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faultable counterparties or borrowers. The risk setting is that of a classical multi-factor

jump-di�usion for default intensities and asset returns, under which between-jump re-

turns are correlated Brownian motions, with return jumps at Poisson arrivals that are

jointly normally distributed. This allows for fat-tailed and skewed return distributions.
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1 Introduction

This paper provides an analytical approximation for the value at risk, and other risk mea-

sures, of over-the-counter (OTC) portfolios. The portfolios may include options and other

derivatives, with defaultable counterparties or borrowers. The risk setting is that of a classical

multi-factor jump-di�usion for default intensities and asset returns, under which between-

jump returns are correlated Brownian motions, with return jumps at Poisson arrivals that

are jointly normally distributed. This allows for fat-tailed and skewed return distributions.

We �nd that, at least for the cases we examined, extreme tail losses are dominated by either

credit risk (for example in loan portfolios) or by the underlying market price risk (for exam-

ple with equity option portfolios), but that only rarely do both sources of risk make a large

contribution to tail risk.

In our previous work in this direction, DuÆe and Pan [1997], we used a relatively standard

Monte-Carlo procedure, under which returns are simulated, and delta-gamma approxima-

tions to derivative prices are used to estimate marks to market for each scenario. Repeated

simulation is used to estimate a con�dence interval on losses that is typically known as \value

at risk," or \VaR." For example, under an accord1 set through the Bank of International

Settlements (BIS), regulated banks are required to report, and to maintain capital based on,

an estimate of VaR de�ned as the loss in portfolio value that is exceeded with 1% probability

over a two-week period. Banks and many other �nancial �rms often compute VaR for inter-

nal purposes based on 1-day changes in portfolio value, and sometimes at other con�dence

levels. We believe that delta-gamma-based approximation of changes in derivative prices,

under which the actual derivative pricing formula is treated up to a second-order Taylor se-

ries approximation, is commonly used for this purpose. The use of Monte-Carlo simulation

also appears to be popular, although in some cases actual historical returns are used, in the

spirit of a \boot-strap," rather than simulation based on theoretical return distributions. For

a recent Monte-Carlo-based VaR estimation methodology, see Cardenas, Fruchard, Picron,

Reyes, Walters, and Yang [1999], and Jamshidian and Zhu [1997], who also consider default

risk.

The BIS accords do not currently address \speci�c" (default) risk in VaR measurement,

although there is some discussion of eventual model-based credit-risk measurement for set-

ting regulatory capital requirements (BIS [1999]). For a pure-di�usion (no-jump) model,

Cardenas, Fruchard, Koehler, Michel, and Thomazeau [1997] and Rouvinez [1997] showed

how to replace the simulation step with an analytical method based on the characteristic

function of the delta-gamma approximation Y of the change in portfolio value.2 After de-

riving an explicit solution for this characteristic function, which is essentially the Fourier

transform of the density of Y , they inverted for the distribution (or, in the case of Cardenas,

Fruchard, Koehler, Michel, and Thomazeau [1997], the density) of Y , and then obtained

the VaR. We take essentially the same approach here, after conditioning on the number of

jumps, exploiting a single and eÆcient numerical integration step, designed by Davies [1980],

for inverting the characteristic function so as to directly obtain the cumulative distribution

function of Y , from which VaR is immediate. The jump-conditional VaR is then easily

1See BIS [1995].
2Another approach, also based on characteristic functions, is due to Jahel, Perraudin, and Sellin [1998].
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weighted by the probability of a given number of jumps, and combined to obtained the un-

conditional VaR including the e�ects of jumps. For short time horizons, such as one day

or two weeks, ignoring more than a small number of jumps achieves a given accuracy, for

which we explicitly control. A similar approach can be used to compute other risk measures,

such as the expected loss in excess of a given critical value. See Artzner, Delbaen, Eber, and

Heath [1998] for a critique of VaR and an axiomatic basis for \coherent" risk measures, such

as the expected excess loss.

For a given level of accuracy, and for the option portfolios and return processes that we

have examined to this point, we �nd a substantial reduction in computational e�ort over the

alternative of Monte-Carlo simulation.

We next fold into the VaR calculation the risk of changes in credit quality, including

default. Based on a correlated default-intensity model, we obtain an approximation of the

probability distribution of the total loss of a portfolio that is exposed to a number of corre-

lated default risks, applying the same analytical Fourier-transform approach. Fixing a given

joint distribution of counterparty default intensity processes, we show a signi�cant impact

of common credit events, at which more than one counterparty may default.

While we do not pursue it here, our method would make it easy to analytically calculate

conditional measures of VaR, as suggested by Kupiec [1998], allowing one to plot VaR con-

ditional on a given market return or a given scenario for various markets, as one varies that

scenario parametrically.

2 Portfolio Delta-Gamma Approach

We suppose that the portfolio under consideration consists of cash-market positions and

derivatives on n underlying assets, whose price processes, S1; : : : ; Sn; form a jump-di�usion.

Speci�cally, we let R = (lnS1; : : : ; lnSn) denote the log-price process, and suppose that

Rt = R0 +
�
R� ��

�
t +

p
t�1=2X0 +

N (t)X
j=1

(�+ V 1=2Xj) ; (2.1)

where R in Rn is a mean-return vector;3 for j = f0; 1; 2; : : : :g, Xj is standard normal

in Rn, and Xj and Xk are independent for j 6= k, and where � and V are symmetric and

positive semi-de�nite matrices of dimension n�n; and N is a jump-counting Poisson process,

independent of fX1; X2; : : : g, with constant arrival intensity �. For now, we suppose only

one type of normally distributed joint jump distribution. We later consider multiple jump

types. We defer to Section 5 the consideration of credit risk.

To summarize, the jump-di�usion model speci�ed in (2.1) has jumps at Poisson arrivals

with mean arrival rate �, and conditional on j jump events before time t, Rt is jointly

normally distributed with covariance � t+ jV , and with mean R0 +
�
R� ��

�
t+ j�.

Given the dynamics of the underlying assets, we are now interested in assessing the risk

of a portfolio of cash-market positions and derivatives, such as options. The total portfolio

3If a risk-neutral distribution were required, which is not generally the case for VaR calculations, the k-th
element of R would be de�ned by Rk = r � 1

2
�kk � �

�
exp(�k +

1

2
Vkk)� 1

�
+ ��k, where r is the risk-free

short rate.
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value may be expressed by C(R) =
Pm

k=1Ck(R), where C1; : : : ; Cm are m derivatives written

on the n underlying assets. For example, a long cash-market position of K units of asset i

is de�ned by a derivative function Ck( � ) given by Ck(R) = K exp(Ri): A classical European

option could be de�ned by a linear combination of Black-Scholes option pricing formulas, by

conditioning on the number of jumps and evaluating the Black-Scholes formula associated

with the risk-neutral jump-conditional return distribution.4

For the purpose of VaR and other risk measures, we are interested in the tail distribution

of C(RT ) over a �xed time horizon T . We adopt the well known5 delta-gamma second-order

approximation

C(RT ) � C�;�(RT ) =C(R0 +RT ) + � � (RT � R0 �RT )

+
1

2
(RT � R0 �RT )> � (RT � R0 �RT ) ; (2.2)

where � and � are de�ned by

�i =

mX
k=1

@Ck(R)

@Ri

�����
R0+RT

; �i;j =

mX
k=1

@2Ck(R)

@Ri @Rj

�����
R0+RT

: (2.3)

In practice, banks often take R = 0 in (2.2)-(2.3). For the purpose of a short-horizon

VaR estimate, the distinction is small in typical cases, and one could adopt either convention

for the following calculations.

For European options, � and � may be computed explicitly, by conditioning on the

number of jumps, as a linear combination of the corresponding explicit Black-Scholes deltas

and gammas. (For more on computing deltas and gammas, see Glasserman and Zhao [1998].)

In any case, it is somewhat common in practice to maintain a database of delta and gamma

exposures, which may be available for this VaR application.

3 Calculation of Tail Probabilities

We propose now an approach based on characteristic functions to calculate P
�
C�;�(RT ) < �c

�
,

for any �xed critical value �c. For notational simplicity, we re-express (2.2) as

C(RT ) ' C�;�(RT ) = A +B �RT +
1

2
R>T �RT ; (3.1)

where A = C(R0+RT )���(R0+RT )+ 1
2
(R0+RT )>�(R0+RT ), and B = ��� (R0+RT ).

3.1 Characteristic Function

We �rst derive the characteristic function � : R ! C of C�;�(RT ), where C is the set of

complex numbers, de�ned by

�(u) = E
�
exp

�
iuC�;�(RT )

��
: (3.2)

4See DuÆe and Pan [1997] for details.
5See, for example, Page and Feng [1995].
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For this calculation, we use the fact that, conditional on the event of j jumps before T , RT is

jointly normally distributed with mean Mj = R0+
�
R� ��

�
T + j�, and covariance matrix


j = �T + jV . We therefore have

�(u) =

1X
j=0

pj�j(u) ; (3.3)

where the probability pj of the event of j jumps by T is

pj = P (NT = j) = e��T
(�T )j

j!
;

and where the characteristic function �j of C
�;�(RT ), conditional on the event of NT = j

jumps, is given, based on calculations whose history can be traced back from sources cited

in Davies [1973], by

�j(u) = E
�
exp

�
i uC�;�(RT )

� ��NT = j
�

=
exp

�
iu
Pn

k=1 �
k
j (Æ

k
j )

2=(1� 2iu�kj )� 1
2
u2�2j + iuj

�
Qn

k=1(1� 2iu�kj )
1=2

; (3.4)

where the parameters Æ, �, �, and  are de�ned as follows.

For �xed j, �j = (�1j ; : : : ; �
n
j ) is de�ned by

D>

j

0
B@
�1j

. . .

�nj

1
CADj =

1

2


1=2
j �


1=2
j ; (3.5)

where Dj is an (n� n) orthogonal matrix with D>

j = D�1
j . Denoting the k-th row of Dj by

Dk
j , we recognize that �

k
j is the j-th eigenvalue of the matrix on the right-hand side, while

the associated eigenvector is Dk
j . Next, for �xed j, we de�ne Æj = (Æ1j ; : : : ; Æ

n
j ) by

Ækj =
Dk
j � aj
2�kj

; if �kj 6= 0 ; Ækj = 0 ; otherwise ; (3.6)

where aj = 

1=2
j (B + �Mj). Finally, we have

�j =

s
aj � aj � 4

X
k

(�kj Æ
k
j )

2 ; (3.7)

j = A+B �Mj +
1

2
M>

j �Mj �
X
k

�kj (Æ
k
j )

2 : (3.8)
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3.2 Fourier Inversion

Given the characteristic function � of C�;�(RT ) from (3.3), a standard Fourier-inversion

formula6 implies that

P (C�;�(RT ) � �c) =
1

2
� 1

�

1X
j=0

pj

Z
1

0

Ij(u)

u
du ; (3.9)

where, for any u 2 R,

Ij(u) = Im [�j(u) exp(�iu�c)]

= Nj(u) sin

"
1

2

X
k

arctan(2u�kj ) +
X
k

u�kj (Æ
k
j )

2

1 + 4u2(�kj )
2
+ u(j � �c)

#
;

where Im(z) denotes the imaginary part of a complex number z, and where

Nj(u) =
exp

�
�2u2

P
k(�

k
j Æ

k
j )

2=(1 + 4u2(�kj )
2)� u2�2j =2

�
Q

k(1 + 4u2(�kj )
2)1=4

:

3.3 Numerical Inversion with Error Analysis

We evaluate (3.9) by numerical integration, based on equally spaced abscissas with steps:

P (C�;�(RT ) � �c) '
JX
j=0

pj

0
@1

2
� 1

�

KjX
k=0

Ij ((k + 1=2)hj)

k + 1=2

1
A ; (3.10)

where the summation over jump events is cut o� at J , and where the integration, for the

event with j jumps, is cut o� at (Kj + 1=2)hj, and where hj is the corresponding step size.

Three types of errors are introduced by this:

1. The truncation error introduced by J <1.

2. The discretization error introduced by hj > 0, for each j.

3. The truncation error introduced by Kj <1, for each j.

The �rst type of error is associated with the truncation of the number of jumps before

time T , and can be easily managed by choosing J so that
P

1

j=J+1 pj is less than the desired

accuracy. For example, even for an expected time between jumps of as little as one month,

an accuracy of 0:00001 in the probability calculation over a time horizon of two weeks

corresponds to a cut-o� level of J = 6 jumps.

For an error tolerance of �; and given the choice of J , we assign an error tolerance of

�=J to each of the J terms in (3.10). For the j-th term, the error analysis then comes down

to choosing a step size hj and a truncation level Kj so that the error introduced in the

summation over k is less than the desired accuracy �=J for that term, divided by pj.

6See, for example, Gil-Pelaez [1951].
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For the rest of the section, we sketch out a mechanism to control the discretization and

truncation errors listed in (2) and (3) above. The treatment is the same for each of the J

terms. Thus, we will discuss the case of a generic j and, for notational simplicity, we will

drop the subscript j from our notation. Our treatment of these error bounds follows closely

that of Davies [1973] and Davies [1980], where more details can be found.

We �rst address the issue of truncation error. Given that the numerical integration is

cut o� at U = (K +1=2)h, the truncation error can be managed by �nding bounds on I( � ).
That is,

Truncation Error =
1

�

1X
k=K+1

I ((k + 1=2)h)

k + 1=2
� 1

�

Z
1

u=U

�I(u)

u
du ; (3.11)

where jI(u)j � �I(u), and �I(u) is some monotonically decreasing function of u, for u � U .

Three di�erent bounds on I are considered in Davies [1980], which result in three bounds

on the truncation error, for a given cut-o� value U , given by

B(1)(U) =
2

�J
N(U)

Y
4U2(�k)2>1

�
1 + 4U2(�k)2

4U2(�k)2

�1=4

;

B(2)(U) =
N(U)

�U2�2
; B(3)(U) =

2:5

�
N(U) ;

where B(3)(U) applies if
P

k ln(1 + 4U2(�k)2) + 2�2U2 � 1: The truncation error is then

bounded by the minimum of B(1)(U), B(2)(U), and B(3)(U).

We next address the issue of discretization error introduced by h > 0, which is derived

in Davies [1973] to be

Discretization Error =

�����
1X
n=1

(�1)n
�
P (C < �c� 2�n=h)� P (C > �c+ 2�n=h)

������ ; (3.12)

where for notational simplicity, we denote C�;�(RT ) by C. The discretization error can be

managed by choosing h so that

max

�
P (C < �c� 2�=h); P (C > �c+ 2�=h)

�
(3.13)

is less than the desired accuracy.

For the purpose of calculating the tail probabilities in (3.13), Davies [1973] adopts the

following approach. For j 2 f1; : : : ; Jg, let 	j(u) denote the logarithm of the moment-

generating function of C�;(RT ), conditioning on the event of j jumps, which can be derived

to be

	j(u) = lnE

"
exp

�
uC�;�(RT )

� ����� NT = j

#
(3.14)

=
X
k

u�kj (Æ
k
j )

2

1� 2u�kj
+
1

2
u2�2j + uj �

1

2

X
k

ln(1� 2u�kj ) : (3.15)
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Then, after conditioning on a given number of jumps, we have

P
�
C > 	0j(u) j NT = j

�
� exp

�
	j(u)� u	0j(u)

�
: (3.16)

Finally, the unconditional probability that C exceeds a given number is obtained by

conditioning, applying the given probability pj of j jumps and the above expression for the

conditional probability of exceedence given j jumps, and summing over j in the obvious way.

3.4 Multiple Jump Types

We have so far supposed that there is only one type of joint normally distributed return jump

distribution. One could allow several joint normal jump types, for a mixture-of-normals jump

size, although computational eÆciency may suggest an attempt to limit the number of types.

Rather than treating each jump type separately, it may be eÆcient to view the model

as one with jumps of any type at total Poisson arrival rate � = �1 + � � � + �K , where

K is the number of types of joint normally distributed jumps, and �k is the arrival rate

of jumps of type k. Any jump is of type k with constant conditional probability �k =

�k=�. The characteristic function �j associated with j jumps (in total) may be viewed as a

linear combination of the characteristic functions associated with the various combinations

of numbers of jumps of each type that add up to j. That is, we would replace �j in (3.4)

with

�j(u) =
X

m2I(j)

��(m)��m(u); (3.17)

where:

� m = (m1; : : : ; mK) indicates the number of jumps of each of the K types, with I(j) =

fm : m1 + � � �+mK = jg.

� ��(m) is the probability that (m1; : : : ; mK) is the outcome of the number of jumps of

each type, for the multinomial distribution associated with m1+ � � �+mK independent

trials, with probability �k for an outcome of type k at a given trial. That is,

��(m) =
(m1 + � � �+mK)!

m1!m2! � � �mK !
�m1

1 �m2

2 � � ��mK

K : (3.18)

� ��m is the explicit characteristic function (for the appropriate joint-normal total returns)

conditional on the outcome m for the numbers of jumps of each type.

One can then proceed as above to obtain the unconditional cumulative distribution function

of portfolio loss, up to the delta-gamma approximation, with analogous error control. There

are perhaps useful eÆciencies to be obtained by \pruning" combinations of jump types whose

total probability is suÆciently small relative to the allowable error.
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4 An Example: Options Portfolio on Equity Indices

As an example, we consider options portfolios on equity indices from 32 countries. For the

information on volatility and pair-wise correlations among the 32 markets, we use the Risk-

Metrics database on November 20, 1998. The 32 countries and their respective volatilities

are characterized in Table 1. The associated correlations are shown in Table 6.

Table 1: Equity Indices of 32 Countries with Respective Volatilities.

ARS 58% EMB 37% ITL 43% PHP 50%
ATS 34% ESP 43% JPY 36% PTE 36%
AUD 16% FIM 47% KRW 49% SEK 44%
BEF 27% FRF 36% MXN 47% SGD 41%
CAD 27% GBP 29% MYR 66% THB 59%
CHF 38% HKD 45% NLG 39% TWD 29%
DEM 40% IDR 56% NOK 38% USD 25%
DKK 29% IEP 31% NZD 22% ZAR 31%

Source: RiskMetrics, November 20, 1998. The three-letter codes
are the SWIFT currency code, except for EMB, which represents
J.P. Morgan's Emerging Markets Bond Index Plus.

5 10 15 20 25 3000

0.5

1

1.5
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2.5

i-th eigenvalue

ei
g
en
va
lu
e

Figure 1: Eigenvalues of the variance-covariance matrix of 32 equity indices. Data Source:

RiskMetrics, November, 20, 1998.

We �rst construct the return covariance matrix, Cov, of the 32 equity indices using

RiskMetrics data. Figure 1 shows the eigenvalues of Cov, which partially demonstrates the

limited degree of diversi�cation o�ered by our option portfolio. Two types of returns are

considered:
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� pure di�usion, which has no jump component, (� = 0;� = Cov).

� jump di�usion. The jump arrival intensity, �, is set for our illustrative purposes at 4 per

year. We let � = �V = Cov=2, so that half of the observed variance is explained by the

jump component, while the other half by the di�usion component. The expected jump

amplitude in return is set at zero. That is, � in (2.1) is set so that exp(�j+Vjj=2) = 1,

for j = 1; : : : ; 32.

The jump-di�usion example represents an extremely high level of jump risk, not based

on any empirical model, which we have chosen merely to illustrate the accuracy of our VaR

estimates in the presence of severe jumps.

Our example options portfolio contains one at-the-money call option on each of the 32

equity indices, in equal amounts of the underlying index (measured in U.S. Dollars). We

assume7 that the mean rate of return on each index is the risk-free rate, r = 5%. Over our

one-day or two-week time horizons, the mean rate of return has, in any case, a negligible

e�ect on VaR , for conventional parameters such as ours.

As an illustration of the accuracy of the delta-gamma approximation relative to the

\true" VaR (that associated with the actual option prices), we show in Figure 2 the one-day

and two-week VaRs, at varying con�dence levels, for the jump-di�usion model.

Table 2: Values at Risk of Options Portfolio

One-Day Two Weeks
Model Method 0.4% 1% 0.4% 1%

Long Options Portfolio
Simulation, Actual 21.912 19.545 65.629 60.491

Pure Di�usion Simulation, Delta-Gamma 21.838 19.496 60.816 56.910
Analytical, Delta-Gamma 21.986 19.547 60.899 57.064

Simulation, Actual 19.760 15.515 71.948 61.288
Jump-Di�usion Simulation, Delta-Gamma 18.948 15.391 54.202 50.277

Analytical, Delta-Gamma 18.713 15.470 54.184 50.406

Short Options Portfolio
Simulation, Actual 25.959 22.428 117.627 98.842

Pure Di�usion Simulation, Delta-Gamma 25.905 22.386 116.689 97.880
Analytical, Delta-Gamma 25.646 22.232 115.192 97.146

Simulation, Actual 33.080 17.171 203.903 149.415
Jump-Di�usion Simulation, Delta-Gamma 34.026 17.224 209.309 151.814

Analytical, Delta-Gamma 35.339 17.554 207.965 148.690

The 0.4% and 1% critical values of both the long and short positions in the portfolio are

calculated using three di�erent methods, `actual,' `simulation-delta-gamma,' and `analytic

delta-gamma.' The results are summarized in Table 2. For both the actual and simulation-

delta-gammamethods, 100,000 pseudo-independent scenarios are simulated. For the analytic

delta-gamma method, we use our inversion method, with a precision set at 0.00001. For this

7In e�ect, we assume \risk-neutrality," which doesn't necessarily hold. In practice, one may wish to assign
jump risk premia.
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Table 3: Sample Standard Errors of Simulated Values at Risk

One Day Two Weeks
Model Method 0.4% 1% 0.4% 1%

Long Position on Options Portfolio
Pure Di�usion Actual 0.383 0.369 0.832 0.761

Delta-Gamma 0.377 0.364 0.695 0.600

Jump Di�usion Actual 2.217 0.250 1.600 0.766
Delta-Gamma 1.169 0.198 0.668 0.365

Short Position on Options Portfolio
Pure Di�usion Actual 0.300 0.439 1.190 2.348

Delta-Gamma 0.299 0.440 1.207 2.279

Jump Di�usion Actual 6.797 0.332 6.028 5.045
Delta-Gamma 6.638 0.328 7.570 4.866

Note: The sample standard errors are from 10 simulated sub-
samples of 10,000 scenarios each.

example, one calculation of a tail probability by Fourier inversion typically involves 20 to 50

function evaluations for the pure di�usion case, and 80 to 250 function evaluations for the

jump-di�usion case. In order to estimate the accuracy of the simulation approach, we split

the 100,000 simulations into 10 groups, with 10,000 for each group, and provide the sample

standard errors of the critical values. The results are shown in Table 3. One may scale these

numbers down by
p
10 to roughly estimate the accuracy of the critical values associated with

100,000 scenarios.

5 Folding in Credit Risk

In this section, we extend our calculations so as to obtain accurate analytical estimates of

the value of risk, including the risk of changes in credit quality and of defaults, of a portfolio

of securities or loans, including derivatives.

Consider a portfolio of contracts with m credit-risky counterparties. Counterparty (or

borrower) i is assumed to have a random default time �i whose distribution is governed by

an intensity process �i, with

�i(t) = �Ii (t) + pi�
C(t); (5.1)

where pi is a constant between 0 and 1, and where

d�Ii (t) = �Ii (
��Ii � �Ii (t)) dt+ �Ii

q
�Ii (t) dB

I
i (t) ; (5.2)

d�C(t) = �C(��C � �C(t)) dt+ �C
p
�C(t) dBC(t) ; (5.3)

where (BC ; BI
i ; : : : ; B

I
m) is a standard Brownian in Rm+1. We assume a Cox-process model

for individual default times, in the sense that, conditional on the process �i, the default

time �i of the i-th counterparty is the �rst jump time of a Poisson process with time-varying
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intensity �i(t), for t � 0. This implies that, for any T > 0,

P (�i > T ) = E

�
exp

�
�
Z T

0

�i(t) dt

��
; (5.4)

which (as we shall see) is an easy calculation for our choice of �i.

Correlation is induced both through the common factor �C in intensities and through

common credit events, as follows. Conditional on all of the independent processes �I1; : : : ; �
I
m; �

C,

there are independent Poisson processes N I
1 ; : : : ; N

I
m; N

C with these time-varying determin-

istic intensities. Whenever NC jumps, any counterparty i defaults with probability pi, and

the events of default of the various counterparties, at any such common event time, are condi-

tionally independent. This means that there is the potential for more than one counterparty

to default simultaneously. Intuitively, �It is the intensity of arrival of a default speci�c to �rm

i, while �C is the intensity of arrival of common credit events which, with some conditional

probabilities, causes the default of a subset of the m �rms.

For illustrative simplicity, we assume symmetry in that pi = p, that �Ii = �C = �, and

that �Ii =
p
p�C = �. A consequence of this symmetry is that, for each i, �i is itself a

\Cox-Ingersoll-Ross" process with

d�i(t) = �(��Ii + p��C � �i(t)) dt+ �
p
�i(t) dBi(t); (5.5)

where Bi is a Brownian motion.8 From (5.4) we have

P (�i > T ) = exp (ai + bi�i(0)) ; (5.6)

which is simply the CIR discount formula, where, letting ��i = ��Ii + p��C , we have ai =

a(T; �; ��i; �) and bi = b(T; �; ��i; �), with

b(t; �; ��i; �) = � 2 (1� exp(�t))
2 � ( � �) (1� exp(�t))

a(t; �; ��i; �) = ��
��i

�2

�
( � �)t+ 2 ln

�
1�  � �

2
(1� exp(�t))

��
;

(5.7)

and where  =
p
�2 + 2�2.

We further assume that if i defaults, then its portfolio loses some fraction Li of what

its market value would have been given survival to T , this market value being denoted

Vi(RT ; �T ). This random fractional loss Li (assumed independent of all else) is assumed to

have a characteristic function �i, de�ned by �i(u) = E(exp(�iuLi)). The time-T value WT

of the entire portfolio is

WT =

mX
i=1

Vi(RT ; �T )�
mX
i=1

LiDiT Vi(RT ; �T ); (5.8)

where DiT is the indicator (1 or 0) of the default event f�i < Tg.
8For a proof, and an extension of this idea to include jumps in intensities, see DuÆe and Garleanu [1999].
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For the purpose of analytical VaR calculations, we approximate by

WT �
mX
i=1

Vi(RT ; �T )�
mX
i=1

LiDiTVi(R0; �0); (5.9)

neglecting the change in default-free value between 0 and T when computing the default

loss. This approximation allows us to disentangle the two components | the total market

value assuming survival to the VaR horizon,

V (RT ; �T ) =

mX
i=1

Vi(RT ; �T );

and the total loss from defaults,

H(T ) =

mX
i=1

LiDiT Vi(R0; �0):

We are interested in the tail distribution ofWT , which can be obtained using the Fourier-

inversion method laid out in Section 3, once the characteristic function  of WT , de�ned

by  (u) = E[exp(iuWT )], is known. Under the approximation (5.9), we further ignore the

dependence between Di(T ) and �(T ), which is in any case of small order over small time

horizons,9 and write  (u) �  V (u) D(u), as a product of Fourier transforms  V of the

\value" component V (RT ; �T ), and,  
D of the \default" component H(T ). We now treat

these two components separately.

Value Component

For this component, we make the usual \delta-gamma" approximation by Taylor ex-

panding V (RT ; �T ) in terms of RT and �T , around initial (time-0) values, up to second order

(that is, by the \delta-gamma" approximation). For this purpose, we let YT = [RT ; �T ]
>,

and write

V (YT ) � V �;�(YT ) = A +B � YT +
1

2
Y >T �YT ; (5.10)

where

A = V (Y0)�� � Y0 +
1

2
Y >0 �Y0 ; B = �� �Y0;

and where � and � are the �rst (gradient) and second (Hessian) derivatives of V ( � ) evaluated
at Y0.

9For one counterparty, the covariance between DT and �T is

cov(DT ; �T ) = E (�T ) E

 
exp

 
�

Z T

0

�s ds

!!
�E

 
�T exp

 
�

Z T

0

�s ds

!!
:

For our base-case parameters, corr(DT ; �T ) is 0:00024 over a one-day horizon, and 0:0033 over a two-week
horizon.
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Under a Gaussian approximation of YT , with mean vectorM and variance-covariance ma-

trix 
, the Fourier transform of the value component becomes a straightforward application

of (3.4). For simplicity, we assume that � and R are independent, so that

M =

�
MR

M�

�
; 
 =

�

R 0n�m
0m�n 
�

�
; (5.11)

where MR and 
R are the mean vector and variance-covariance matrix, respectively, of the

n market risk factors, and where

(M�)i � E0(�i(T )) = �i(0) + (1� exp(��T ))(��Ii + p��C � �i(0))

(
�)i;i � var0(�i(T )) = exp(��T )1� exp(��T )
�

�2�i(0) +
(1� exp(��T ))2

2�
�2(��Ii + p��C)

(
�)i;j � cov0(�i(T ); �j(T )) = p�2
�
exp��T

1� exp(��T )
�

�C(0) +
(1� exp(��T ))2

2�
��C
�
:

We note that only the case in which R and � are di�usions is considered here. An extension to

include jumps in both R and � can be readily incorporated, as in Section 3, by conditioning

on the number of jumps. Speci�cally, we may allow the same structure of jumps in the

market risk factors R as before, and introduce exponential jumps in the credit risk factors �.

Assuming the independence of the jump arrivals and amplitudes forR and �, the construction

ofMj;k and 
j;k, given j jumps in R and k jumps in � is a straightforward exercise. Allowing

for correlation between R and � is also straightforward.

Default Component

We next focus on the default component H(T ), taking the approximation:

Di
T � DiI

T + �iDC
T ; (5.12)

where DiI
T is the indicator of the event that the i-speci�c event-counting process N I

i has

jumped by T , DC
T is the indicator for the event that the common credit-event counting

process NC has jumped by T , and �i is the indicator of the event that i defaults at the �rst

common credit event. Here, we ignore the double-counting of defaults that occurs from both

common and idiosyncratic credit events. (The loss from a given counterparty default can

in fact occur only once.) The probability of the double-counting event is on the order of

�i(0)
2T 2, and we �nd by Monte Carlo tests that it has a negligible impact for our examples.

The use of (5.12) also \under-counts" defaults associated with multiple common credit events

before the VaR horizon T ; this error is of order �c(0)
2T 2. These under and over counting

errors are to some extent o�setting.

We have already de�ned P (�i = 1) = p, and we have

pIi (T ) = P (DiI
T = 1) = 1� E

�
exp

�
�
Z T

0

�Ii (t) dt

��

pC(T ) = P (DC
T = 1) = 1� E

�
exp

�
�
Z T

0

�C(t) dt

��
:
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As with the calculation of P (�i > T ) in (5.6), pIi (T ) and p
C(T ) can be calculated from the

CIR discount formula.

The Fourier transform of the default component is thus approximated as

 D(u) = E
�
e�iuH(T )

�
� E

�
e�iuH(T ) jDC

T = 1
�
pC(T ) + E

�
e�iuH(T ) jDC

T = 0
�
(1� pC(T ))

�
 
1� pC(T ) + pC(T )

mY
i=1

�
1� p+ p �i(uVi(�0; R0))

�! mY
i=1

ki;

where

ki = 1� pIi (T ) + pIi (T ) �i(uVi(�0; R0));

recalling that �i(u) = E(exp(�iuLi)).
With our analytic approximation of the Fourier transform of WT , we can now calculate

tail distribution of WT by Fourier inversion. The error-control technique is similar to that

established in Section 3, controlling for both discretization and truncation error. For our

small time horizon T , and for the cases to be examined in the next section, we �nd that our

approximations are more than adequate, as indicated by comparison with simulation-based

results. (See Tables 4 and 5.)

6 Example: Credit-Risk Exposures

As examples, we now consider the VaR of a loan portfolio and of an OTC option portfolio,

with credit risk. As we shall see, the tail VaRs are dominated by credit risk by the loan

portfolios, and by equity index risk for the options portfolios.

6.1 A Loan Portfolio with Credit Risk

Consider an illustrative estimate of the value at risk at the time horizon T for a portfolio of

m loans contracted to m respective counterparties, each with maturity Ti > T and principal

Fi. Given that �rm i survives to the VaR horizon T , the market value of its loan is then

Vi(RT ; �T ) = FiE
�

T

�
exp

�
�
Z Ti

T

�
r(t) + L��i (t)

�
dt

��
; (6.1)

where E�T denotes risk-neutral expectation given information at time T , ��i is is the risk-

neutral default intensity process for counterparty i, L is the risk-neutral mean of the frac-

tional loss Li of market value at default, and r is the default-free short rate process. (For

this calculation, and supporting technical conditions, see DuÆe and Singleton [1999].) We

will take r(t) = �r+R1(t)+R2(t) where �r is a constant and where R1 and R2 are independent

CIR processes. For simplicity in exposition, we assume no risk premia so that the distribu-

tion of ((�1; �1) ; : : : ; (�m; �m) ; R) coincides with its risk-neutral distribution. Similar to the

derivation of (5.4), we then have

Vi(RT ; �T ) = Fi exp

�
� �r(Ti � T ) + a + b1Ri(T ) + b2R2(T ) + c�i(T )

�
; (6.2)
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where the coeÆcients a, b1, b2, and c are determined by Riccati equations, as usual for a

multi-factor CIR setting. In this example, we �x the model parameters for the risk-free

short rate to those reported in DuÆe and Singleton [1997], and set the initial levels of R1

and R2 to their respective long-run means. The parameters for each default intensity �i are

set for illustration at � = 0:25, �� = ��I + p��C = 0:03, and a volatility parameter � set so

that the initial instantaneous volatility of intensity is 100%. Default intensities are initiated

at their long-run means by letting �Ii (0) =
��I and �C(0) = ��C . Keeping �, ��, and � �xed,

and assuming a constant fractional loss of Li = L = 50% at default, two cases with di�erent

degrees of correlation in counterparty credit risk are considered:

High Correlation: p = 0:8 and ��I=�� = 20%.

Low Correlation: p = 0:2 and ��I=�� = 80%.

The distribution of individual default times is identical for these two cases.

The 320 borrowers have 1-year loans of equal principal. The percentage value-at-risk, as

a fraction of the initial market value of the loan portfolio, is shown in Table 4. As opposed to

the case of the options portfolio considered later, there is a substantive contribution of credit

risk, if one examines suÆciently far out into the tail of the distribution. For example, for

both high and low correlation cases, the percentage value-at-risk increases signi�cantly from

the 0.2% level to the 0.1% level. This di�erence is due to the likelihood of a market-wide

credit event before the VaR horizon T , which, at our parameters with �C = 0:03, is 0.12%,

indeed lying between 0.1% and 0.2%.

Table 4: Total 2-Week Value-at-Risk for A Loan Portfolio

High Correlation Low Correlation No Credit Risk
Prob(%) Analytical Simulation Analytical Simulation Analytical Simulation

0.1 38.53 38.49 (0.18) 8.49 8.58 (0.16) 0.64 0.65 (0.00)
0.2 0.87 0.87 (0.01) 0.77 0.77 (0.01) 0.59 0.59 (0.00)
0.3 0.79 0.78 (0.00) 0.70 0.70 (0.00) 0.55 0.55 (0.00)
0.4 0.74 0.74 (0.00) 0.65 0.65 (0.00) 0.52 0.52 (0.00)
0.5 0.70 0.70 (0.00) 0.62 0.62 (0.00) 0.50 0.50 (0.00)
0.6 0.67 0.67 (0.00) 0.60 0.59 (0.00) 0.49 0.49 (0.00)
0.7 0.65 0.65 (0.00) 0.58 0.57 (0.00) 0.47 0.47 (0.00)
0.8 0.63 0.63 (0.00) 0.56 0.56 (0.00) 0.46 0.46 (0.00)
0.9 0.61 0.61 (0.00) 0.54 0.54 (0.00) 0.45 0.45 (0.00)
1.0 0.60 0.60 (0.00) 0.53 0.53 (0.00) 0.44 0.44 (0.00)
2.0 0.49 0.49 (0.00) 0.43 0.43 (0.00) 0.36 0.36 (0.00)
3.0 0.43 0.43 (0.00) 0.38 0.38 (0.00) 0.31 0.31 (0.00)
4.0 0.38 0.38 (0.00) 0.34 0.33 (0.00) 0.28 0.28 (0.00)
5.0 0.34 0.34 (0.00) 0.30 0.30 (0.00) 0.25 0.25 (0.00)

The sample standard errors (in parentheses) are calculated using 10 simulated subsamples of 500,000
scenarios each. The VAR estimate based on simulation is the sample mean of the 10 sub-sample
estimates.

Figure 3 shows the impact on the VaR of increasing the number m of borrowers. We also

compare the VaR with that of a parallel model with no common credit events. Speci�cally,
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in the parallel model, there is a common factor p�C of intensities as before, but conditional

on the intensities �I1; : : : ; �
I
m; �

C , all default times are independent. The intensity processes

for this parallel model have the same joint distribution (same individual default risk model,

and same correlation among default intensities) as for our original model, but there are no

common default-generating events.

From case (a) of Figure 3, we also see that the market-wide credit event hits all three

portfolios with a probability of approximately 0.2%. Again, one can show that the arrival

intensity of such a market-wide credit event is �C = 0:06, which corresponds to an event with

probability 0.23% over the two-week horizon. It is also interesting to see the extra structure

associated with the VaR of the portfolio with 32 counterparties. This is evident from the

\enlargement" shown in Figure 4, from which we see small \platforms" corresponding to

the number of individual �rms hit by a credit event. These are visible only in the case of

N = 32 borrowers, whose diversi�cation bene�t is limited relative to the case of N = 320 or

N = 1600.

Figure 5 shows the e�ect of increasing the volatility of interest rates, at both the 2-week

and 16-week VaR time horizons. Figure 6 shows the e�ect of increasing the correlation of

default risk, in two ways: (a) through the likelihood p of default by a given borrower at a

common credit event, and (b) through correlation in the intensity processes. In both cases,

the individual credit quality is held constant. Overall, one may see that the presence of joint

credit events may signi�cantly increase VaR, holding �xed the joint distribution of default

intensity processes.

6.2 An Options Portfolio with Credit Risk

Consider a portfolio of options on 32 respective equity indices, with credit exposure to 320

�rms. Speci�cally, there is a total of 320 options, all of which are at-the-money, European-

style, and with a time to exercise of Ti = 1 year. Each of the 320 option contracts is associated

with a particular equity index. Given no default by the corresponding counterparty up to

time T , the market value of the option at that time is

Vi(RT ; �T ) = Ci(RT )E
�

T

�
exp

�
�L

Z Ti

T

�i(t) dt

��
; (6.3)

where L = E�(Li) is the risk-neutral mean fractional loss of market value at default. The

�rst component, Ci(RT ), is the usual option pricing formula in the absence of credit risk.

With our particular speci�cation for the default intensity �, the second component is of an

exponential-aÆne form, which can be computed explicitly along the lines of (5.6).

For each counterparty i, the default intensity �i is characterized by a mean-reversion

parameter � = 0:25, a long-run mean �� = ��I + p��C = 0:03, and a volatility parameter �

that is set so that the initial instantaneous volatility is 100%. Again, we assume no risk

premia throughout. Each intensity is initiated at its long-run mean by letting �Ii (0) =
��I

and �C(0) = ��C . Keeping �, ��, and � �xed, and assuming a constant mean fractional default

loss of L = 50%, two cases with di�erent degrees of correlation are considered:

High Correlation: p = 0:8 and ��I=�� = 20%.
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Low Correlation: p = 0:2 and ��I=�� = 80%.

Table 5: Total 2-Week Value-at-Risk for An Options Portfolio

High Correlation Low Correlation No Credit Risk
Prob(%) Analytical Simulation Analytical Simulation Analytical Simulation

0.1 45.88 45.58 (0.14) 44.38 44.33 (0.11) 44.32 44.28 (0.13)
0.2 43.05 42.98 (0.11) 42.19 42.17 (0.09) 42.14 42.08 (0.13)
0.3 41.42 41.37 (0.09) 40.79 40.78 (0.06) 40.74 40.69 (0.12)
0.4 40.24 40.21 (0.07) 39.73 39.70 (0.06) 39.69 39.64 (0.13)
0.5 39.30 39.30 (0.06) 38.88 38.84 (0.06) 38.84 38.80 (0.12)
0.6 38.52 38.51 (0.04) 38.15 38.13 (0.07) 38.11 38.10 (0.10)
0.7 37.84 37.84 (0.05) 37.51 37.49 (0.07) 37.48 37.46 (0.10)
0.8 37.24 37.23 (0.07) 36.95 36.93 (0.05) 36.91 36.90 (0.11)
0.9 36.71 36.67 (0.06) 36.44 36.42 (0.05) 36.40 36.39 (0.10)
1.0 36.22 36.18 (0.07) 35.97 35.95 (0.05) 35.94 35.93 (0.10)
2.0 32.75 32.76 (0.05) 32.61 32.59 (0.03) 32.58 32.57 (0.08)
3.0 30.48 30.49 (0.05) 30.38 30.37 (0.04) 30.35 30.34 (0.06)
4.0 28.72 28.74 (0.05) 28.65 28.64 (0.03) 28.63 28.62 (0.06)
5.0 27.27 27.29 (0.05) 27.21 27.20 (0.03) 27.19 27.19 (0.05)

The sample standard errors (in parentheses) are calculated using 10 simulated sub-samples of 500,000
independent scenarios each. The reported estimate of VAR based on simulation is the sample mean
of the 10 subsamples.

The percentage value at risk is shown for various cases in Table 5. Figure 7 compares

the sensitivity of the risk of the option portfolio to increasing the mean default intensity of

counterparties to the analogous e�ect on the loan portfolio of the previous example. Clearly,

at the 2-week VaR horizon, the risk of the option portfolio due to variation of the underlying

equity indices dominates the e�ect of credit risk. Even at the 16-week VaR horizon, as shown

by Figure 8, the relative contribution of credit risk to the VaR of the the option portfolio is

small.
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Appendix

Table 6: Correlations of Equity Indices of 32 Countries.

ARS ATS AUD BEF CAD CHF DEM DKK EMB ESP FIM FRF GBP HKD IDR IEP

ARS 1.0

ATS 0.4 1.0

AUD 0.2 0.4 1.0

BEF 0.4 0.6 0.4 1.0

CAD 0.6 0.4 0.2 0.5 1.0

CHF 0.4 0.6 0.3 0.8 0.6 1.0

DEM 0.4 0.7 0.4 0.8 0.5 0.8 1.0

DKK 0.3 0.6 0.4 0.6 0.4 0.6 0.7 1.0

EMB 0.4 0.1 0.2 0.3 0.2 0.2 0.1 0.1 1.0

ESP 0.5 0.7 0.3 0.7 0.6 0.8 0.8 0.7 0.3 1.0

FIM 0.4 0.7 0.4 0.7 0.5 0.8 0.8 0.7 0.2 0.7 1.0

FRF 0.5 0.7 0.3 0.8 0.6 0.9 0.8 0.7 0.2 0.8 0.8 1.0

GBP 0.4 0.7 0.4 0.8 0.5 0.9 0.8 0.7 0.2 0.7 0.8 0.9 1.0

HKD 0.2 0.4 0.5 0.4 0.3 0.4 0.4 0.4 �0:0 0.4 0.5 0.4 0.5 1.0

IDR 0.1 0.2 0.3 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.4 1.0

IEP 0.3 0.6 0.5 0.7 0.5 0.7 0.7 0.6 0.2 0.6 0.8 0.7 0.7 0.4 0.2 1.0

ITL 0.4 0.6 0.3 0.7 0.5 0.8 0.8 0.7 0.2 0.8 0.8 0.9 0.8 0.4 0.2 0.7

JPY 0.2 0.4 0.5 0.4 0.2 0.4 0.4 0.4 0.2 0.3 0.5 0.4 0.5 0.3 0.2 0.5

KRW 0.2 0.3 0.3 0.4 0.3 0.3 0.4 0.2 0.2 0.3 0.4 0.4 0.4 0.4 0.3 0.4

MXN 0.7 0.3 0.2 0.4 0.5 0.4 0.4 0.3 0.2 0.4 0.4 0.3 0.3 0.2 -0.1 0.3

MYR 0.1 0.3 0.4 0.3 0.0 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2

NLG 0.4 0.7 0.4 0.9 0.5 0.9 0.9 0.7 0.3 0.8 0.8 0.8 0.9 0.4 0.3 0.7

NOK 0.4 0.7 0.5 0.6 0.4 0.6 0.7 0.8 0.0 0.6 0.8 0.6 0.7 0.5 0.1 0.7

NZD 0.2 0.3 0.4 0.4 0.2 0.2 0.3 0.3 0.5 0.3 0.3 0.2 0.3 0.2 0.3 0.4

PHP 0.2 0.1 0.5 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.5 0.3 0.2

PTE 0.4 0.7 0.3 0.8 0.5 0.8 0.7 0.6 0.2 0.8 0.6 0.8 0.6 0.3 0.2 0.6

SEK 0.4 0.6 0.3 0.7 0.5 0.8 0.8 0.7 0.1 0.7 0.8 0.8 0.8 0.4 0.1 0.7

SGD 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.3 0.2 0.4 0.4 0.3 0.4 0.6 0.5 0.4

THB 0.1 0.2 0.5 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.3 0.5 0.6 0.2

TWD 0.0 0.2 0.1 0.1 0.1 0.1 0.2 -0.0 0.2 0.1 0.1 0.0 0.1 0.1 0.2 0.1

USD 0.7 0.3 0.1 0.4 0.8 0.5 0.4 0.3 0.2 0.5 0.5 0.5 0.4 0.2 0.0 0.4

ZAR 0.5 0.7 0.5 0.7 0.5 0.6 0.7 0.6 0.3 0.7 0.7 0.6 0.7 0.5 0.3 0.6

ITL JPY KRW MXN MYR NLG NOK NZD PHP PTE SEK SGD THB TWD USD ZAR

ITL 1.0

JPY 0.5 1.0

KRW 0.3 0.4 1.0

MXN 0.3 0.2 0.1 1.0

MYR 0.3 0.3 0.3 0.1 1.0

NLG 0.8 0.4 0.4 0.3 0.3 1.0

NOK 0.7 0.4 0.2 0.3 0.2 0.7 1.0

NZD 0.2 0.2 0.3 0.2 0.3 0.4 0.3 1.0

PHP 0.1 0.1 0.3 0.2 0.0 0.2 0.2 0.3 1.0

PTE 0.7 0.4 0.4 0.4 0.2 0.7 0.5 0.4 0.2 1.0

SEK 0.8 0.4 0.4 0.4 0.2 0.8 0.7 0.2 0.1 0.6 1.0

SGD 0.3 0.4 0.3 0.2 0.2 0.4 0.4 0.3 0.5 0.4 0.3 1.0

THB 0.1 0.2 0.4 0.1 0.3 0.3 0.1 0.2 0.5 0.2 0.1 0.7 1.0

TWD 0.0 -0.0 0.3 -0.1 0.1 0.1 0.0 0.4 0.3 0.2 -0.1 0.2 0.1 1.0

USD 0.4 0.1 0.3 0.6 -0.1 0.4 0.3 0.1 0.2 0.4 0.4 0.2 0.1 0.1 1.0

ZAR 0.7 0.5 0.4 0.4 0.3 0.7 0.7 0.4 0.3 0.7 0.6 0.5 0.4 0.1 0.4 1.0

Source: RiskMetrics, November 20, 1998.

19



References

Artzner, P., F. Delbaen, J. Eber, and D. Heath (1998). Coherent Measures of Risk. Work-

ing Paper, ETH, Zurich.

BIS (1995, December). Communiqu�e announcing an amendment to the Basle Committee

on Banking Supervision. BIS Review, Number 209. Basle, Switzerland.

BIS (1999, April). Credit Risk Modelling: Current Practices and Applications. Basel

Committee on Banking Supervision, Regular Publications, Number 49.

Cardenas, J., E. Fruchard, E. Koehler, C. Michel, and I. Thomazeau (1997, October).

VAR: One Step Beyond. Risk 10 (10), 72{75.

Cardenas, J., E. Fruchard, J.-F. Picron, C. Reyes, K. Walters, and W. Yang (1999). Monte

Carlo within a Day: Calculating Intra-Day VAR Using Monte Carlo. Risk 12, 55{60.

Davies, R. (1973). Numerical inversion of a characteristic function. Biometrika 60, 415{

417.

Davies, R. (1980). The distribution of a linear combination of chi-squared random vari-

ables. Applied Statistics 29, 323{333.

DuÆe, D. and N. Garleanu (1999). Risk and Valuation of Collateralized Debt Obligations.

Working Paper, Graduate School of Business, Stanford University.

DuÆe, D. and J. Pan (1997). An Overview of Value at Risk. The Journal of Deriva-

tives 4 (3), 7{49.

DuÆe, D. and K. Singleton (1997). An Econometric Model of the Term Structure of

Interest-Rate Swap Yields. Journal of Finance 52, 1287{1321.

DuÆe, D. and K. Singleton (1999). Modeling Term Structures of Defaultable Bonds. Re-

view of Financial Studies 12, 687{720.

Gil-Pelaez, J. (1951). Note on the Inversion Theorem. Biometrika 38, 481{482.

Glasserman, P. and X. Zhao (1998, December). Fast Greeks on Forward Libor Models.

Working Paper, Department of Statistics, Columbia University.

Jahel, L. E., W. Perraudin, and P. Sellin (1998). Value at Risk for Derivatives. Working

Paper, Department of Economics, Birkbeck College, U.K.

Jamshidian, F. and Y. Zhu (1997). Scenario Simulation: Theory and Methodology. Fi-

nance and Stochastics 1, 43{67.

Kupiec, P. (1998). Stress Testing in a Value at Risk Framework. The Journal of Deriva-

tives, 7{24.

Page, M. and E. Feng (1995, February). Measuring the Risk of a Portfolio of Options on

Several Exchange Rates. Working Paper, Susquehanna Investment Group, Philadel-

phia.

Rouvinez, C. (1997, February). Going Greek with VAR. Risk 10 (2).

20



100 90 80 70 60 50 40 30 20 10

1

2

3

4

5

P
ro
b
a
b
il
it
y
(p
er
ce
n
t) Jump-Di�usion Underlying Returns

Actual
Delta
Delta-Gamma

(a) One-Day Value at Risk
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(b) Two-Week Value at Risk

Figure 2: Values at Risk, as a percentage of the market value of a portfolio of call options on 32 equity
indices, with a multi-variate jump-di�usion return process, and an expected inter-jump time of one quarter.
Half of the total return covariance is contributed by the jump component.
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Figure 3: Two-week VaR as a percentage of initial market value, varying N , for a portfolio of N 1-year
loans. Default intensities are CIR with �� = 3%, � = 0:25, and initial volatility of 100%. Intensities are
correlated, with 20% contributed by a common credit intensity. For case (a), at a common credit event, each
�rm defaults with probability 10%. For case (b), there are no common credit events, but intensities have
the same joint distribution as case (a).
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Figure 4: Two-week value-at-risk with varying number of total �rms. The loan portfolio is of maturity 1
year, with face value $100. There are 320 counterparts, whose default intensity are modeled by CIR with
long-run mean of 300bp, mean-reversion of 0.25, and volatility of 100%. The default intensities are correlated,
with 20% coming from a common market-wise credit event, and given its occurrence, each �rm defaults with
probatility 10%. The default-free interest rate risk is model by a two-factor CIR.
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(a) 2-Week Value at Risk of Loan Portfolio
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(b) 16-Week Value at Risk of Loan Portfolio

Figure 5: Varying the volatility of the default-free short rate, the percentage VaR for a portfolio of 320
loans. Default intensities are CIR with long-run mean �� = 3%, mean-reversion rate � = 0:25, and initial
volatility of 100%. Intensities are 20% common. At a common credit event, each borrower defaults with
10% probability.
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(a) Varying the Probability of Default at Common Events
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(b) Varying the Correlation of Default Intensities

Figure 6: Two-week VaR as a percentage of initial market value, varying (a) the probability p of default
conditional on a common credit event, and (b) the fraction �c of each borrower's default intensity that is
common, for a portfolio of 320 1-year loans. For case (a), �c is �xed at 20%, while, for case (b), p is �xed at
10%. Default intensities are CIR with �� = 3%, � = 0:25, and an initial volatility of 100%.
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(b) Value at Risk of Option Portfolio

Figure 7: Two-weekVaR as a percentage of initial market value, varying the long-run mean default intensity
��, for a portfolio of 320 loans, and for a portfolio of 320 at-the-money options on 32 equity indices (covariances
from RiskMetrics Nov. 20, 1998). Default intensities are CIR, initiated at ��, with mean-reversion 0.25, and
initial volatility of 100%. 20% of intensities are common. At a common credit event, each counterparty
defaults with probability 10%.
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Figure 8: VaR as a percentage of initial market value, varying the long-run mean default intensity ��,
for a portfolio of 320 at-the-money options on 32 equity indices (covariances from RiskMetrics.) Default
intensities are CIR, initiated at ��, with mean-reversion 0.25, and initial volatility of 100%. 20% of intensities
are common. At a common credit event, each counterparty defaults with probability 10%.
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