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Abstract

Theories of the mental processes people use to perform physi-
cal reasoning often differ on whether they are based on simu-
lation or on logical reasoning. Here we test how these different
processes might combine in a motion-prediction task that can
be solved either by simulation or by reasoning about the topol-
ogy of the scene. Participants were asked to predict which of
two goals a computerized ball would reach first, but in some
of these scenes the ball was ‘contained’ in the same space as
one goal but was topologically separated from the other. Even
in these contained scenes, participants responded faster when
they received motion information that would speed up simu-
lation but not affect topological parsing. This suggests that
simulation contributes to predicting short-range motion, even
when alternate strategies are available.
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Introduction
A long-standing debate in physical reasoning is whether peo-
ple use simulation (Shepard & Metzler, 1971; Battaglia,
Hamrick, & Tenenbaum, 2013) or symbolic reasoning
(Forbus, 1983; Davis, Marcus, & Chen, 2013) to understand
the world, and whether the mental representations that sup-
port physical reasoning are continuous or based on a qualita-
tive analysis of the scene. Recently, models based on contin-
uous simulation have had success explaining a range of hu-
man behaviors such as stability judgments (Battaglia et al.,
2013), motion prediction (Smith & Vul, 2013), and causal-
ity judgments (Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2012). However, others have noted that simulation is
an overly cumbersome process for many instances of physical
reasoning where simple logical rules could suffice – e.g., if a
ball is placed in a box and shaken, it seems easier to notice the
topological relationship of containment and use the rule “An
object in a closed container remains in the container” than
to simulate the exact trajectory of the ball (Davis & Marcus,
2015).

In this paper we study how people make physical predic-
tions in cases where either simulation or a logical parsing of
the scene can provide an answer. As in the example of Davis
and Marcus (2015), we focus on the topological relationship
of containment: an object is contained in a portion of space if
there exist other objects that surround it and prevent it from
leaving that space. We choose to study containment for three
reasons. First, Davis et al. (2013) demonstrate that topolog-
ical containment can be parsed using simple rules of first-
order logic for a rapid understanding of the scene. Second,
people automatically and unconsciously process certain types

Figure 1: Diagram of continuous simulation (top) versus reasoning
about kinematics using a qualitative scene parsing (bottom). Noisy
simulation traces potential trajectories of objects through a continu-
ous representation of the world. Qualitative physical reasoning seg-
ments the scene by topological regions and defines motion trajec-
tories through a graph based on connections between those regions
(bottom figure from Forbus, 1983).

of containment (Strickland & Scholl, 2015). And finally, in
previous work we found that we could explain motion pre-
diction using a model of noisy physical simulation across a
wide variety of scenes, but that people made predictions more
rapidly than would be expected under the simulation model
in the handful of scenes where an object was topologically
contained to make one outcome impossible (Smith, Dechter,
Tenenbaum, & Vul, 2013). Together, this suggested that pre-
dicting motion in contained spaces would be a good candidate
task for finding traces of both simulation and logical reason-
ing about scene topology.

Here we test whether and when topological reasoning
about a scene occurs before simulation, versus when simula-
tion supports prediction. We use a similar paradigm to Smith
et al. (2013), in which participants observe a ball bounc-
ing around a computerized screen and predict which of two
‘goals’ the ball will reach first. To make predictions using
simulation, people would need to form a representation of the
scene then step the motion of the ball forwards in time until
it reaches a goal, but do not need to recognize the combined
spatial relationship of objects: e.g., that a set of walls delin-
eates one part of the space from another. Thus the time it
takes to form simulations and make a prediction should be
proportional to the path length the ball travels (Moulton &



Kosslyn, 2009), and so the amount of time to produce a re-
sponse using simulation should be affected by the motion of
the ball: if the ball is moving towards a goal, the relatively
shorter path should require less time to simulate, whereas
motion away from the goal would produce longer simulation
paths and proportionally longer response times. Conversely,
to predict that the ball will reach one of the two goals because
it cannot reach the other requires representing the scene, logi-
cally reasoning about whether the walls form distinct regions,
then deciding whether the ball rests within a region with one
but not both of the goals. However, this reasoning process
does not require moving the ball forward in time, and so
should be insensitive to any differences in motion informa-
tion.

In this experiment, we therefore asked participants to make
a single prediction and measured their response times. We
further varied the motion information provided: the ball could
move towards the goal, away from the goal, or have no ob-
served motion. A facilitation effect in which motion towards
the goal produces faster responses is evidence that people are
at least in part relying on simulation, while absence of this ef-
fect points towards topological processing. Finally, we vary
the way in which the ball can be contained in order to test for
the limits of topological processing.

Experiment

Procedure
We recruited 100 participants from Amazon Mechanical Turk
using psiTurk (Gureckis et al., 2016) to take part in this ex-
periment. The experiment lasted ∼10-12 minutes, for which
participants were compensated $1.20.

On each trial of the experiment, participants would observe
a scene with a ball that could move in a straight line but
bounce off of walls (such as the one in Figure 2) and were
asked to predict whether the ball would reach the green goal
or the red goal first. The colors of the goals were randomly
switched to avoid any color biases, and responses were ad-
justed in switched-color trials for consistency of analysis. In
two thirds of the trials, participants would observe the ball
in motion for 500ms; in the remaining third of trials, partic-
ipants would observe no motion but were instructed that the
ball would move in a direction not known to them until after
they made their prediction.

Figure 2: Diagram of experimental trials (Left: non-topological,
Right: topological). Participants would either observe the ball in
motion or a static ball, and would be asked to indicate whether they
believed the ball would reach the green or red goal first. The arrow
was not displayed but indicates the direction of motion.

Participants registered which goal they believed the ball
would reach by pushing either the ‘z’ or ‘m’ buttons on the
keyboard. The mapping between the key and goal color was
randomized across participants to control for any directional
effects. To ensure that participants observed the full motion
path and to equate for processing time, the prediction could
not be registered until either the 500ms of motion had stopped
in the motion condition, or after the response buttons flashed
after 500ms in the no motion condition.

After participants registered their response, the ball would
travel along its trajectory until it reached a goal, and partic-
ipants would be assigned a score between 0 and 100 points,
with faster reaction times (up to 300ms) earning more points.
If participants made an incorrect prediction, they always lost
10 points. If a participant did not respond for 2500ms, the
trial would end and the participant would be awarded no
points. These points were used to incentivize rapid responses
and as motivation, but did not affect compensation.

On each trial we recorded both reaction time (between
when a response could be indicated and when the button was
pressed)1 and the goal the participant predicted the ball would
reach.

Stimuli
Participants observed 120 trials throughout the experiment.
Of these trials, 96 were ‘non-topological’ trials that were
randomly constructed such that the ball would reach a goal
within 15 seconds, but were not hand designed with topolog-
ical relationships. These uncontained trials were used to en-
sure that participants did not develop a deliberative, top-down
strategy of judging topology.

The remaining 24 trials each participant saw were crafted
to investigate one of four different dimensions of topological
processing. There were six trial templates for each of the four
dimensions (for a total of 24 templates), and each of these
templates was adjusted to create three levels of containment
across that dimension – each dimension started from the most
contained, most simple, or smallest (level 1) and progressed
to the most open, most complex, or largest (level 3). Thus
there were 72 different topological trials used in the exper-
iment, but each participant saw only one of the three levels
formed from each template to avoid carry-over from simi-
lar trials. The dimensions of topological differences are de-
scribed below.

Size This dimension was used to test whether topological
parsing was performed by exploring the enclosed space at a
constant rate, or whether topology is processed based on the
configuration of the scene. If it is performed at a constant
rate, then larger scenes with the same configuration should
take longer to parse as topologically contained. We crafted
these stimuli such that the smallest scene had dimensions that
were 50% of the largest scene, while the middle scene had

1We also measured response time starting from when the stimuli
came on the screen; results were qualitatively similar regardless of
the choice of starting time.



Figure 3: Sample trials from each of the topological dimensions along the three levels. The size trials (upper left) varied from small to large
containers. The porousness trials (lower left) varied the size of gaps in the wall of the container. The stopper trials (upper right) varied the
distance of the goal from making a seal with the rest of the container. The complexity trials (lower right) varied the internal and external
structure of the containers. Balls in the “towards” condition moved in the direction indicated by the line, while balls in the “away” condition
moved in the opposite direction. In all cases the ball ended at the green goal.

dimensions that were 75% as large (see Figure 3, upper left).

Porousness This dimension was used to test whether an ob-
ject is topologically parsed as a container only if it is fully
sealed, or whether containment is relative to the object in-
side. If topological processing is based solely on the con-
tainer, then any gaps should prevent it from being seen as a
container, whereas if it is calculated relative to the object in-
side, then it should still be observed as a container if gaps in
its walls are smaller than the object it is holding. In the three
levels along this dimension, one container was fully sealed
with no breaks in its walls, one had gaps that were smaller
than the ball, and the final level had gaps large enough for the
ball to fit through (see Figure 3, lower left).

Stopper Forbus (1983) suggests that scene and motion de-
scriptions also take into account what sorts of motions are al-
lowable within the scene. If this is the case, then topological
processing might also be affected by whether the path an ob-
ject takes to exit a container is implausible or impossible. We
therefore tested whether participants would consider the ball
to be contained if there were almost no conceivable physical
paths that would allow it to escape, even if there exist simple
paths outside that do not account for physical motion. Level
1 along this dimension was produced with one goal forming
a seal with the rest of the container. Level 2 moved the goal
away from the container so that the ball could fit through, but
in a physically implausible way. Level 3 moved the goal even
further so that it is easily possible that the ball could exit the
container without hitting the goal under plausible kinematic
motion (see Figure 3, upper right).

Complexity This dimension was used to test how topol-
ogy and simulation interact – even in situations where the

ball is fully contained will people use simulation if parsing
the boundaries of the container is too difficult? Along this
dimension, the levels included a simple configuration (e.g.,
the screen is split into two parts by a single wall), a mod-
erately complex configuration with more internal and exter-
nal structure, and very complex configuration (see Figure 3,
lower right).

In all of the levels of all of the trials, participants would see
either motion that is in the general direction of the goal within
the container, motion in the opposite direction away from the
goal, or no motion. To ensure each trial was novel, each par-
ticipant only saw one type of motion for each trial, counter-
balanced across participants. These motion conditions were
tested because differences in velocity information should af-
fect simulation but not topological judgments. If people are
using simulation, we would expect that motion towards the
goal should speed processing as compared to motion away,
since each simulation will have a shorter distance to travel
and fewer bounces before reaching the goal (Hamrick, Smith,
Griffiths, & Vul, 2015). Similarly, if people predict the out-
come of no motion trials by simulating paths the ball could
take in any direction, because most potential paths would be
longer than the paths created with motion towards the goal,
predictions should also be slowed in this case. If containment
is judged by parsing the topology without using information
about velocities, then changing the type of motion informa-
tion provided should not change the speed of this mental pro-
cess. We can therefore test for the presence of simulation by
the presence of faster reaction times in the “towards” motion
condition compared to the “away” or “no motion” conditions.



Figure 4: Geometric means of reaction times across topological dimensions and motion conditions. Bars indicate 95% confidence intervals
bootstrapped from 500 samples. In all cases reaction times in the “towards” condition were faster than those in the other two conditions,
indicating a use of simulation.

Results
To ensure that we do not use data from participants who were
not paying attention, we eliminated responses from trials
where participants minimized or otherwise hid their browser
screen (0.3% of trials) or where participants did not indicate
a prediction in the allotted time (1.6% of trials). Finally, be-
cause participants observed the scene for 500ms before mak-
ing a response, some responses could be anticipatory. To pre-
vent these measurements from skewing the data, we removed
all responses under 10ms (0.7% of all trials). For the pur-
pose of all analyses, reaction times were log-transformed to
account for long tails (Whelan, 2008) but transformed back
for reporting and display.

We first test for overall differences in speed of processing
across all topological dimensions, levels, and motion direc-
tions.2 This analysis suggests that motion direction plays
a pivotal role in explaining reaction times (F(2,2152) =
61.8, p ≈ 0), with “towards” (321ms, 95% CI: [288, 357]) be-
ing faster than “away” (394ms, 95% CI: [354, 439]), which in
turn is faster than “no motion” (487ms, 95% CI: [437, 543])
over all trial types.

The dimension of topology also affects reaction time
(F(3,58) = 14.2, p = 7.8 ∗ 10−8), with the complex trials
(481ms, 95% CI: [424, 546]) being slower than the size trials
(359ms, 95% CI: [316, 407]), the porous trials (373ms, 95%
CI: [329, 423]), and the stopper trials (377ms, 95% CI: [333,
428]).

Finally, the level of topology had an overall effect
(F(2,58) = 5.9, p = 0.0046). Although the specific way in
which trials changed with differences in level was not the
same across topological dimensions, they were all ordered
such that the first level was expected to produce the fastest
predictions and the third the slowest. Here the simplest /
most contained trials were the fastest (359ms, 95% CI: [319,
404]), followed by the intermediate trials (393ms, 95% CI:

2We modeled log-RT using a linear mixed effects model with
random effects for participant, trial, and a trial-by-motion direction
interaction.

[349, 443]), followed by the most complex / least contained
(436ms, 95% CI: [387, 490]).

Nonetheless, there was no statistically reliable effect of any
interaction (all Fs <1.5, all ps >0.13). This suggests that the
amount of speed-up from observing motion does not change
with the type of topological trial, which in turn suggests that
simulation is used across all topological trials.

To more directly test for the use of simulation across di-
mensions of topology, we can compare how fast people re-
spond in the “towards” condition as compared to the “away”
and “no motion” conditions. We calculated a simulation facil-
itation index as the ratio of the reaction times in the “towards”
condition versus the average of the other two conditions. If
this index is less than one, then we have evidence that par-
ticipants were using simulation to make predictions in that
condition. As can be seen in Table 1, across every condition
the simulation facilitation index is numerically less than one,
and in most conditions (9 of 12) the 95% confidence intervals
do not include one either.

These simulation facilitation effects are not driven by a
small set of outlier trials. Across all topological trials, re-
action times of participants in the “towards” condition were
faster than those in the “away” condition in 52 of 72 tri-
als (binomial test, p = 0.0002), and faster than those in
the “no motion” condition in 61 of 72 trials (binomial test,
p = 1.6∗10−9).

We also consider whether the facilitation in the “towards”
condition is truly facilitation, or whether this effect is ob-
served because “away” motion slows down processing: in
some cases the ball was moving away from the correct goal
and towards the incorrect goal, and simple directional mo-
tion towards a goal might speed reactions for that goal and
slow reactions for the incongruent goal. However, partici-
pants were still faster in the “away” motion condition than
the “no motion” condition both in average reaction time and
in 49 of 72 trials (binomial test, p= 0.003), so the differences
in reaction time cannot be explained simply as a slowdown
due to motion towards the incorrect goal.



Table 1: Simulation facilitation index for each of the topological dimensions and levels. Numbers in brackets indicate 95% confidence
intervals. In all cases, there is a simulation facilitation advantage, and in all but three conditions the confidence intervals are below one. This
suggests that simulation is used across all topological conditions, including the conditions with simple containers.

Level 1 Level 2 Level 3
Size 0.764 [0.593, 0.983] 0.82 [0.635, 1.06] 0.716 [0.556, 0.921]

Porousness 0.714 [0.554, 0.92] 0.716 [0.556, 0.922] 0.869 [0.676, 1.12]
Stopper 0.592 [0.46, 0.761] 0.704 [0.548, 0.904] 0.681 [0.529, 0.877]

Complexity 0.845 [0.655, 1.09] 0.7 [0.543, 0.903] 0.713 [0.554, 0.917]

Although motion towards the goal speeds reaction times
across all trial types, we can test whether participants were
simply cued to respond faster in general when the ball is
moving towards the goal, or whether there is evidence that
these judgments are based on simulation. If people are using
simulation, then as the ball travels further to reach the goal
we would expect mental simulations to also travel a longer
path and thus take more time to produce (Moulton & Koss-
lyn, 2009). We therefore expect that reaction times should
increase roughly in line with the time it takes the ball to ac-
tually reach the goal.3 As can be seen in Figure 5, there is a
relationship between the actual travel time of the ball and par-
ticipants’ reaction time on that trial across all of the topologi-
cal trials (r = 0.29, t(142) = 3.5, p = 0.00056), but we do not
have evidence that this relationship differs between the “to-
wards” and “away” conditions (F(1,141) = 0.76, p = 0.38).4

This relationship suggests that simulation was in general used
to produce motion predictions in this task regardless of the di-
rection of motion.

Finally, we considered two alternate explanations that
might give rise to this pattern of data by chance. First, if par-
ticipants were ‘guessing’ more in the towards motion trials,
we might expect them to respond faster but be less accurate.
Second, if participants changed the speed with which they re-
sponded over time, this could be a potential confound in our
analyses. However, neither of these alternate explanations
hold.

If participants are using a different speed-accuracy trade-
off across motion types, we might expect that the reduc-
tion in speed is counterbalanced by higher accuracy. Among
the topological trials, participants were numerically most ac-
curate in the ‘no motion’ condition (89.0%), followed by
the ‘towards’ condition (86.7%), then the ‘away’ condition
(81.3%). While there is an overall effect of motion direc-
tion on accuracy (χ2(2) = 20, p = 4.5 ∗ 10−5), this is driven
by the ‘away’ condition being less accurate than the other
two (vs. ‘towards’, z = 2.6, p = 0.024; vs. ‘no motion’,
z = 3.28, p = 0.003) rather than by a difference between the

3Because it was unclear how far the ball should travel in the “no
motion” condition, we did not include those trials in this analysis.

4If we include the non-topological trials in this analysis, we still
find a relationship between ball travel time and reaction time (r =
0.29, t(238)= 4.6, p= 7.2∗10−6) but do not find statistical evidence
that the slopes differ between non-topological, topological towards,
and topological away conditions (F(2,236) = 1.01, p = 0.37). Fur-
thermore, if we remove topological trials that were not fully con-
tained (Porous level 3 and Stopper levels 2 & 3), this relationship
remains (r = 0.34, t(106) = 3.7, p = 0.00037) and we still do not
find changes with motion condition (F(1,105) = 0.78, p = 0.38).

Figure 5: Comparison of the time it takes the ball to actually reach
the end goal versus the geometric mean of participants’ reaction time
in that trial (r = 0.29). Topological trials are linked between ‘to-
wards’ and ‘away’ motion with dashed lines.

‘towards’ and ‘no motion’ conditions (z = 0.74, p = 0.74).
Furthermore, a speed-accuracy trade-off cannot explain why
people are both slower and less accurate in the ‘away’ condi-
tion than they are in the ‘towards’ motion condition.5

We also tested for changes in the speed of response
throughout the experiment. There was a minuscule effect of
trial order on response speed that was not statistically reliable
(each additional trial was 0.08% slower, 95% confidence in-
terval = [-0.02%, 0.18%], F(1,151) = 2.7, p = 0.10). There-
fore changes in response times over the experiment cannot
explain the difference in reaction times across the different
motion conditions.

Discussion
In this study we tested for situations where reasoning about
topological containment preempts physical simulation across
a wide variety of trials where both topological relationships
and simulations could be used. We found that participants
were using simulation across all types of topological trials,
including the most simple cases of containment.

But why do we find evidence of simulation when a simple
topological analysis alone would suffice? We consider five

5This analysis considers all topological conditions, including the
porousness and stopper trials in which simulation in theory could
reach the incorrect goal. However, limiting this analysis to just the
size and complexity trials (which were all fully contained) produces
the same qualitative results.



possibilities.
First, the simulation facilitation effect could arise from a

mixture of individuals, some of whom use simulation and oth-
ers who use topological processing. Due to the small number
of topological trials each participant saw in this experiment,
we cannot precisely measure whether each participant indi-
vidually had a simulation facilitation effect, only that this ef-
fect is found on average. Further research is required to inves-
tigate individual differences in the use of these two processes.

Second, because the majority of the trials could not be
solved with topological reasoning, if people must choose be-
tween either simulation or topological reasoning, simulation
would be the more general choice. Thus if there are cognitive
costs for switching between different processing strategies,
participants might constantly use simulation. Future work
will study whether people continue to use simulation even
when it is not as frequently required.

Third, Davis and Marcus (2015) suggest that “simulation
is effective for physical reasoning when the task is predic-
tion, when complete information is available, ... and when
the range of spatial or temporal scale involved is moderate”
– exactly the conditions of this experiment. Perhaps simula-
tion is automatically activated in tasks that fit this description
but not in others, and we happened to use a task that relied
on simulation. This might also imply that the “no motion”
trials involved a separate, logic-based process as opposed to
the motion trials with complete information. Indeed there is
a numerical pattern in these results that would support this
interpretation: in Figure 4 the “away” reaction times are al-
ways slightly slower than the “towards” reaction times, but
the difference between “towards” and “no motion” is more
variable across conditions. Although there was not statisti-
cal evidence for such a difference, this pattern would be con-
sistent with people using a separate process that requires a
longer and more variable amount of time in cases where no
motion was observed.

Fourth, people may be using simulation to gain informa-
tion about containment. Liang, Zhao, Zhu, and Zhu (2015)
explain human ratings of how well one object will be con-
tained by another by simulating how often the first object will
stay inside the second when dropped into it. This might sug-
gest that for simple tasks our perception of containment is
statistical (one would not expect this object to ever leave the
container) rather than logical (the topology of the container
entails the object inside will not leave).

Finally, making predictions may involve multiple pro-
cesses running in parallel, including both simulation and
topological parsing. In many of the topological trials par-
ticipants observed – especially the “towards” trials – the ball
did not have to travel far to reach the goal. If both simula-
tion and topological reasoning are active at the same time,
these might be the cases where simulation provides an an-
swer quickly and wins out over topological processing. In
Figure 5, the relationship between the time the ball actually
takes to reach the goal and reaction time becomes more vari-

able and flatter as the travel time takes longer. These longer
trials might be cases where simulation fails to provide an an-
swer before less continuous processes can, and so we do not
see the same sort of relationship between path length and re-
action time. Intriguingly, this relationship is reduced even
for the non-topological trials that last this long, suggesting
perhaps that simulation can only look a short time into the
future, after which point we use more qualitative scene repre-
sentations that could support either qualitative simulation or
logical reasoning.

Although simulation appears to be active in simple tasks
that require predicting the motion of objects, fully explaining
human physical reasoning will require a better understanding
of how simulation interacts and trades off with more qualita-
tive methods of conceptualizing the world.
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