
End-to-End Differentiable Physics

for Learning and Control

Filipe de A. Belbute-Peres

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
filiped@cs.cmu.edu

Kevin A. Smith

Brain and Cognitive Sciences
Massachusetts Institute of Technology

Cambridge, MA 02139
k2smith@mit.edu

Kelsey R. Allen

Brain and Cognitive Sciences
Massachusetts Institute of Technology

Cambridge, MA 02139
krallen@mit.edu

Joshua B. Tenenbaum

Brain and Cognitive Sciences
Massachusetts Institute of Technology

Cambridge, MA 02139
jbt@mit.edu

J. Zico Kolter

School of Computer Science
Carnegie Mellon University and

Bosch Center for Artificial Intelligence
Pittsburgh, PA 15213
zkolter@cs.cmu.edu

Abstract

We present a differentiable physics engine that can be integrated as a module
in deep neural networks for end-to-end learning. As a result, structured physics
knowledge can be embedded into larger systems, allowing them, for example, to
match observations by performing precise simulations, while achieves high sample
efficiency. Specifically, in this paper we demonstrate how to perform backpropaga-
tion analytically through a physical simulator defined via a linear complementarity
problem. Unlike traditional finite difference methods, such gradients can be com-
puted analytically, which allows for greater flexibility of the engine. Through
experiments in diverse domains, we highlight the system’s ability to learn physical
parameters from data, efficiently match and simulate observed visual behavior, and
readily enable control via gradient-based planning methods. Code for the engine
and experiments is included with the paper.1

1 Introduction

Physical simulation environments, such as MuJoCo [Todorov et al., 2012], Bullet [Coumans et al.,
2013], and others, have played a fundamental role in developing intelligent reinforcement learning
agents. Such environments are widely used, both as benchmark tasks for RL agents [Brockman et al.,
2016], and as “cheap” simulation environments that can (ideally) allow for transfer to real domains.
However, despite their ubiquity, these simulation environments are in some sense poorly suited for
deep learning settings: the environments are not natively differentiable, and so gradients (e.g., policy
gradients for control tasks, physical property gradients for modeling fitting, or dynamics Jacobians

1Available at https://github.com/locuslab/lcp-physics.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://github.com/locuslab/lcp-physics

for model-based control) must all be evaluated via finite differencing, with some attendant issues of
speed and numerical stability. Recent work has also proposed the development of a differentiable
physical simulator [Degrave et al., 2016], but this was accomplished by simply writing the simulation
engine entirely in an automatic differentiation framework; the limitations of this framework meant
that the system only supported balls as objects, with limited extensibility.

In this paper, we propose and present a differentiable two-dimensional physics simulator that addresses
the main limitations of past work. Specifically, like many past simulation engines, our system
simulates rigid body dynamics via a linear complementarity problem (LCP) [Cottle, 2008, Cline,
2002], which computes the equations of motion subject to contact and friction constraints. In
addition to this, however, in this paper we also show how to differentiate, analytically, through the
optimal solution to the LCP; this allows us to use general simulation methods for determining the
non-differentiable parts of the dynamics (namely, the presence or absence of collisions between
convex shapes), while still providing a simulation environment that is end-to-end differentiable (given
the observed set of collisions). The end result is that we can embed an entire physical simulation
environment as a “layer” in a deep network, enabling agents to both learn the parameters of the
environments to match observed behavior and improve control performance via traditional gradient-
based learning. We highlight the utility of this system in a wide variety of different domains, each
highlighting a different benefit that such differentiable physics can bring to deep learning systems:
learning physical parameters from data; simulating observed (visual) behavior with minimal data
requirements; and learning physical deep RL tasks, ranging from pure physical systems like Cartpole
to “physics based” like Atari Breakout, via gradient planning methods. The environment itself is
implemented as a function within popular the PyTorch library [Paszke et al., 2017]. Code for the
engine and experiments is available at https://github.com/locuslab/lcp-physics.

2 Background and related work

The work in this paper relates in some way to several different threads of recent work in deep learning
and cognition.

Physical simulation As mentioned above, although they were not developed purely within the
machine learning community, physical simulation tools such as MuJoCo [Todorov et al., 2012],
Bullet [Coumans et al., 2013], and DART [Lee et al., 2018], have become ubiquitous tools for
the creation and development of deep RL agents. In general, these environments also use LCP
techniques to compute equations of motion, though often with additional enhancements such as a
O(n)-time simulation for open chains via Featherstone’s algorithm [Featherstone, 1984]. Despite
their power, computing derivatives through these engines mostly involves using finite differences,
that is, evaluating the forward simulation multiple times with small perturbations to the relevant
parameters to approximate the relevant gradients. This strategy is often impractical due to (1) the
high computational burden of finite differencing when computing the gradient with respect to a large
number of model/policy parameters; and (2) the instability of numerical gradients over long time
horizons, especially if contacts change over the course of a rollout. The analytic LCP differentiation
approach has no such issues, and can give gradients with respect to a large number of parameters
essentially “for free” given a forward solution. The usage of analytical gradients in physics simulation
has been previously investigated in spring-damper systems [Hermans et al., 2014]. However, due to
its limitations, such as instability and unrealistic contact handling, most engines used in practice do
not use spring-damper models.

In probably the most closely related work, Degrave et al. [2016] also develop a differentiable
physics engine, with motivations similar to our own. However, in this case they made their engine
differentiable by simply implementing it in its entirety in the Theano framework [Al-Rfou et al.,
2016]. This severely limited the complexity of the allowable operations: for instance the engine only
allowed for collision between balls and the ground plane. In contrast, because our method analytically
differentiates the LCP, it can be substituted within the traditional computations of most existing
physics engines, only requiring the added differentiability within the LCP portion itself; indeed, in
our system we use existing efficient methods for portions of the simulator such as a collision detection
or Euler stabilization. Finally, we also evaluate the method in a broader context than in this previous
work: while the approach there centered around policy optimization (within the physics engine itself),

2

https://github.com/locuslab/lcp-physics

we additionally highlight applications in system identification, prediction in visual settings, and using
the simulation engine internally within a policy to perform tasks in a different environment.

Intuitive physics In a related but orthogonal body of work, many studies have investigated the
human ability to intuitively understand physics. Battaglia et al. [2013], Hamrick et al. [2015] and
Smith and Vul [2013] suggested that people have an “intuitive physics engine” that they can use
to simulate future or hypothetical states of the world for inference and planning. Recent work in
machine learning has leveraged this idea by attempting to design networks that can learn physical
dynamics in a differentiable system [Lerer et al., 2016, Chang et al., 2016, Battaglia et al., 2016],
but because these dynamics must be learned, they require extensive training before they can be used
as a layer in a larger network, and it is not clear how well they generalize across tasks. Conversely,
by performing explicit simulation (similar to how people do), which is embedded as a “layer” in
the system, our approach requires no pre-training and can generalize across scenarios that can be
captured by a rigid-body engine.

Model-based reinforcement learning Although focusing on an orthogonal issue, our work is of
course highly relevant to the entire field of model-based RL. Although model-free RL methods
have achieved some notable successes [Mnih et al., 2015, Heess et al., 2015], model-based RL also
underpins much of the recent success, and there is both old [Atkeson and Santamaria, 1997] and
recent [Kurutach et al., 2018] work that argues that model-based approaches are often superior for
many tasks.

Model-based (deep) RL typically focuses on one of two settings: either a general neural network is
used to simulate the dynamics (e.g. Werbos [1989], Nagabandi et al. [2017]), often with a specific loss
function or network structured aimed at predicting on the relevant time scales [Abbeel and Ng, 2005,
Mishra et al., 2017], or the model used is a more “pure” physics model, where learning essentially
corresponds to traditional system identification [Ljung, 1999]. Our approach lies somewhere in
between these two extremes (though closer to the system identification approach), where we can use
the differentiability of the simulation system to identify model parameters and use the system within
a model-based control method, but where the generic formulation is substantially more general than
traditional system identification, and e.g. the number of objects or joints can even be dictated by
another portion of the network.

Analytic differentiation of optimization Finally, our work relates methodologically to a recent
trend of incorporating more structured layers within deep networks. Specifically, recent work has
looked incorporating quadratic programs [Amos and Kolter, 2017], combinatorial optimization [Djo-
longa and Krause, 2017], computing equilibria in games [Ling et al., 2018], or dynamic programming
[Mensch and Blondel, 2018]. Our work relates most closely to that of [Amos and Kolter, 2017].
Like this work, we use an interior point primal dual method to solve a nonlinear set of equations (in
our case a general LCP, in their case a symmetric LCP resulting from the KKT conditions of QP).
However, both the general nature of the LCP, and the application to physical simulation, specializes
substantially from what has been considered in previous work.

3 Differentiable Physics Engine

A detailed description of the physics engine architecture is presented in Appendix A due to space
constraints. The LCP solution and the gradients are presented in more detail in Appendix B. Below
we present a brief summary of the LCP formulation.

3.1 Formulating the LCP

Rigid body dynamics are commonly formulated as a linear complementarity problem, with the
different constraints on the movement of bodies (such as joints, interpenetrations, friction, etc.)
represented as equality and inequality constraints [Anitescu and Potra, 1997, Cline, 2002]. In this
work, we follow closely the framework described in Cline [2002], in which at each time step an LCP
is solved to find the constrained velocities of the objects.

To formulate such an LCP, we first find which contacts between bodies are present at the current
time-step. Let t be the current time-step and t+ dt the following time-step, for a step of size dt. If

3

the distance between possibly contacting objects is less than a predefined threshold, the interaction is
considered a contact. From the equality constraints specified in the system, such as joints, we can
build the matrix Je such that Jevt+dt = 0. From the contacts at each step, we can build a contact
constraint matrix Jc, such that Jcvt+dt � 0. Similarly, we have a friction constraint matrix Jf that
introduces frictional interactions. From the definition of the simulated bodies we construct the inertia
matrix M. The structure of these block matrices is described in detail in Appendix A. Finally, given
the forces acting on the bodies at time t, ft, and the collision coefficient c, the constrained dynamics
can be formulated as the following mixed LCP

2

6664

0
0
a

�

⇣

3

7775
�

2

6664

M �J e �J c �J f 0
Je 0 0 0 0
Jc 0 0 0 0
Jf 0 0 0 E

0 0 µ �E
T 0

3

7775

2

6664

vt+dt

�e

�c

�f

�

3

7775
=

2

6664

Mvt + dtft

0
c

0
0

3

7775

subject to

"
a

�

⇣

#
� 0,

"
�c

�f

�

#
� 0,

"
a

�

⇣

#T "
�c

�f

�

#
= 0,

(1)

where [a,�, ⇣]T are slack variables for the inequality constraints, and [vt+dt,�e,�c,�f , �]T are the
unknowns. By solving this LCP, we obtain the velocities for the next time-step vt+dt, which are used
to update the positions of the bodies.

3.2 Solving the LCP

Analogously to the differentiable optimizer in OptNet [Amos and Kolter, 2017], our LCP solver is
adapted from the primal-dual interior point method described in Mattingley and Boyd [2012]. The
advantage of using such a method is that it allows for efficient computation of the gradients, as we
show in Section 3.3.

First, to simplify the notation from the LCP formulation of the dynamics in Equation 1, let us define

x := �vt+dt

y := �e

z :=

"
�c

�f

�

#

q := �Mvt � dtft

A := Je

G :=

" Jc 0
Jf 0
0 0

#
s :=

"
a

�

⇣

#

m :=

"
c

0
0

F :=

2

4
0 0 0
0 0 E

µ �E
T 0

3

5 .

Then we can rewrite the LCP above as the system below, which can be solved with only slight
adaptations to the primal-dual interior point method by [Mattingley and Boyd, 2012].

"
0
s

0

#
+

2

4
M G

T
A

T

G F 0
A 0 0

3

5
"

x

z

y

#
=

" �q

m

0

#

subject to s � 0, z � 0, sT z = 0.

(2)

3.3 Gradients

All the work leading to the construction of the dynamics LCP in Equation 1 consists of differentiable
operations on the simulations parameters and initial setting. Therefore, if we could differentiate
through the solution for the LCP as well, the system would be differentiable end to end. To derive
these gradients we apply the method described in [Amos and Kolter, 2017] to the LCP in 2, which
gives us the gradients of the solution of the LCP with respect to the input parameters from the previous
time-step. By following this method we arrive at the partials that can then be used for the backward

4

step
@`

@q
= �dx

@`

@m
= D(z?)dz

@`

@A
= �dyx

T � yd
T
x

@`

@M = �1

2
(dxx

T + xd
T
x)

@`

@G
= �D(z?)(dzx

T + zd
T
x)

@`

@F
= �D(z?)dzz

T
.

(3)

3.4 Implementation

The physics engine is implemented in PyTorch [Paszke et al., 2017] in order to take advantage of the
autograd automatic differentiation graph functionality. The LCP solver is implemented as an autograd
Function, with the analytical gradients provided according to the definitions above. This allows the
derivatives to be propagated across time-steps in the simulation. Furthermore, the autograd graph
then allows the derivatives to be propagated backwards into the leaf parameters of the dynamics, such
as the bodies’ masses, positions, etc.

4 Experiments

To demonstrate the flexibility of the differentiable physics engine, we test its performance across
three classes of experiments. First, we show that it can infer the mass of an object by observing the
dynamics of a scene. Next, we demonstrate that embedding a differentiable physics engine within
a deep autoencoder network can lead to high accuracy predictions and improved sample efficiency.
Finally, we use the differentiable physics engine together with gradient-based control methods to
show that we can learn to perform physics-based tasks with low sample complexity when compared
to model-free methods.

4.1 Parameter learning

Task To evaluate the engine’s capabilities for inference, we devised an experiment where one object
has unknown mass which has to be inferred from its interactions with the other bodies. As depicted
in Figure 1, a scene in which a ball of known mass hits a chain is observed and the resulting positions
of the objects are recorded for 10s. The goal is to infer the mass of the chain.

Learning and results Simulations are iteratively unrolled starting with an arbitrarily chosen mass
of 1 for the chain. After each iteration, the mean squared error (MSE) between the observed positions
and the simulated positions is observed, and then used to obtain its gradient with respect to the mass.
Gradients are clipped to a maximum absolute value of 100 and then used to perform gradient descent
on the value of the mass, with a learning rate of 0.01. As shown in Figure 1 this process is able to
quickly reduce the position MSE by converging to the true value of the mass.

Comparison to numerical derivatives We also compared using analytic and numerical gradients.
In this experiment, the same optimization process described above was repeated for a varying number
of links in the chain. The number of gradient updates was fixed to 30 and the run times were averaged
over 5 runs for each condition. As can be seen in Figure 1, the run time with analytical gradients
grows much more slowly with the increasing number of parameters.

4.2 Prediction on visual data

Task To test our approach on a benchmark for visual physical prediction, we generated a dataset
of videos of billiard ball-like scenarios using the code from [Fragkiadaki et al., 2015]. Simulations
lasting 10 seconds were generated, totalling 8,000 trials for training, 1,000 for validation and 1,000
for testing. Datasets with 1 and 3 balls were used, with all balls having the same mass. Frames from
sample trials can be seen in Figure 3. In our task setup, balls bouncing in a box are observed for a
period of time. The model is provided with 3 frames as input and has to learn to predict the state of
the world at a future state, 10 frames later.

5

Figure 1: Inferring the mass of a chain. Top: Sequence of frames from the inference experiment. The
goal is to infer the mass of the chain by unrolling simulations and using the gradient to minimize
the loss from the predicted positions to the observed ones. Bottom left: The estimated mass quickly
converges to the true value, m = 7, indicated by the dashed line. Bottom center: As a consequence of
the improving mass estimation, the MSE (represented in log scale) between the true and simulated
positions for the bodies decreases quickly. Bottom right: Run time comparison between using
analytical gradients or finite differences for 30 updates, as a function of the number of links in the
chain.

Encode Predict Decode
!"
#"

!"$%
#"$%

Figure 2: Diagram of autoencoder architecture. The encoder learns to map from input frames to the
physical state of the objects (i.e., position, velocity, etc.). The physics engine steps the world forward
using the parameters from the encoder. The decoder takes the predicted physical parameters and
generates a frame to match the true future frame. The system is trained end-to-end. Part of the labels
have strong supervision, with ground truth values available for the output of the encoder and physics
engine. Different proportions of strong and weak supervision (only the future frame is provided) in
the data are evaluated. Using a large number of weakly labelled data improves sample efficiency for
strongly labelled data.

Architecture To make visual prediction given the visual input, we use an autoencoder architecture
summarized in Figure 2. It consists of three parts: (1) the encoder maps input frames to the physical
state of the objects (i.e., position, velocity, etc.). Specifically, we take in a sequence of 3 RGB frames
from the simulation. We then use a pretrained spatial pyramid network [Ranjan and Black, 2016]
to obtain two optical flow frames (each consisting of two matrices, for x and y flow). Color filters
are applied to the RGB images to segment the objects. The segmented region of each object is then
used as a mask for the RGB and optical flow frames, such that at the end of this pipeline we have,
for each object, a collection of 3 RGB frames and 2 optical flow frames (13 channels) with only a
single segmented object. Then, each of these per-object processed inputs is passed to a VGG-11
network with its last layer modified to output size 4, in order to regress two position and two velocity
parameters as outputs. (2) the physics engine steps the world forward using the physical parameters
received from the encoder. The physics engine can be integrated into the autoencoder pipeline and
allow for end-to-end training due to its differentiability, as described in Section 3. (3) the decoder

takes the predicted physical parameters and generates a frame to match the true future frame. The
architecture used is a mirror of the VGG encoder network, with transposed convolutions in the place
of convolutions and bilinear upsampling layers in the place of the maxpooling ones.

6

Initial
Frame

True Future
Frame

Predicted
Frame

Figure 3: Qualitative results for prediction task comparing ground truth and predicted future frame.
Only the initial frame and the two preceding frames are used as input, with physical parameters
extracted, used to simulated the state forward and generate the predicted frame. In most cases the
predicted frame is accurate. However, small differences can still be perceived in some cases, due to
differences between the two engines.

Learning In order to evaluate the sample efficiency of the model, the network was trained with
varying amounts of labelled samples. The labels used consist of the ground truth physical parameters
� of the objects both at the present (�t) and the future time-step (�t+dt). When a label is available
for a given sample, the model uses these ground truth physical parameters (instead of the estimated
ones) to generate the predicted frame ŷ from input frames x, such that

�̂t = encoder(x), �̂t+dt = physics(�t), ŷ = decoder(�t+dt). (4)

Using the labels and the true future frame y, the model is then trained to minimize a loss consisting
of the sum of three terms, the encoder, physics and decoder losses

L = Lenc + Lphys + Ldec,

Lenc = `(�̂t,�t), Lphys = `(�̂t+dt,�t+dt), Ldec = `(ŷ, y),
(5)

where `(·, ·) is the mean squared error loss.

When labels are not available for a given sample, the model uses its own estimated parameters to
generate the predicted frame, that is

�̂t = encoder(x), �̂t+dt = physics(�̂t), ŷ = decoder(�̂t+dt). (6)

Notice that here, unlike in Equation 5, the arguments to the function are estimated (�̂t, �̂t+dt). In
this case, since there are no labels to use for the other losses, the loss consists only of L = Ldec.
Notice that here the right hand side of the equations use the estimated �̂. The gradients are thus being
propagated end-to-end through the physics model back to the encoder. As shown in Figure 4, this
signal from unlabeled examples allows the autoencoder to learn with greater sample efficiency. For
all losses, the MSE is used. In our experiments, the squared loss performed better than the `1 loss,
which was not able to produce meaningful decoder outputs.

Results As demonstrated in Figure 4, the model was able to learn to perform the task with high
accuracy. Figure 3 contains sample predicted frames and their matching ground truth frame for a
qualitative analysis of the results. As a comparison point, an MLP with two hidden-layers of size
100 and trained with only labeled data was used as a baseline, replacing the physics(·) function in
Equation 4 above. In our experiments, using the baseline model in such a way, as a replacement for
the physics function, provided better results than using it in an unstructured manner, relying solely on
the decoder loss. It is clear from Figure 4 that the autoencoder with the physics model is able to learn
more efficiently and with higher accuracy than the baseline model. To evaluate the sample efficiency
of this model, we compare its performance on training regimens in which 100%, 25%, 10% and 2%
of the available samples containing labels. Some supervision is still necessary, since when provided
with no supervision at all (a 0% condition), relying solely on the decoder loss, the model was not
able to learn to extract meaningful physical parameters. Still, as can be seen in Figure 4, the model is
able to leverage the unlabeled data to quickly learn even from few labelled data points.

7

Figure 4: Sample efficiency for the prediction task measured by the validation loss per number of
labelled samples used in training. The autoencoder is able to leverage unlabelled examples to improve
its sample efficiency: training regimes that employ unlabeled data learn faster for a given amount of
labeled data. The loss is the mean squared error of the predicted image to the ground truth. Each line
represents a training regiment with a different proportion of labeled to unlabeled data. Note that the
x-axis is already adjusted to the number of labeled samples used, to facilitate comparisons.

4.3 Control

Tasks Finally, in this section we demonstrate the physics engine ability to be readily used with
gradient-based control methods. To this end, we evaluate its performance on physics based tasks
from the OpenAI Gym’s environment [Brockman et al., 2016], namely Cartpole and the Atari game
Breakout.

Model and Controller For the Cartpole environment, a model is built using two articulated
rectangles, whose dimensions and mass are learned from simulated trajectories using random actions.
The physics engine-based model is compared to a baseline consisting of an MLP with two hidden
layers of size 100 trained on the same data. A variation of the environment is used in which the
actions to be taken by the cart are continuous, instead of discrete. Rewards are also limited to 1000,
instead of the default 200 for which the task is considered done.

For Breakout, a model of the environments is built by applying color filters, segmenting the diverse
objects (the paddle, the ball, etc.) and translating these positions into the physics engine. The ball’s
velocity is estimated by the difference in its position from the last two frames. The paddle velocity
when moving at each step is learned by unrolling game episodes with randomly chosen actions,
performing the same actions in the physics simulation and then fitting the simulation parameter
via gradient descent to minimize the mean squared error to the observed trajectory, analogously to
the process in Section 4.1. The physics engine model is compared to a Double Q Learning with
prioritized replay [van Hasselt et al., 2015] baseline from OpenAI [Dhariwal et al., 2017].

Since the resulting physics models described above are differentiable, they are used in conjunction
with iLQR [Li and Todorov, 2004] to control the agent in the tasks. The iLQR is set up with a
time-horizon of 5 frames for both tasks. For Cartpole the cost consists of the square of pole’s angular
deviation from vertical. For the Ataro game the cost consists of the squared difference in the x
position of the paddle and the ball when the ball is descending, and the squared distance to the center
of the screen otherwise.

Results Results for the Cartpole task are shown in Figure 5. Even though the MLP baseline
achieves a lower MSE faster in predicting the next state of the cartpole system, the physics engine
is able to learn parameters for a model that allows for high reward on the task, even when error is
higher.

In the Atari benchmark, the system is able to achieve high reward on the task with extremely low
sample complexity. Specifically, the model is able to learn the paddle parameters quickly from
random trajectories, improving the control precision, and leading to high reward, as shown in Figure 6

8

Figure 5: Even though the baseline is able to achieve lower MSE over one-step predictions of the
dynamics of the Cartpole environment (left), the physics engine-based controller is able to achieve a
higher reward very quickly (right).

Figure 6: The physics based controller is able to quickly learn a good parameter values that lead
to high reward. Even though the asymptotic performance is lower than the model-free method, it
achieves a high level of reward with orders of magnitude data (the horizontal axis is log-scaled).
Human level of 31 for a professional game tester was used, as per [Mnih et al., 2015].

for Breakout. The model performs close to model-free reinforcement learning methods and is able to
achieve a high level of reward with orders of magnitude fewer samples.

5 Conclusion

In this work, we have presented a differentiable physics engine. Unlike most previous work, this
engine provides analytical gradients by differentiating the solution to the physics LCP. The differen-
tiable nature of the engine allows it to be used as a part of gradient-based learning and control system
systems. Our experiments demonstrate the diverse possibilities this system entails, such as inferring
parameters from observed simulations, learning from visual observations and performing accurate
predictions, and achieving high reward with gradient-based control methods on physics-based tasks,
all the while demonstrating sample efficiency. This modular, differentiable system contributes to a
recent trend of incorporating components with structured modules into end-to-end learning systems,
such as deep networks. In general, we believe structured constraints such as the ones provided by
physics simulation are essential for providing a scaffolding for more efficient learning.

References

Pieter Abbeel and Andrew Y Ng. Learning first-order markov models for control. In Advances in

neural information processing systems, pages 1–8, 2005.

9

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau,
Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua
Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas
Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier
Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans,
Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien
Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent
Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain,
Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet,
Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail
Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee,
Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory
Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T.
McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto
Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw,
Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard,
Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira
Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski,
Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco
Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun
Xue, Li Yao, Saizheng Zhang, and Ying Zhang. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.
org/abs/1605.02688.

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural Networks.
arXiv:1703.00443 [cs, math, stat], March 2017. URL http://arxiv.org/abs/1703.00443.
arXiv: 1703.00443.

Mihai Anitescu and Florian A. Potra. Formulating dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–247, 1997.
URL http://www.springerlink.com/index/J71678405QK31722.pdf.

Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and model-based
reinforcement learning. In Robotics and Automation, 1997. Proceedings., 1997 IEEE International

Conference on, volume 4, pages 3557–3564. IEEE, 1997.

Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation as an engine of
physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–
18332, November 2013. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1306572110. URL
http://www.pnas.org/content/110/45/18327.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. In-
teraction Networks for Learning about Objects, Relations and Physics. arXiv:1612.00222 [cs],
December 2016. URL http://arxiv.org/abs/1612.00222. arXiv: 1612.00222.

Gino Johannes Apolonia van den Bergen. Collison detection in interactive 3D environments. The
Morgan Kaufmann series in interactive 3D technology. Elsevier/Morgan Kaufman, Amsterdam ;
Boston, 2004. ISBN 978-1-55860-801-6.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Erin Catto. Computing Distance Using GJK. In GDC, 2010. URL http://box2d.org/
downloads/.

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A Compositional
Object-Based Approach to Learning Physical Dynamics. arXiv:1612.00341 [cs], December 2016.
URL http://arxiv.org/abs/1612.00341. arXiv: 1612.00341.

Michael Bradley Cline. Rigid body simulation with contact and constraints. PhD thesis,
University of British Columbia, 2002. URL https://pdfs.semanticscholar.org/8567/
e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf.

10

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1703.00443
http://www.springerlink.com/index/J71678405QK31722.pdf
http://www.pnas.org/content/110/45/18327
http://arxiv.org/abs/1612.00222
http://box2d.org/downloads/
http://box2d.org/downloads/
http://arxiv.org/abs/1612.00341
https://pdfs.semanticscholar.org/8567/e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf
https://pdfs.semanticscholar.org/8567/e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf

Richard W Cottle. Linear complementarity problem. In Encyclopedia of Optimization, pages
1873–1878. Springer, 2008.

Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15(49):5, 2013.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A Differentiable Physics
Engine for Deep Learning in Robotics. arXiv:1611.01652 [cs], November 2016. URL http:
//arxiv.org/abs/1611.01652. arXiv: 1611.01652.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.com/
openai/baselines, 2017.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In Neural

Information Processing Systems (NIPS), 2017.

Roy Featherstone. Robot dynamics algorithms. 1984.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning Visual Predictive
Models of Physics for Playing Billiards. arXiv:1511.07404 [cs], November 2015. URL http:
//arxiv.org/abs/1511.07404. arXiv: 1511.07404.

Helmut Garstenauer and Gerhard Kurka. A unified framework for rigid body dynamics. PhD thesis,
2006.

Dirk Gregorius. The Separating Axis Test. In GDC, 2013. URL http://box2d.org/downloads/.

Dirk Gregorius. Robust Contact Creation for Physics Simulations. In GDC, 2015. URL http:
//box2d.org/downloads/.

Jessica B. Hamrick, Kevin A. Smith, Thomas L. Griffiths, and Edward Vul. Think again? the amount
of mental simulation tracks uncertainty in the outcome. In Proceedings of the thirtyseventh annual

conference of the cognitive science society. Citeseer, 2015. URL http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.704.359&rep=rep1&type=pdf.

Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, and Tom Erez. Learning
Continuous Control Policies by Stochastic Value Gradients. arXiv:1510.09142 [cs], October 2015.
URL http://arxiv.org/abs/1510.09142. arXiv: 1510.09142.

Michiel Hermans, Benjamin Schrauwen, Peter Bienstman, and Joni Dambre. Automated Design of
Complex Dynamic Systems. PLoS ONE, 9(1):e86696, January 2014. ISSN 1932-6203. doi: 10.
1371/journal.pone.0086696. URL http://dx.plos.org/10.1371/journal.pone.0086696.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations, 2018.

Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha
S. Srinivasa, Mike Stilman, and C. Karen Liu. DART: Dynamic Animation and Robotics Toolkit.
The Journal of Open Source Software, 3(22):500, February 2018. ISSN 2475-9066. doi: 10.21105/
joss.00500. URL http://joss.theoj.org/papers/10.21105/joss.00500.

Adam Lerer, Sam Gross, and Rob Fergus. Learning Physical Intuition of Block Towers by Exam-
ple. arXiv:1603.01312 [cs], March 2016. URL http://arxiv.org/abs/1603.01312. arXiv:
1603.01312.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In ICINCO (1), pages 222–229, 2004.

Chun Kai Ling, Fei Fang, and J Zico Kolter. What game are we playing? end-to-end learning in
normal and extensive form games. arXiv preprint arXiv:1805.02777, 2018.

Lennart Ljung. System identification: Theory for the user. Prentice Hall, 1999.

X. Magnus and Heinz Neudecker. Matrix differential calculus. 1988.

11

http://arxiv.org/abs/1611.01652
http://arxiv.org/abs/1611.01652
https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/1511.07404
http://arxiv.org/abs/1511.07404
http://box2d.org/downloads/
http://box2d.org/downloads/
http://box2d.org/downloads/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.359&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.359&rep=rep1&type=pdf
http://arxiv.org/abs/1510.09142
http://dx.plos.org/10.1371/journal.pone.0086696
http://joss.theoj.org/papers/10.21105/joss.00500
http://arxiv.org/abs/1603.01312

Jacob Mattingley and Stephen Boyd. CVXGEN: a code generator for embedded convex opti-
mization. Optimization and Engineering, 13(1):1–27, March 2012. ISSN 1389-4420, 1573-
2924. doi: 10.1007/s11081-011-9176-9. URL http://link.springer.com/10.1007/
s11081-011-9176-9.

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction
and attention. arXiv preprint arXiv:1802.03676, 2018.

Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. Prediction and control with temporal segment
models. In International Conference on Machine Learning, pages 2459–2468, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Na-

ture, 518(7540):529–533, February 2015. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature14236.
URL http://www.nature.com/doifinder/10.1038/nature14236.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint

arXiv:1708.02596, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Anurag Ranjan and Michael J. Black. Optical Flow Estimation using a Spatial Pyramid Network.
arXiv:1611.00850 [cs], November 2016. URL http://arxiv.org/abs/1611.00850. arXiv:
1611.00850.

Kevin A. Smith and Edward Vul. Sources of Uncertainty in Intuitive Physics. Topics in Cognitive

Science, 5(1):185–199, January 2013. ISSN 1756-8765. doi: 10.1111/tops.12009. URL http:
//onlinelibrary.wiley.com/doi/10.1111/tops.12009/abstract.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. pages 5026–5033. IEEE, 2012. ISBN 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-
1735-1. doi: 10.1109/IROS.2012.6386109. URL http://ieeexplore.ieee.org/document/
6386109/.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.

Paul J Werbos. Neural networks for control and system identification. In Decision and Control, 1989.,

Proceedings of the 28th IEEE Conference on, pages 260–265. IEEE, 1989.

12

http://link.springer.com/10.1007/s11081-011-9176-9
http://link.springer.com/10.1007/s11081-011-9176-9
http://www.nature.com/doifinder/10.1038/nature14236
http://arxiv.org/abs/1611.00850
http://onlinelibrary.wiley.com/doi/10.1111/tops.12009/abstract
http://onlinelibrary.wiley.com/doi/10.1111/tops.12009/abstract
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/
http://arxiv.org/abs/1509.06461

