and understanding the

various components of intuitive physics models.
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Notes

1. Because the ball always moved at a constant velocity, the distance was proportional

to the duration of occlusion.

2. If the ball ended close to a bounding wall, the distribution of simulated end

positions was skewed away from the wall (because of simulated bounces). How-

ever, the average end position tracked the actual endpoint with considerable fidelity

(r = .95).

3. Numerical optimization techniques can find local minima, so we used multiple

starting points and grid search across 1,600 sets of parameters to ensure we were

finding the global minimum.
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