Problem Set 2. Solutions

Problem 1

If \(f(x) = f(y) \) for some \(x \neq y \in A \) then \(g \circ f(x) = g(f(x)) = g(f(y)) = g \circ f(y) \), contradicting the injectivity of \(g \circ f \).

In order for \(g \) to be surjective, for any \(z \in C \) there must be \(y \in B \) such that \(g(y) = z \). If \(z \in C \), then, by surjectivity of \(g \circ f \), \(z = g \circ f(x) = g(f(x)) \) for some \(x \in A \), so we can take \(f(x) \) for the required \(y \in B \).

Problem 2

The set of algebraic numbers contains \(\mathbb{Z} \), so it is infinite. We will now prove that it is contained in a countable set, so that it is itself countable.

First note that the set of rational numbers \(\mathbb{Q} \) is countable: it can be expressed as a subset of \(\mathbb{Z} \times \mathbb{N} \) of pairs \((m,n)\) with \((m,n)\) having no common divisors greater than 1 (in particular, if \(m = 0 \), then \(n = 1 \)).

Let \(\mathbb{A} \) be the set of algebraic numbers. For each \(\alpha \in \mathbb{A} \) choose a polynomial \(p_\alpha \) for which \(\alpha \) is a root. Choose a numbering of roots of each \(p_\alpha \); so that \(\alpha \) is encoded by a string \((a_1, \ldots, a_k, r)\), where \(a_1, \ldots, a_k \) are integer coefficients of \(p_\alpha \), \(r \) is a number of among the roots of \(p_\alpha \).

Choose a numbering \((p_0, p_1, \ldots)\) of the set of prime numbers. Consider the following function \(f: \mathbb{A} \to \mathbb{Q} : f(a_1, \ldots, a_k, r) = p_0^r p_1^{a_1} \ldots p_k^{a_k} \). Expression on the right is a fraction with relatively prime numerator and denominator, so \(a_k \) and \(r \) are uniquely recovered, by the uniqueness of prime decomposition. So \(f \) is injective, and \(\mathbb{A} \) is a subset of a countable set.

Problem 3

We will show that any interior point of \(S \) is an interior point of \(\text{int}(S) \), that is that \(\text{int}(S) \subseteq \text{int}(\text{int}(S)) \). Let \(x \in S \) be an interior point. By definition, it is contained in \(S \) with some ball \(B_x(r) \) of radius \(r \) centered in \(x \). Let \(d(x, y) \) denote a distance between points \(x \) and \(y \), and let \(x' \) in \(B_x(r) \) be some other point of this ball. Assume that \(d(x, x') = c \). Then \(B_{x'}(r-c) \subseteq B_x(r) \); if \(z \in B_{x'}(r-c) \), then \(d(x, z) \leq d(x, x') + d(x, z) < c + r - c = r \). So any such \(x' \) is also an interior point of \(S \), and \(B_x(r) \subseteq \text{int}(S) \), so that \(x \in \text{int}(\text{int}(S)) \).

On the other hand, because \(\text{int}(S) \subseteq S \), any interior point of \(\text{int}(S) \) is also an interior point of \(S \), so \(\text{int}(\text{int}(S)) \subseteq \text{int}(S) \). We get that \(\text{int}(\text{int}(S)) = \text{int}(S) \).
Problem 4

Let $x \in S$. Then $B(x, r) \subset S$ for some $r > 0$. Since $S \subset T$, this implies $B(x, r) \subset T$, so x is an interior point of T, i.e. every point of S is an interior point of T.

Problem 5

Any union of open sets is open, so is the union of open balls.

On the other hand, any point x in an open set X is contained in a ball $B_x \subset X$, so $X = \bigcup_{x \in X} B_x$.

Problem 6

Part A

Let $X = \bigcup_{I \in \mathcal{I}} I$. X is open as a union of open sets, hence X is a union of disjoint intervals. Any interval $I \in \mathcal{I}$ is contained in one of these intervals. This reduces our problem to the case when X is an interval itself. Also note that if X is an infinite interval, then the desired inequality holds automatically for I' containing one of the infinite intervals in \mathcal{I}.

If some point of X is contained in three different intervals from \mathcal{I}, two of these intervals cover the third one: choose the (not necessarily unique) interval that extends furthest left, and the (not necessarily unique) interval that extends furthest right. Number the intervals of $\mathcal{I} = \{I_1, I_2, \ldots, I_k\}$. Let $\mathcal{I}_0 = \mathcal{I}$ and define \mathcal{I}^{r+1} to be \mathcal{I}^r if there is a point in X contained only in I_r, or $\mathcal{I}^r \setminus \{I_r\}$ otherwise. From the discussion above we see that $X = \bigcup_{I \in \mathcal{I}^{k+1}} I$, and any point of X is contained in ≤ 2 of intervals from \mathcal{I}^{k+1}. Order $\mathcal{I}^{k+1} = \{I'_1, \ldots, I'_r\}$ by the coordinates of the left ends of the intervals. Let $\mathcal{I}_{\text{odd}} = \{I'_j, j \text{ is odd}\}$, $\mathcal{I}_{\text{even}} = \{I'_j, j \text{ is even}\}$. $\mathcal{I}_{\text{odd}}, \mathcal{I}_{\text{even}}$ are two sets of disjoint intervals. Let $X_1 = \bigcup_{I \in \mathcal{I}_{\text{odd}}} I$ and $X_2 = \bigcup_{I \in \mathcal{I}_{\text{even}}} I$. We have $X = X_1 \cup X_2$, so that $\text{mes}(X) \leq \text{mes}(X_1) + \text{mes}(X_2)$. This gives $\text{mes}(X) \leq 2\text{mes}(X_1)$ or $\text{mes}(X) \leq 2\text{mes}(X_2)$ and we are done.

Part B

Proof of part A shows that the constant of 3 can be improved to 2. Constant 2 in the inequality can’t be improved. Consider the set $\mathcal{I} = \{(0, 1), (1 - \epsilon, 2 - \epsilon)\}$. We must throw away one of the intervals, in both cases we get $\text{mes}(\bigcup \mathcal{I}) = (2 - \epsilon)\text{mes}(\bigcup \mathcal{I})$. This shows that any constant less than 2 will not suffice.