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Class 1: Introduction
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I’ll write a note for each class. As you will see, these lecture notes are often more conver-

sational, not as formal as a textbook. By allowing myself to be flexible and spontaneous in

writing these notes, I actually get a lot of joy by just writing. Hopefully, they bring some joy

to your reading as well. As of July 2016, I have been at MIT Sloan for 16 years. Teaching

is not something that came naturally to me and I had my ups and downs. But one thing I

know very well by now is that I enjoy teaching the most when I am sharing — knowledge,

excitement, amazement, rational analysis, calm calculation, and quiet appreciation. So if I

was not able to convey these fully in a classroom setting, I hope to use these lecture notes

to get a second chance.

1 What to Expect from This Class?

• This is not going to be a dry or dull class because, as a subject matter, Finance

is just too exciting to be taught in a boring way. Finance and financial markets are in

real time and their ups and downs affect most people’s lives.

Last August, I was in Trout Lake, WA for a retreat. I thought I was as far away from

Wall Street as possible. The location was rural America at its best and my fellow

retreat participants are your typical spiritual type whose resume will not pass the first

round of screening for any Wall Street jobs. Not that they are interested in such a job

anyways. And yet, when the teacher mentioned in passing that the Dow had just lost

1,000 points that morning, there was a wave of agitation in that secluded woods we

were in. “Everything was just fine before he had to mention that!” The woman sitting

in front of me turned around and shared her thoughts during the break. I thought she

was joking and was about to add mine when she murmured to herself, “Now I have to

worry about my retirement money.”

In fact, this was not the first time when exciting financial news was broadcast to me

in a retreat. When the markets went crazy in August 2011 because of the fear of

1



contagion of the European debt crisis, I was in a meditation retreat in Serpentine,

Australia. It was as far away from any known financial centers as you can imagine

and we were not allowed to have Internet access. One day, I was mindfully doing my

walking meditation, and the caretaker of the retreat center literally stopped me in my

tracks and broadcast the news to me. It was only much later did I learn that he was

doing currency speculation on the side and had just lost a lot of borrowed money that

day.

For the famous week of Lehman bankruptcy (Monday) and AIG bailout (Tuesday),

I was again in a meditation retreat. This time, I was not broadcast any news – this

retreat center is known for its strictness. One week later, I was in Boston, digesting

the shock. My conclusion: I should not be going to any retreat anymore. But more

seriously, these examples bring home to us the widespread impact of the financial

markets. It would be a pity to view Finance simply as formulas made up of Greek

letters.

• I’ll teach this class as a professor, not as a professional investor. Finance as an

academic discipline has played and continues to play an important role in how Finance

is practiced in real life. It builds theoretical models and frameworks, through which

the seemingly random events in the financial markets can be analyzed, understood and

quantified. It offers pricing models to facilitate the tremendous innovations in financial

products. More often than not, the most creative ideas and the best trading strategies

arise from research papers written by Finance professors. In the early days of the

70s, such Finance professors were called “academia nuts.” Today, Finance professors

are often heavily sought after and their research papers carefully studied and followed

by practitioners. MIT Sloan is highly respected in Wall Street, not because of the

professional investors we helped to produce, but because of the academic work done by

Paul Samuelson, Franco Modigliani, Bob Merton, Fischer Black, Myron Scholes, and

many other professors.

Over the years, I enjoy many conversations with professional investors. Their anecdotes

are often fun and exciting and one can easily spend an hour talking about a particular

trade or event. Such anecdotes add more texture and color and will be used periodically

in the class. But without a systematic framework, anecdotes remain just anecdotes. I

know that many students are eager to get into the “real world” and shun the classroom

materials as being too academic. Well, let me be honest here. Sooner or later, you are

going to be in the “real world.” Where else? And you will spend your days being buried

in anecdotes and events. What is the hurry? Being in school is a rare opportunity in
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your life to retreat from the world and observe the events from a higher vantage point.

Instead of being so eager to jump into the sea of uncertainty, why not first learn some

basics about navigation?

• This class will be an empirically driven class. Over the years, Finance has become

an empirically relevant discipline. Just imagine the amount of financial data that a

Bloomberg terminal has to endure second by second, or millisecond by millisecond.

When I was a PhD student in the late 1990s, I was given a quota of several gigabytes

on a Sun Sparc workstation and I was thrilled. Today, that several gigabytes can hold

maybe several minutes of stock trading data. How do we make sense of this jungle of

data? Indeed, with the increasing availability of data and computing power, researchers

have started to test the models developed in the 60s and 70s. By late 1990s, empirical

work has replaced theoretical work as a more active research field in Finance. Studying

the financial markets through the combination of data and theory is something I feel

passionate about in my research. I find it exciting to be able to extract information

from the seemingly noisy financial data. Analyzing and quantifying the regularity of

financial risks from uncertain events is something I enjoy doing as a researcher. And

I hope to be able to pass on this passion to you and help you develop these empirical

skills, in addition to teaching you the basics of the financial markets. As such, this

class will be an empirically driven class. We will talk theory, but theory is more of a

guideline, like a map. This class is not about studying the map. It’s about walking

the path.

• All class materials are available on Stellar. There is not a required text book for

this class. You can use Bodie, Kane, and Marcus as a reference. I will post the slides

prior to each class. If you would like to take notes in the class, it might be a good idea

to print a copy and bring it to the classroom. I will do my best to write a companion

note such as this one for each class.

2 What do I Expect from the Students?

• Come to the classroom with a love for the subject matter. When I first realized

that I could in fact make a career out of Finance, I was so exited that I put up a giant

poster of the NYSE’s trading floor in my tiny apartment. At the time, I was living

in Brooklyn Heights and studying at NYU for my PhD in Physics. On my daily walk

home via the Brooklyn Bridge, I often turned around at the end of the bridge to look
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at the lights in lower Manhattan, imagining myself to be in one of the office buildings.

Looking back, it was all so laughable. The NYSE trading floor is definitely not where

the action is taking place and I had never even been close to a Wall Street career. But

that love for the subject matter is what really matters. Over the years, I have read

many of the Finance books written for the popular press, like Capital Ideas by Peter

Bernstein, When Genius Failed by Roger Lowenstein, Liar’s Poker and Flash Boys

by Michael Lewis, �Fool’s Gold by Gillian Tett. Many of the books, I simply cannot

put them down after reading the first few pages. By contract, I have never read one

popular Physics book even though I also have a PhD in Physics. I read Physics books

only to prepare for exams. I often joke with my students that your real passion is

reflected by the books on your night stand.

So if you read Finance books only for exams, maybe this is not your cup of tea. So why

not quit Finance and look for your real passion? You are still young and have most of

your life ahead of you. Why get yourself stuck in a career that you do not love? For

those of you who have to take this class in the meanwhile, I will suggest that you fake

it until you make it, or until the end of the semester, whichever comes first.

• Be mentally present in the classroom. Each morning when you get up, you might

wash yourself, put on some clean clothes, and make yourself presentable. Have you

ever thought about how to prepare your mind? When you eat, you might watch your

diet and be careful with what you put into your mouth. Have you ever thought about

what you feed to your mind? Your mind is the best instrument in your life, and yet,

without proper training, your mind is also the most vulnerable, incapable of fending

off the waves of distractions in this digital age. If you ever wonder why you are not

doing well in the class, in an interview, or in your job, it is possible that you have

not prepared your mind well. Being smart with a high IQ comes mostly from one’s

genetic inheritance. It is over-rated anyways. Instead, be impressed by people in your

life who are mentally present and aware. They carry themselves differently and they

are usually light-hearted, flexible, and happy.

Being mindful is something you can develop. Why not start your practice in the

classroom? Think of the classroom as a sanctuary, away from the digital distractions

that permeate our society. Do you know that some people pay a lot of money to

attend digital detox retreats just to get away from the Internet and Cell connections

for a week? Here, you can do it for free. Just refrain from the Internet for 80 minutes.

Trust me, the rest of the world will be just fine without your digital footprint. They

probably won’t even notice. Give yourself a break and give me your full attention
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during those 80 minutes. It will be a very good training of your mind.

• As a general rule, all electronic devices including laptops and iPad are out.

If you really really need to use them, please talk to me. Please turn off your cell phones,

including the ding dong sound for messages. If your phone is on vibration, please avoid

putting it on hard surfaces. Otherwise, it will be just as noticeable.

• Assignments and exams. There are four group assignments, to be done in groups

with no more than four students. Each assignment must be handed in before 5pm of

the due day. Late assignments will not be accepted. The midterm exam will be given

on Tuesday, October 18. The final exam will be given during the final exam week.

There will be optional recitations held by TAs for the assignments and exams.

• Let’s keep our classroom a friendly environment. This semester, we are going

to spend 80 minutes together each time for 24 times. I would like us to create a friendly

environment for one another. If one student happens to come into the classroom late,

please try not to give him that “how dare you” look. Maybe he has a very good reason

for being late. Who knows? Of course, this does not give you a free license to be late.

You will certainly hear from me if I feel that you’re consistently late. In this classroom,

I would like everyone to feel comfortable enough to speak up, either for clarification

or discussion. The only thing I would discourage in the classroom is students talking

amongst themselves.

3 Modern Finance

After the 2008 financial crisis, I had the following conversation with my sister who works for

a Pharmaceutical company. “Other than making money for themselves, what do people on

Wall Street really do for the society?” She asked and I was quiet. “You know, everyday I go

to work, I know that I am helping develop a drug that might help relieve people’s pain, and

I feel good about it. What about people on Wall Street?” She continued and I remained

quiet. But inside, I had this huge question mark hanging over my head. To be honest, I

have never fully resolved this doubt for myself. In 2008, the stock market dropped by 37%,

and my passion for Finance was cut by just as much, if not more. What disappointed me

was not the financial performance but the human performance in the financial industry.

In writing up the following account on the development of Modern Finance, I hope to be

able to respond, at least partially, to my sister’s question. Assuming that you will be part

of the Wall Street in a few years, this should be a relevant question for you as well.
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• Markowitz (1952) The beginning of Modern Finance can be dated by Markowitz (1952).

As described in vivid details by Peter Bernstein in “Capital Ideas,” Harry Markowitz

was a 25-year-old graduate student at Chicago, working on his PhD thesis. In 1990,

he was awarded a Nobel Prize for his “pioneering work in the theory of financial eco-

nomics.”

From the vantage point of today’s knowledge base, the paper’s insight is obvious and

well understood by most people. First, Markowitz made the observation that, for

any mean-variance investors, there is a risk and return tradeoff. Then, as any good

researcher would do, he asked, given this tradeoff, what is this investor’s optimal

allocation to risk? “The answers Markowitz developed to these questions ultimately

transformed the practice of investment management beyond recognition. They put

some sense and some system into the haphazard manner in which most investors were

assembling portfolios. Moreover, they formed the foundation for all subsequent theories

on how financial markets work, how risk can be quantified, and even how corporations

should finance themselves.”1

Against the backdrop of a single-minded focus on return at his time, Markowitz made

the key insight that risk is central to the whole process of investing. In this day and

age, any statement contrary to that observation is laughable. Risk is the single most

important factor in Finance. No risk, no Finance. Financial markets, along with the

tremendous innovations since 1970s, are vehicles designed to help us deal with risk.

Well, this story does tell us how far Finance has evolved over the past half-century,

with this one single insight made in the arcane world of academics by someone who

had no direct interest or involvement in the stock market.

• Tobin (1958) Markowitz’s insight was not recognized right away. After its initial

publication in the Journal of Finance, the paper remained in obscurity for nearly ten

years, attracting fewer than twenty citations in the academic literature. One of these

citations was by James Tobin, a 1981 Nobel Prize winner. Tobin (1958) gave us the

elegant result of two-fund separation. For any mean-variance investors, the optimal

allocation consists of only two funds: one risky and one riskless. Regardless of their

varying levels of risk aversion, all mean-variance investors hold exactly the same risky

portfolio. The more risk-adverse investor allocates a smaller percentage of his wealth

to the risky portfolio, but the composition of the his risky portfolio is exactly the same

as everyone else.

1Chapter 2 of “Capital Ideas,” by Peter Bernstein.
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This result gives us the striking insight that instead of getting lost in the sea of individ-

ual stocks, one should pay attention to this optimal risky portfolio. In today’s world,

with the increasing popularity of Index funds and ETFs, this idea seems quite obvious.

But it was not until 1971, when the first Index Fund was created by John McQuown

and his colleagues at Wells Fargo. And it was not until 1975, when the first Index

Mutual Fund was created by John Bogle. This fund, now called the Vanguard 500

Index Fund, started off with just $11.3 million, a 93% shortfall from the initial target

of $150 million. By 2014, over $2 trillion is invested in index mutual funds, accounting

for 20% of the total net assets of equity mutual funds. From 2007 through 2014, index

domestic equity mutual funds and ETFs received $1 trillion in net flows while actively

managed domestic equity mutual funds experienced a net outflow of $659 billion.2

Again, the influence from the academic world is unmistakable. If you read the stories

surrounding the creations of these index funds, you will see that these pioneers in in-

dustry were often influenced at a personal level by a few professors. Their convictions

were often strengthened by the intellectual power behind the academic research. John

Bogle writes, “Nobel laureate economist Paul Samuelson played a major role in precip-

itating the index fund’s creation... Samuelson was much more forceful, strengthening

my backbone for the hard task that lay ahead: taking on the industry establishment.

His article ‘Challenge to Judgment’ caught me at the perfect moment. Published in

the inaugural edition of the Journal of Portfolio Management in the autumn of 1974,

it pleaded that some large foundation set up an in-house portfolio that tracks the S&P

500 Index ... .”3

• Sharpe (1964) If you ask me to pick one model in Finance that has the biggest and

the longest-lasting impact, it will be the CAPM. Following the stream of Markowitz

(1952), Tobin (1958), and Sharpe (1964), one has the reaction that this sequence of

intellectual development is so natural that it is inevitable. But the last step in this

“Investment Trilogy” is truly a giant leap. In 1990, Bill Sharpe was awarded a Nobel

Prize for his “pioneering work in the theory of financial economics.”

In Markowitz (1952), the attention is on an individual investor. How much he should

include a stock in his portfolio is determined by this stock’s contribution to the risk

(variance) and return (mean) of his portfolio. As such, what matters are the correla-

tions between this stock and all other existing stocks in the portfolio. In the CAPM,

the attention is on the entire economy. If every investor behaves optimally according

2The 2015 Fact Book by Investment Company Institute (ICI). Posted on Stellar under Readings.
3“How the Index Fund Was Born,” by John C. Bogle, Wall Street Journal, 2011.
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to the calculation in Markowitz (1952), what happens to the entire market when you

aggregate this optimal individual behavior? Collectively, the markets should also clear:

borrowing and lending in the riskfree market must net out and the entire wealth of

the economy must be 100% allocated to the risky portfolio. In the academic language,

the CAPM is a result of taking the partial-equilibrium model of Markowitz (1952) to

equilibrium, a beautiful insight from Economics.

In equilibrium, the optimal risky portfolio in Tobin (1958) becomes the market portfolio

– the single most important factor in the economy. In such an economy, you no

longer have to keep track of the correlations of one stock with respect to all other

stocks. What matters is a stock’s correlation with the market portfolio. Hence βi =

cov(Ri, Rm)/var(Rm). In this way, CAPM further clarifies the concept of risk. In

particular, risk is not measured by the variance of an individual stock. For two stocks

with the same variance, the one that comoves a lot with the market portfolio is the

more risky one. Why? Because risk that is not correlated with the market portfolio

can be diversified, but there is no way to diversify away the risk in the market portfolio.

This concept of systematic risk is by far the most important intellectual development

in Finance.

After singling out the systematic risk, the equilibrium analysis gives us the elegant

pricing result. Simply put, you get paid for bearing the risk that matters:

E(Ri)− rf = βi (E(Rm)− rf) .

If a stock contains purely idiosyncratic risk with βi = 0, then you do not get paid for

bearing this risk and the expected return is the same as the riskfree rate: E(Ri) = rf .

• Black and Scholes (1973) In the 1970s, Fischer Black, Myron Scholes and Bob

Merton did their pioneering work on Continuous-Time Finance at MIT Sloan, on the

second floor of E52, I was told. In 1997, Merton and Scholes were awarded a Nobel

Prize for “for a new method to determine the value of derivatives.”

The impact of this work is such that taking it out would be like switching off a bright

light and the world of Finance would be a dim field due to its absence. Many of the

financial markets we are going to study in this course would not have been created

without this work. Even if such markets were in existence, people in these markets

would be having a hard time figuring out how to price the product or hedge the risk.

Going back to my sister’s question, “What does Finance do for the society?” Finance
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helps people deal with risk. No risk, no Finance. Markowitz (1952) gives us a frame-

work to quantify the risk and return tradeoff. Sharpe (1964) points out that not all

risk is equal and only systematic risk should be compensated. The work by Black,

Merton, and Scholes takes this business of risk to a whole new dimension. When you

purchase a stock, you get the entire package of risk that is inherent in this stock. In

the language of academic Finance, you have a linear position and you own the entire

distribution of the risk, both up and down. What if you don’t want the entire distri-

bution? What if you are interested in taking only some of the risk but not all? The

financial innovation inspired by the work of Black, Merton, and Scholes is all about

giving you more flexibility in dealing with risk.

Every summer, I go back to Shanghai to spend a month and half with my parents. In

May 2015, before I was able to purchase the air ticket, I had to wait for a test result

from my doctor. But it was getting close to the departure date and I was anxious that

the airfare might jump up. So what did United Air offer me in this situation? A fare

lock. I paid $7.99 to have a 7-day option to purchase the ticket at the prevailing price

on that day regardless of how the price might fluctuate over the following week. For

a 72-hour lock, they charged $5.99. As I was first writing this lecture note in August

2015, just out of curiosity, I checked the price again. The 7-day lock cost $11.99. So

I inferred that airfare must have turned more volatile from May to August 2015. As

a matter of fact, I was tempted to write a code to automatically collect the fare lock

price once a day so as to back out the pricing model. Is the society better because of

this product? At least I was able to wait for my test result without the added anxiety

about airfare fluctuations.

Sure, this is not a financial product but the underlying message is the same. In the

presence of risk, it helps if you could give people more flexibility in the kind of risk

they take. This example is simpler and easier to communicate. But financial products

serve the same purpose for individuals and corporations. So why are the general public

so negative about financial innovation? The former Fed Chairman Paul Volcker was

quoted in saying that the most important financial innovation that he has seen in the

past 20 years is the automatic teller machine. He then added that this is more of a

mechanical innovation than a financial one. The practices of some financial institutions

and individuals deserve 100% of the criticism. There is not question about it. But,

in my personal opinion, the criticism piled up on the innovation itself is perhaps mis-

placed.
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4 Financial Markets

I grew up in Shanghai with very little knowledge about stocks or bonds. It’s possible that

these names had never even showed up in my vocabulary. At that time in China, people

read Philosophy books and looked up to scientists. My dream was to become Marie Curie.

Dealing with money was just beneath me. In November 1990, several months after I left

Shanghai for the US, the Shanghai Stock Exchange was re-established. The rest, as they

say, is history. It is probably not an exaggeration to say that a one-day coverage of China in

the Wall Street Journal today equals that of a year back in 1990. In any case, when I finally

concluded that Physics and myself had no future together, I was already in New York. A

friend told me about Finance and recommended me to read Bernstein’s book. For someone

with absolutely no knowledge about Finance, it was truly an eye-opener. Let me borrow his

words in describing the financial markets:

Financial markets are among the most dazzling creations of the modern world.

Popular histories of financial markets from the City of London to Wall Street

tell the story of panics, robber barons, crooks, and rags-to-riches tycoons. But

such colorful tales give little hint of the seriousness of the business that goes on

in those markets. John Maynard Keynes once remarked that the stock market is

little more than a beauty contest and a curse to capitalism. And yet no nation

that has abandoned socialism for capitalism considers the job complete until it

has a functioning financial market.

Simply put, Wall Street shapes Main Street. It transforms factories, department

stores, banking assets, film producers, machinery, soft-drink bottlers, and power

lines into something that can be easily convertible into money and into vehicles

for diversifying risks. It converts such entities into assets that you can trade with

anonymous buyers or sellers. It makes hard assets liquid, and it puts a price on

those assets that promises that they will be put to their most productive uses.

Wall Street also changes the character of the assets themselves. It has never

been a place where people merely exchange money for stocks, bonds, and mort-

gages. Wall Street is a focal point where individuals, businesses, and even entire

economies anticipate the future. The daily movements of security prices reveal

how confident people are in their expectations, what time horizons they envisage,

and what hopes and fears they are communicating to one another.4

4Introduction of “Capital Ideas,” by Peter Bernstein.
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Over the next few months, I hope to be able to teach financial markets with this sense of

awe, which I felt when I first learned about them. At a personal level, I am not too involved

with the markets. Whatever money I have, I put them in index funds and wish to see them

again after retirement in a few years. Buy-and-forget pretty much sums up my investment

strategy. And yet, I follow the development of the markets with great interest. I view it as

a stage with great drama. There are uncertainty, human emotion, and, surprisingly, logic,

rationality and regularity. In this course, we will cover the three key markets: equity, fixed-

income, and derivatives. More specifically, we will study in depth the US equity markets, the

equity index options, US Treasury bonds, corporate bonds, interest-rate swaps, and credit

derivatives. If time permits, we will also cover currency. In the next section, I’ll explain the

topics to be covered in more detail.

5 Topics to be Covered

As an academic discipline, what Finance can offer to financial markets is a “cool head.” A

roller-coaster ride might be exciting initially, but after a few ups and downs, anyone with a

sensible mind would ask, is there more to it? Likewise, when being buried deeply in the ups

and downs of financial markets, most of us welcome the opportunity to extricate ourselves

from the noise and busyness to get a better view. We are often told to learn from our own

experiences in life. Empirical Asset Pricing is about learning from the experiences in the

financial markets. For this, we have a list of quantitative tools and models at our disposal,

which have been developed and widely used. By now, these tools and models have become

part of the language on Wall Street. Warren Buffett might have the luxury of not knowing

them or even making fun of them. But before you become him, you probably need to know.

In any case, these are fun tools and models to learn, especially when you apply them to real

financial data.

Let me list the topics to be covered over this semester. I’ve put a class number to each

topic so as to have some discipline. But once in a while I might have to modify our schedule.

By the end of the semester, if we somehow end up with extra time, I hope to be able to

cover market micro-structure with topics like price discovery, information trading, market

making, and high-frequency trading.

1. Introduction: Class 1.

2. Equity:

(a) Class 2. Alpha and Beta.
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(b) Classes 3 & 4. Equity in the Cross-Section, Fama-French Three-Factor Model.

(c) Classes 5 & 6. Other Cross-Sectional Trading Strategies and Currency Carry

Trades.

(d) Class 7. Equity in the Time-Series, Time-Varying Expected Returns.

(e) Classes 8 & 9. Equity in the Time-Series, Time-Varying Volatility.

3. Option:

(a) Class 10. Option: Introduction and the Black-Scholes Model.

(b) Class 11. MidTerm Exam. (covers Classes 1 to 9.)

(c) Class 12 & 13. Option: Model to Data, Volatility Smirks and Tail Risk.

(d) Class 14. Option: Beyond the Black-Scholes Model.

4. Special Topic:

(a) Classes 15 & 16. Risk Management.

5. Fixed Income:

(a) Class 17. Bond: Yield and Duration.

(b) Class 18. Bond: Yield Curve.

(c) Class 19. Bond: Term Structure Models.

(d) Class 20. Bond: Interest Rate Swaps.

(e) Class 21. Credit: Corporate Bonds and the Merton Model.

(f) Class 22. Credit: Credit Default Swaps and Other Models of Default.

6. Portfolio Management:

(a) Class 23. The Process of Portfolio Management and Optimal Risky Portfolio.

(b) Class 24. The Black-Litterman Asset Allocation Model.
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6 Quantifying Risk

A professor went to a Zen master, inquiring about Zen. The master invited him to sit down

and have a cup of tea. When the tea kettle arrived, the master started to pour hot water into

the cup. Soon, the cup was full, but the master kept on pouring. The professor exclaimed,

“Master, master, the cup is full. It cannot take any more water!” The master responded,

“That’s right, Professor. Like this cup, your mind is full of your own views and opinions.

How can I teach you Zen?”

So whatever opinion and knowledge you might have about what I am going to teach,

please throw them out and keep your mind open. You might be able to do a histogram

with eyes closed. You might know the pdf and cdf of a normal distribution inside out. Still,

your understanding might be lacking. Going through the motions is easy. Understanding

the insight takes more attention, patience, and reflection. Just like anything in life, it is the

insight that really matters. Knowledge without insight is dead knowledge.

6.1 Data

To understand what uncertainty means, let’s start with the past experiences of uncertainty

in the US stock market. The time-series plotted in Figure 1 contains the annual stock returns

in the US markets from 1927 through 2015. It uses the CRSP value-weighted index, which

includes all stocks traded on the three major US exchanges (NYSE, AMEX, and NASDAQ).

It is an index preferred by academics. The reported returns are calculated from year-end

to year-end, including both capital gains and distributions (i.e., dividends). Another index

that would work equally well to represent the overall market is the S&P 500 index. In other

words, from a value-weighted perspective, the entire stock market can be very well captured

by those 500 large-cap stocks included in the S&P 500 index.

Later in this class, we will sample the data at a daily frequency, and things will look

very different. I am using the annual sampling frequency as an example here because it is

a widely used horizon. (Also, it keeps our example simple with relatively small amount of

data points.) In assessing the performance of a stock or a managed portfolio, the average

annual return is often the first benchmark. As such, you should be very comfortable with

comparing performance numbers at this frequency.

As a first step, study the plot, follow the ups and downs, absorb the information at an

intuitive level. Be curious, and ask yourself questions. This is your random walk down wall

street. For example, as an exam question, I could ask you, in the history of the US stock

market, what were the worst one-year returns? When did they happen? I might not expect
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Figure 1: Time-series of annual stock market returns from 1927 through 2015. Returns are
calculated using the CRSP-value weighted index, which includes all stocks traded on the US
exchanges. Source: Prof. Ken French’s website.
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you to be so accurate as to tell me -44% in 1931 or -37% in 2008. But I would expect you to

know that it was closer to -40% than -20% or -60%. I also would expect you to know about

the great depression in the 1930s and the more recent crisis in 2008. Moreover, if I ask you,

do you consider a 20% annual return to be normal in the US stock market? You should be

ready to articulate your response with the help of the time-series data. Or suppose I tell

you that the Shanghai Stock Exchange (SSE) composite index was at 2,115.98 at the end of

2013 and increased to 3,234.68 at end end of 2014. Using the US experiences, how unusual

is such an annual performance? These are not hard questions once you really get yourself

into the data.

Don’t force yourself to memorize these numbers. You will soon forget. What is the point?

You need to be interested. You don’t need to force yourself to memorize your hometown,

your good friends, or your family, do you? I once read someone describing how it was like

working with Robert Rubin, the former Treasury Secretary and a long-time executive in

Goldman Sachs. I don’t remember the exact description but the impression I had was that,

when presented with data and plots, this guy would just dive into them with his pencil and

mind. Suppose you are presented with a plot like Figure 1 for the first time. And you react

with folded arms and the look of “what is the big deal” and “please impress me,” then you

probably are not going to enjoy Finance as a profession.

Finally, if we look more closely, we will also notice that the large movements are related

to the economic conditions. Using the business cycles dated by the NBER, we can see that

the largest five negative returns all happened during recessions. Both 1931 (-44%) and 1930

(-29%) fell in the middle of the severe recession from August 1929 to March 1933; 2008

(-37%) was in the recession from December 2007 to June 2009; 1937 (-35%) in the recession

from May 1937 to June 1938; and 1974 (-28%) in the recession from November 1973 to March

1975.5 On paper, these events might be distant and without any real connection. But if you

had to live through any of these crises, the impact would be totally different. For example,

Warren Buffett was born in August 1930, ten months after the great crash of 1929 and right

in the midst of the great depression. His dad, being a stock broker for the Union State Bank,

was having trouble feeding the family.6 Clearly, an upbringing like this helps shape one’s

investment philosophy and, more broadly, one’s attitude toward life. A trader/investor who

has lived through a crisis like 2008 would look upon the financial markets with a new set

of eyes. So if you would like to become a great investor, try to make a closer connection to

the historical events, through books, newspapers, and accounts by older and wiser people.

Make these events real for yourself and they would be a treasure sitting in the background,

5For a complete list of the NBER business cycles, please go to http://www.nber.org/cycles.html.
6See “The Snowball: Warren Buffett and the Business of Life,” by Alice Schroeder.
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emerging when the moment calls for them. After all, life is an endless cycle of ups and

downs. So are the financial markets.

6.2 Histogram
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Figure 2: Histogram of stock market returns from 1927 through 2015.

A histogram is like a CT scan on financial returns. In a CT scan, all parts of an image

are captured at the same time. In a histogram, however, the image is a compilation of data

points collected over a long time span — in some cases, many decades. This is because the

financial markets, especially the equity markets, are known to be volatile. So with a few

years of data, all you see is noise; but with years of repetition, the noise gets washes out

and the valuable signal emerges with more precision. So doing a histogram is like pointing a

camera at the stock market for a really really long time. In our current example, the camera

has been on for 89 years from 1927 to 2015.

Comparing Figures 1 and 2, you notice that a histogram transforms the dynamic time-

series data into a static one. In creating the histogram in Figure 2, we do not care at all
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about the sequence of the events – which data point happens first and which one happens

later. All we need are the outcomes: the 89 data points, i.e., 89 returns. We line up the

returns from the worst (-44.04%) to the best (57.35%), chop the entire interval evenly into

N bins (N=10 in our example), with each bin the size of (0.5735+0.4404)/10=0.1014. We

then count how many data points (i.e., returns) fall into each bin. So that’s a histogram.

Sounds really easy, and it is indeed very easy. What is the big deal?

Conceptually, the transformation from Figure 1 to Figure 2 is a significant one. It changes

how we view the data. In Figure 1, you are bombarded with uncertainty. In Figure 2, we

step out of it and begin to deal with it, by developing a regularity about the uncertainty.

In order to do so, however, we have to make some non-trivial assumptions. In creating the

histogram in Figure 2, the underlying assumption is that every year from 1927 to 2015, the

uncertainty in the stock market is exactly the same. In other words, sitting in the background

is a distribution machine (like the wizard of oz), which spits out returns with a regularity

(i.e., likelihood) over a certain range. Every year, this distribution gives you one realization.

You record the outcome. One year later, it totally forgets what it gave you the year before

and draws from that identical distribution one more time and give you a new realization.

You dutifully record the outcome. After 89 years of repetition, you tell yourself, I should

be smart about it. After all, it is going to draw from that same distribution machine again.

Let me use the 89 data points I have recorded so far to paint a picture of that distribution.

Out comes the histogram in Figure 2. Now, instead of swimming in the sea of uncertainty

like in Figure 1, you are looking at the uncertainty from the lens of Figure 2. The future is

still uncertain, but you are armed with a tool to deal with the future uncertainty. You know

what to expect.

Of course, this is only true if the world functions in this forgetful, and yet consistent way.

In Statistics, this underlying assumption is called iid: stock returns are independent (for-

getful) and identically (consistent) distributed. It is exactly because of this iid assumption,

we are willing to throw away the sequencing information in doing the histogram and focus

only on the outcomes. Otherwise, the analysis will be done differently. Suppose that the

real world is not iid. Instead, one year of good performance is more likely to be followed by

another year of good performance. Then for sure, we will not be throwing away the sequenc-

ing information. Later in the semester, we will discuss this possibility of predictive returns.

Throughout the semester, you will notice that in Finance we often make strong assump-

tions first, and examine the markets under these assumptions. Then we realize that perhaps

the initial assumptions are too strong. We then relax the assumptions and re-examine the

markets. This is the typical process of an empirical investigation. Strong assumptions are
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never the problem, but making financial decisions under some assumptions and yet not being

aware of them is often the problem.

At this point, let me summarize the things we know and the things we are not sure

about. Let’s suppose that now is year t and let’s use R̃t+1 to denote the stock returns over

the next year. Notice that R̃t+1 a random variable. I put a tilde on top of it to remind you

that it is not a number. Associated with this random variable is the histogram in Figure 2,

which tells you all of the possible scenarios and their likelihood. This is what we know about

about R̃t+1: the future outcome will be drawn from a distribution centered around a value,

which we call the expected stock return E(R̃t+1). Taking the average of the 89 data points,

we say that E(R̃t+1) can be approximated by the historical average of 12%. The eventual

outcome of R̃t+1 remains uncertain. A year later, we will get to see its realization. It could

be something like 2008 (-37%), or it could be something like 1954 (50%). Ex ante (i.e.,

before the fact), we can tell you the probability of such outcomes. But ex post, what will

eventually happen? We are not sure. This is the uncertainty faced by everyone, no matter

how powerful that person might be. Maybe it is to express the frustration over the lack of

knowing, we call this uncertainty risk.

The limitation of such an empirical exercise of learning from the history is the history

itself. If a certain kind of risk has not yet happened, then it will not be part of our histogram.

For example, before the S&P 500 index dropped by -20% over just one day on October

19,1987, this kind of one-day event was not in anyone’s histogram. Now that it happened,

it adds to the left tail of the daily distribution and our “model” is updated.

6.3 Probability Density Function (PDF)

The histogram in Figure 2 tells us how often an event falls within a certain bin. It is not a

probability distribution yet because a probability distribution needs to add up to one. From

Figure 2 to Figure 3, the shape of the distribution remains exactly the same, but the labeling

of the y-axis has changed from “number of occurrences” to “probability density.” If you go

over the Matlab code attached in the end of this note, you will see that I scaled the entire

plot by a constant: 0.1014×89, where 0.1014 is the width of the bin and 89 is the total

number of events. This way, the entire area of the blue bars sums up to one. The probability

of all likely events adds up to one. A histogram now becomes a probability density function.

We call it an empirical pdf because it builds from the data. Now let’s introduce a model to

mimic this empirical distribution.

Carrying around an empirical distribution is cumbersome. The next step is to introduce

a well behaved analytic distribution to approximate it. This is where normal distribution
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Figure 3: Probability density function, model vs. data.
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comes in. You will see that normal distribution plays a very important role in Finance.

Let’s start with the probability density function of a normal distribution with mean μ and

volatility σ:

f(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2

If this looks discouraging, don’t be. Because you can do normpdf(x,μ,σ) in Matlab and

out comes the value of f(x). In Excel, there is something that is just as easy. Somehow,

computers make math more accessible. Those people who are good at equations suddenly

become less attractive. In any case, this is how I plotted the red line in Figure 3. I first

calculated the mean (approximately 12%) and standard deviation (approximately 20%) of

my 89 data points. Then, for each value in the of stock returns, say -44%, I plugged in

normpdf(-0.44,0.12,0.20) to get its pdf value, without having to remind myself the exact

expression of a Gaussian function.7

Let’s now formalize what we have done so far. Out of the historical experiences of 89

returns, we are able to develop the following regularity about the risk in the stock market.

Let R̃t+1 be the uncertain return over the next year. Learning from the history, we know

that its expected value is μ = 12% and its standard deviation (i.e., volatility) is σ = 20%.

Moreover, we know that its distribution can be approximated by f(x). All of this can be

summarized by the following model of stock returns:

R̃t+1 = μ+ σ ε̃t+1

where ε̃t+1 is a standard normal distribution: E(ε) = 0 and std(ε) = 1.

We do not have time to formally test the model, but from Figure 3, it seems to be a

reasonable approximation of the data. Not perfect, but reasonable and useful, as you will

see. But as useful as a model might be, you should always use it with extreme caution. The

limitation of a model is two fold. First, it builds from the empirical distribution, which itself

is limited by our experiences. Second, it is an analytic approximation of the much richer

reality. Some of the financial crises happened exactly when investors become too comfortable

with their models in their pricing, hedging, and trading.
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Figure 4: Cumulative distribution function, model vs. data.

6.4 Cumulative Distribution Function (CDF)

In order to plot the blue line in Figure 4, I line up the 89 data points from left to right, from

the most negative to the most positive. So -44% in 1931 is my leftmost data point, with

-37% in 2008 standing next to it, and 57% in 1933 is my rightmost data point. There are 89

points in total. So the values of the empirical CDF are:

Prob(R̃t+1 ≤ −0.44) = 1/89

Prob(R̃t+1 ≤ −0.37) = 2/89

...

Prob(R̃t+1 ≤ 0.57) = 89/89

That is how the blue line is constructed. Isn’t it simple? Now we have an empirical CDF.

7To be more precise, I use normpdf(-0.44,mean(RM/100),std(RM/100), where RM is the time-series
of the 89 market returns in percentage and mean and std are the Matlab functions to calculate mean and
standard deviation. See the Matlab code in the Appendix.
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The CDF for the model is just as simple. Mathematically, for any value x, it is

Prob
(
R̃t+1 ≤ x

)
=

∫ x

−∞
f(z) dz ,

which might look intimidating until you realize that you can use Matlab and do:

Prob
(
R̃t+1 ≤ x

)
= normcdf(x, μ, σ) .

This is how I plotted the red line, I plugged all 89 returns into normcdf with μ = 12% and

σ = 20%.8 That is why the red line is not as smooth as a textbook example: the 89 data

points are not evenly spaced. For example, to move from -44% to -37% is a pretty large gap.

In my program, I do normcdf on these two returns and ask Matlab to link the two points

with a straight line. To get a smoother line, I could have asked the normcdf to evaluate

many more returns in between -44% and -37% and then connect the points. This is the

advantage of a model over data. The data only gives us two experiences, -44% and -37%,

and nothing in between. But the model can extrapolate to places that experiences did not

take us. Needless to day, this is always the danger of a model, especially when we mistake

the model as the reality.

6.5 Models are Limited

The normal distribution model is a corner stone of Finance. In the CAPM, we care only

about the first two moments (mean and variance) of stock returns. Implicitly, we are treating

returns as a normal distribution with μ and σ. In the Black-Scholes model, this assumption

of normal distribution is explicitly given. That is why in the pricing formula, you see normcdf

here and there. This model offers simplicity and elegance, a great vehicle to carry us far.

But once in a while, it carries us too far.

Let’s take a look at an example when this model fails. Figure 5 plots the daily returns of

the S&P 500 index. Comparing with the time-series in Figure 1, we have more data points

and the returns fluctuate within a much narrower band. Over an year, the volatility is about

20%. Over a day, it is about 1%.

Using the daily data, Figure 6 plots the CDF for the left and right tails. The red line

is the CDF produced by normal distribution, with the same mean and variance as the

empirical distribution, and the blue and green lines are the CDFs produced by the historical

8Again, for illustration purpose, I am using 12% and 20% as the sample mean and standard deviation.
In practice, the actual sample mean and standard deviation for the 89 data points are used.
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Figure 5: Time-series of daily returns on the S&P 500 index from 1962 through 2010. Source:
Wharton Research Data Service (WRDS).

experiences. As it is evident in the plots, both the left and right tails are much thicker in the

data. If your financial instruments are very sensitive to the tails (e.g., a far out-of-the-money

put option), then this difference would really matter. In fact, this is one of the first places

where the Black-Scholes model fails to perform.
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Figure 6: Cumulative distribution function using daily returns, model vs. data. The x-
axis measures the daily standard deviation moves: daily returns normalized by the sample
standard deviation. The y-axis measures the cumulative probability: 0.01 is 1%. The blue
line is the empirical CDF generated by daily returns from 1962 through 2015. The green
line is the empirical CDF generated by daily returns from 1962 through 2006. The red line
is the analytic CDF generated by a normal distribution with the same mean and standard
deviation as the entire sample (1962-2015).
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A Matlab Code

Code 1: Histogram.m

load FF_Factors_Annual.txt; % Posted on Stellar under Data. Orignally

from Prof. Ken French’s website.

Data=FF_Factors_Annual; %Data Content: year, Mkt−RF, SMB, HML, RF

YR=Data(:,1); RF=Data(:,end); RM=Data(:,2)+RF; %RM=Mkt, RF=riskfree

Time=datenum([YR 12*ones(length(YR),1) 31*ones(length(YR),1)]); %I always

prefer to work with the Matlab time. All returns are realized

at the year end.

% Plot the time−series data

figure(1); clf;

h=plot(Time,RM,’bx-’,’LineWidth’,2);

datetick(’x’,’yyyy’);

title(’\bf Annual Stock Returns (in Percent) from 1927 through 2015’);

hold on;

% List the worst five years

[tmp,Index]=sort(RM); Worst=[]; Best=[];

for i=1:5,

Worst=[Worst; [year(Time(Index(i))),round(RM(Index(i)))]];

p=text(Time(Index(i))*1.0005,RM(Index(i)),[’\bf’ num2str(round(RM(Index(i)

))) ’%’]);

set(p,’Color’,’red’);

plot(Time(Index(i)),RM(Index(i)),’ro’,’LineWidth’,2);

end

% List the best seven years

for i=0:6,

Best=[Best; [year(Time(Index(end-i))),round(RM(Index(end-i)))]];

p=text(Time(Index(end-i))*1.0005,RM(Index(end-i)),[’\bf ’ num2str(round(RM

(Index(end-i)))) ’%’]);

darkgreen=[0 0.35 0];

set(p,’Color’,darkgreen);

plot(Time(Index(end-i)),RM(Index(end-i)),’Marker’,’o’,’Color’,darkgreen,’

LineWidth’,2);

end
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hold off;

axis([datenum([1925 12 31]) datenum([2016 12 31]) -50 70]);

% Histogram

figure(2)

[Occurence Scenario]=hist(RM);

bar(Scenario,Occurence);

axis([-60 80 0 18])

xlabel(’\bf Scenarios of Possible Annual Returns’);

ylabel(’\bf Number of Occurrence’);

title(’\bf Learning from History: Possible Events and Their Occurence’);

hold on;

% Mark the left tail

text(-55,9,[’\bf ’ num2str(Worst(1,1)) ’: ’ num2str(Worst(1,2)) ’%’]);

text(-55,8,[’\bf ’ num2str(Worst(2,1)) ’: ’ num2str(Worst(2,2)) ’%’]);

text(-55,7,[’\bf ’ num2str(Worst(3,1)) ’: ’ num2str(Worst(3,2)) ’%’]);;

arrow([Scenario(1) 6.5],[Scenario(1) 3]);

text(-37,5,[’\bf ’ num2str(Worst(4,1)) ’: ’ num2str(Worst(4,2)) ’%’]);

text(-37,4,[’\bf ’ num2str(Worst(5,1)) ’: ’ num2str(Worst(5,2)) ’%’]);

arrow([Scenario(2) 3.5],[Scenario(2) 2]);

% Mark the right tail

text(50,5,[’\bf ’ num2str(Best(1,1)) ’: ’ num2str(Best(1,2)) ’%’]);

text(50,4,[’\bf ’ num2str(Best(2,1)) ’: ’ num2str(Best(2,2)) ’%’]);

arrow([Scenario(end) 3.5],[Scenario(end) 2]);

text(40,11,[’\bf ’ num2str(Best(3,1)) ’: ’ num2str(Best(3,2)) ’%’]);

text(40,10,[’\bf ’ num2str(Best(4,1)) ’: ’ num2str(Best(4,2)) ’%’]);

text(40,9,[’\bf ’ num2str(Best(5,1)) ’: ’ num2str(Best(5,2)) ’%’]);

text(40,8,[’\bf ’ num2str(Best(6,1)) ’: ’ num2str(Best(6,2)) ’%’]);

text(40,7,[’\bf ’ num2str(Best(7,1)) ’: ’ num2str(Best(7,2)) ’%’]);

arrow([Scenario(end-1) 6.5],[Scenario(end-1) 5]);

hold off

% Plot the distribution, pdf

figure(3); clf;

D_X=mean(diff(Scenario/100)); %Scenario and RM are in return space. To

be careful, I always do the math in decimal.
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N_norm=D_X*sum(Occurence);

bar(Scenario,Occurence/N_norm); %rescale the number of occurence to get

probability density.

hold on;

PDF=normpdf(-0.60:0.01:0.80,mean(RM/100),std(RM/100)); %probability

density function.

h=plot(-60:1:80,PDF,’r-’,’LineWidth’,2);

hold off

V=axis; axis([-60 80 V(3:4)]);

text(-38,1.4,’\bf Normal’,’Color’,’r’);

text(-38,1.3,’\bf Distribution’,’Color’,’r’);

text(-38,1.2,’\bf (Model)’,’Color’,’r’)

arrow([-14.5 1.4],[-4.5 1.4]);

text(45,0.8,’\bf Empirical’,’Color’,’b’);

text(45,0.7,’\bf Distribution’,’Color’,’b’);

text(50,0.6,’\bf (Data)’,’Color’,’b’)

arrow([45 0.8],[35 0.8]);

text(-55,1.8,[’\bf mean=’ num2str(round(mean(RM))) ’%’]);

text(-55,1.7,[’\bf std=’ num2str(round(std(RM))) ’%’]);

xlabel(’\bf Scenarios of Possible Annual Returns’);

ylabel(’\bf Probability Density’);

title(’\bf Probability Density Function (PDF): Model vs. Data’);

% Plot the distribution, cdf

figure(4); clf;

mean_R=mean(RM/100); std_R=std(RM/100); %to be safe, always do my math

in decimal.

sorted_RM=sort(RM); Y_vec=cumsum(ones(length(RM),1))/length(RM);

Y_norm=normcdf((sorted_RM/100-mean_R)/std_R); %again, do my math in

decimal.

plot(sorted_RM,Y_vec,’b-x’,sorted_RM,Y_norm,’r-’,’LineWidth’,2);

hold on

title(’\bf Cumulative Distribution Function (CDF): Model vs. Data’);

ylabel(’\bf Prob (R < x )’);

xlabel(’\bf x’);

% Mark the left tail

text(-55,0.15,[’\bf ’ num2str(Worst(1,1)) ’: ’ num2str(Worst(1,2)) ’%’]);

arrow([sorted_RM(1) 0.1],[sorted_RM(1) 0.02]);
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plot(sorted_RM(1),Y_vec(1),’o’,’Color’,darkgreen,’LineWidth’,2);

% Mark the right tail

text(46,0.85,[’\bf ’ num2str(Best(1,1)) ’: ’ num2str(Best(1,2)) ’%’]);

arrow([sorted_RM(end) 0.87],[sorted_RM(end) 0.98]);

plot(sorted_RM(end),Y_vec(end),’o’,’Color’,darkgreen,’LineWidth’,2);

hold off;
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1 Financial Data

Financial markets are places where people trade on their information. Sometimes, in some

corners of the world, people bring their hope and wishes, fear and greed to the markets.

But overall, when all of these noises get canceled out, the financial market is a powerful

information central. No other platform in this world can gather and process information in

a more efficient way. What people bring to the markets might be messy, and the people

themselves might be messy, but the output is simple and elegant: price and trading volume.

The process is an organic one. Like rivers flowing from the mountain to the sea, not

one person can really force the market to go one way or the other for a sustained period

of time. The process is not a flawless one. In the recent 2008-09 financial crises, financial

prices failed to reflect the real information. Central banks around the globe had to resort

to quantitative easings to offer support: cushion the fall and control the flood. But all in

all, financial markets are the best place to gather and collect information about the overall

economy and individual companies.

Financial data are the direct output of this process. One thing I would like you to develop

over the course of this semester is confidence and ease in handling financial data. As a first

step, you should know where to get what kind of data.

• Bloomberg: For most practitioners, a Bloomberg terminal is the first place to access

the real-time information. When I first joined Sloan in 2000, there was just one (or

two) Bloomberg terminal sitting in the basement of E52. In recent years, because of

the creation of the Master of Finance program, we have significantly increased the

number of units at Sloan. All students should take full advantage of this opportunity.

Since its beginning in 1981, Bloomberg data-and-information terminals have evolved

into something that is more complex and powerful than just a data service. They

are used by bankers, traders, and money managers for information gathering, trade
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communication and execution, and pricing and risk analysis for global products in

equities, fixed-income, derivatives, commodities, and foreign exchange. For example,

you can find tools for yield curve analyses, as well as pricing functions for interest rate

swaps and credit-default swaps on Bloomberg. This kind of convenience could also be

worrisome if users are too lazy to do their own price discovery and start to think of the

prices generated by a Bloomberg pricing function to be the real price. Just imagine,

when you are using a Bloomberg function, everyone else is using it as well. Group

think soon prevails.

While there are other data providers such as Thomson Reuters, Bloomberg remains

its dominance in part because of the broad user base of its messaging tool. If your

client is on Bloomberg, then you will have to be on Bloomberg to reach him. This

also creates the situation of “Too Bloomberg to Fail.” On April 17, 2015, before the

opening of the US markets, there was a computer-network outage on Bloomberg. The

blackout, which started shortly after European markets opened, also caused the UK to

postpone a scheduled multibillion buyback of government debt. The £3 billion ($4.5

billion) tender was rescheduled for the afternoon.1

• Datastream: I have to confess that I am not a big fan of Bloomberg terminals. I don’t

trade. The real-time feature is not attractive for me. I don’t have fellow traders or

clients to communicate with. Finally, I don’t trust the pricing function built by others.

But still, for real practitioners, I can certainly see the importance of a Bloomberg

terminal.

I use data provider for teaching and doing research. So when it comes to downloading

data, I like to use Datastream, which offers long time-series data with very broad

coverage. For example, I used Datastream to download time-series data on interest

rate swaps and credit default swaps, which we will use later in the semester. By

contrast, downloading the same amount of time-series data from Bloomberg is painful,

to say the least.

Some of the Sloan machines have Datastream installed. You can open a terminal to

navigate the system. It offers a wealth of products. To download the time-series data,

you can use the Datastream plugin in Excel.

• CRSP: The Center for Research in Security Prices (CRSP) is an impressive collective

effort done by people at Chicago GSB, now the Booth School. When it comes to data

1“Bloomberg Terminals Go Down Globally,” Wall Street Journal, April 17, 2015.

2



on US equity returns, CRSP is the gold standard. A lot of effort and care have been

put in by these researchers to clean up the raw data from stock exchanges and properly

calculate returns.2 When I use stock return data, I don’t trust any other sources.

In addition to stock data, CRSP provides US Treasury data and Mutual Fund data.

This is a link to CRSP Manuals and Overviews.

• WRDS and its component databases: The Wharton Research Data Services

(WRDS) was initially developed to support faculty research at Wharton. Today, it

has become an important platform that hosts a wide spectrum of databases, including

CRSP. I’ve applied a class account for us at WRDS. The username is “finmkt” and

you can get the password by emailing me or the TAs. I would encourage you to log on

to the system to take a look. These are some useful databases hosted by WRDS:

– CRSP: equity, treasury, and mutual fund data.

– Compustat: firm-level fundamentals including income statements, balance sheets,

and flow of funds. The most essential data for Corporate Finance and Accounting.

– IBES: historical earnings estimates by analysts, including EPS, revenue, price

target, EBITDA and pre-tax profits. Available on both consensus and detailed

levels. Also includes buy-hold-sell recommendations by analysts.

– Option Metrics: contains data on equity options and equity index options.

– TAQ: high-frequency transaction and quote data for all stocks listed on US Ex-

changes.

– TRACE: transaction-level data of US corporate bonds.

• Prof. Ken French’s Website: Prof. French provides a valuable service to our

community by offering a wide range of portfolios and benchmarks on his website.

We will use these data quite extensively in our next few classes and in your group

assignments.

2 Estimating the Expected Stock Returns

• Computing returns: For a publicly traded firms, let Pt be its stock price at the end

of year t, and Dt be the cash dividend paid out during year t. The year-t realized

2See Chapter 7 of “Capital Ideas” by Perter Bernstein for a detailed account.
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return is,

Rt =
Pt +Dt − Pt−1

Pt−1
=

Pt − Pt−1

Pt−1
+

Dt

Pt−1
,

which is the sum of capital gain and dividend yield.

Calculating returns is in fact not as simple as you would think. Above is a textbook

example, involving only cash dividends. In practice, one has to take care of periodic

firm events including splits, reverse splits, stock dividends, rights offerings, spin offs,

etc. Dealing with these issues is so tedious that you would want to quit Finance right

away. So we are very thankful to CRSP for taking care of all of these firm events and

give us a clean and reliable set of stock return data. If you are the curious type or if

you would like to apply the CRSP service to another market, say the Chinese stock

market (which lacks a professional service such as CRSP), here is a link to CRSP’s

Data Descriptions Guide.

One year, I asked my TA for 15.433 to calculate for me monthly returns of Berkshire

Hathaway (BRK). The numbers he gave me looked suspicious because Warren Buffett is

known to be a great investor, but my TA told me that BRK alpha is close to zero. So

I went over the data myself and found out that there were three months in the 1970s

when the price data were missing. Matlab replaces missing data with zero. So my TA

caused Warren Buffett to bankrupt three times (i.e., in my TA’s spreadsheet, he had

-100% returns in three places in the return column), and yet, Mr. Buffett’s alpha came

out to be close to zero. This is how impressive Mr. Buffett’s performance is. After

this, I never ask any of my TAs to do my calculations for me.

• Estimating the expected return: For any financial instrument, the single most

important number is its expected return. This is what attracts an investor to that

product in the first place. And yet, the expected stock return is the toughest number

to measure in Finance.

Suppose right now we are in year t, and let Rt+1 denote the stock return to be realized

next year. In making our investment decision today, one of the key variables is the

expected return: μ = E (Rt+1) . It is worthwhile to emphasize that μ is a number,

while Rt+1 is a random variable drawn from a distribution with mean μ and standard

deviation σ.

The standard approach in estimating the expected return is to use past returns and
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estimate μ by taking the sample average:

μ̂ =
1

N

N∑
t=1

Rt .

Let’s again use the time-series data on annual stock returns, plotted in Figure 1. In

this example, we have a time-series of 88 realized returns.
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Figure 1: Time-series of annual stock market returns from 1927 through 2015. Returns are
calculated using the CRSP-value weighted index, which includes all stocks traded on the US
exchanges. Source: Prof. Ken French’s website.

One natural question is why can this sample average of past realized returns help us

form an expectation of the future? The answer is the same as before. We are assuming

that historical repeats itself in such a why that each Rt in the past was drawn from

an identical distribution with mean μ and standard deviation σ. Moreover, the draw

is forgetful in the sense that this year’s distribution is independent of past years’

distributions. Again, we are using the assumption that stock returns are independent
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and identically distributed (i.i.d.).

• Standard Error of μ̂: At this point, it is important to emphasize the distinction

between μ and μ̂. Specifically, μ̂ is an estimator for an unknown number μ. The

estimator μ̂ itself is not a number, it is an average of 88 random variables. As a direct

result, μ̂ inherits the noise from the 88 random variables Rt:

var(μ̂) = var

(
1

N

N∑
t=1

Rt

)
=

1

N2

N∑
t=1

var(Rt) =
1

N2
×N × σ2 =

1

N
σ2 .

Notice that the above derivation relies on the i.i.d. assumption. In passing through

the second equal sign, we use the independent assumption: cov(Rt, Rs) = 0 for t �= s.

In passing through the third equal sign, we use the assumption that Rt is identically

distributed with a variance of σ2.

Because of the special role of μ̂ as an estimator, we also refer to its standard deviation

as the standard error of μ̂. To summarize,

s.e.(μ̂) =
std(Rt)√

N
=

σ√
N

.

Naturally, an estimator with smaller standard error gives us more precision. From the

above equation, the level of volatility in the stock market return plays an important

role in determining the noise level of our estimator μ̂. Unfortunately, stock market

returns are known to be very “noisy.” The only way to improve the precision is by

increasing N, the number of observations.

• Using t-stat: For the time-series data of annual stock returns from 1927 through

2014, the sample mean is 12% and the sample standard deviation is 20%. So the

estimate of μ is 12% and that of σ is 20%. We can now calculate the standard error of

this estimator:

20%/
√
88 = 2.13% .

To evaluate how significant an estimate of 12% is in relation to the standard error, we

often use the t-stat of the estimator:

t-stat =
12%

2.13%
= 5.63 .

Effectively, it is a signal-to-noise ratio. The bigger the absolute value of the t-stat, the

more significantly away it is from zero. For the rest of the semester, we will use this
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rule of thumb: a significant estimate is one whose t-stat has an absolute value greater

than 2. In other words, a large value of the estimate itself is not that meaningful. It is

only after you scale it with its noise level (i.e., standard error), the measure becomes

useful. And our cutoff value is two.3

For many emerging markets, the sample averages of their stock returns might be large

compared to the US number. But such markets are typically more volatile than the US

markets (larger σ). Moreover, they are also younger (smaller N). Factoring in these

observations, the t-stat’s of μ̂ for these emerging markets are typically much smaller

5.63. For some of the countries (e.g., China), the t-stat’s of their μ̂ might not even pass

the threshold value of 2, indicating that, statistically speaking, the expected return is

not significantly different from zero!

In fact, the current example with a t-stat of 5.63 is as good as it gets when it comes

to estimating the expected stock return μ. Nevertheless, the corresponding 95% con-

fidence interval is not that impressive:

[12%− 1.96× 2.13%, 12% + 1.96× 2.13%] = [7.8%, 16.2%] .

In other words, with 88 years of data and for one of the most stable stock markets in

the world, we can only get to this range of 95% confidence interval. That’s why I said

earlier that the expected stock return is the toughest number to estimate in Finance.

As we can see from our analysis, the main reason is the volatility in the stock market.

• Rt and μ̂ on the same plot: Just to make a more graphical display of the connection

between μ̂ and Rt, I plotted in Figure 2 both of their distributions.

Recall that

μ̂ =
1

N

N∑
t=1

Rt .

As a result, the estimator μ̂ is closely connected to stock returns. The signal we really

really would like to extract from the realizations of Rt is its mean, i.e., the expected

return return. Unfortunately, like everything else in life, it comes as a packaged deal:

to get its mean, you also have to take its variance. So the blue line plotted in Figure 2

3I’ll be happy to explain why the cutoff value is two. But I feel that the explanation will distract us from
the Finance content. For those who are interested, the key intuition is that μ̂ is normally distributed (because
of the central limit theorem) with a standard deviation of σ/

√
N . A cutoff value of 1.96 corresponds to a

double-sided test of the null hypothesis that μ = 0 with the significance level of 5%: normcdf(-1.96)*2=0.05.
Instead of carrying 1.96, let’s just round it to 2.

7



informs you of the distribution of this packaged deal. Specifically, the blue line is the

pdf of a normal distribution with mean 12% and standard deviation of 20%.
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Figure 2: The probability density functions ofRt and μ̂ and the 95-percent confidence interval
for the estimator μ̂.

Plotted against the blue line, is the distribution of the extracted signal μ̂. As you

can see, with 88 data points, we are able to shrink the noise in the raw data quite

significantly. More data, more precision. The exact rate of shrinkage is
√
N . In this

plot, I use N = 88.

In addition to plotting the pdf of μ̂, I also plotted the 95% confidence interval. For

a standard normal distribution, the critical value of a two-sided 5% tail is 1.96. The

left and right cutoff values for our current example are 0.12− 1.96× 0.0213 and 0.12+

1.96 × 0.0213. So the two yellow-shaded areas add up to 5% probability, while the

middle unshaded area in the distribution has a total probability of 95%.

In doing a statistical test, the main question we are asking is the following. The

estimator is noisy (the standard error is 2.13%). Given this noise level, is the estimated

expected return (12%) significantly away from zero? Of course, 12% is different from
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zero. Don’t be silly. But the question is more about a “fuzzy” 12% like the red

distribution in the plot. The red line spells out the level of noise for us. We can now

move to the left and reach the cutoff value of the 95% confidence interval and see

whether or not this value is still away from zero. Doing a 95% confidence interval is

cumbersome. Instead, we calculate the t-stat of the estimator: 12%/2.13% and see

how far away it is from 1.96. It has the same effect, but the procedure is simpler. For

this class, let’s make it even simpler by rounding 1.96 to 2.

• Why so much emphasis on statistics? As you can see, I’ve allocated a significant

amount of time on estimation, standard error and t-stat and we’ve gone through the

derivations in quite some details. By doing so, I would like to impress upon you the

Statistical foundation of the tools adopted by people in Finance.

Among the first set of numbers reported in an investment prospectus are the past

realized returns of a portfolio manager. There is no mention at all about how noisy

these numbers are. Implicitly, that is why a long track record is well respected in the

industry. Only when you have a sufficiently long sample, these sample averages become

meaningful. Otherwise, they are as good as noise.

Going forward, we will be working with a variety of estimation results, e.g., regression.

I will not ask you to calculate the standard error of a regression coefficient. That, will

be too much Statistics in a Finance class. Nevertheless, I would like you to always

keep this in mind: as long as you are working with financial data, the numbers you

estimate from the data are contaminated by the randomness and noise that is inherent

in financial data. Do not treat them as numbers. Treat them as estimators with

standard errors and t-stats.

3 Estimating Alpha and Beta

• The risk that matters: So far, we’ve focused on one time series and it turns out to

be a very important risk factor. According to the CAPM, investors are only rewarded

for bearing the systematic risk. Any risk that is uncorrelated with this risk should not

be rewarded, because it can be diversified away. We are going to use the US aggregate

market as a proxy for the systematic risk in the CAPM and take the CAPM model to

the data.

As a starter, let’s give it a unique symbol: RM . Moreover, as it is the convention in

this area, alpha’s and beta’s are estimated using monthly stock returns. So let me
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Figure 3: Time-Series of monthly stock returns from 1927 through 2011. Returns are cal-
culated using the CRSP-value weighted index, which includes all stocks traded on the US
exchanges. Source: Prof. Ken French’s Website.

plot this important time-series using monthly returns in Figure 3, so that you know

that the data look like at this frequency. Compared with the annual frequency, the

fluctuation is at a smaller range. For this market, the annual volatility is around 20%,

while the monthly volatility is around 5.46%. Note that 20%/
√
12 = 5.77%, which is

a pretty good approximation if you don’t remember the monthly number.

• The CAPM: Before we start to use the model quite extensively, let me summarize

the key ingredients of the CAPM here.

– The market risk premium: defined as the expected return of the market portfolio

RM in excess of the riskfree rate rf : E(RM)− rf . So far, at an annualized level,

our estimate for E(RM) is around 12% and the riskfree rate is on average 4%,

making the market risk premium to be around 8%.

– Beta: The risk of an individual stock, say GE, is measured not by its own volatility,

10



but by its exposure to the market risk:

βGE =
cov

(
RGE, RM

)
var (RM)

– The pricing equation: The reward is proportional to risk:

E(RGE)− rf = βGE ×
(
E(RM)− rf

)
(1)

• Running regression to estimate the CAPM beta: Let RM
t be the month-t return

of the market portfolio and let RGE be the month-t return of GE, and we run the

following regression to estimate the CAPM beta:

RGE
t − rf = α + β

(
RM

t − rf
)
+ εt . (2)

In terms of data structure, the above regression involves two time-series. In an Excel

spreadsheet, they show up as two columns, one for RGE and the other for RM . There

is one more column, which is not explicitly given and usually you don’t need to use

it. It is the regression residual, εt. So there are three random variables involved RGM ,

RM , and ε, and two numbers to be estimated: α and β.

This regression turns out to be a very important one in Finance, especially for under-

standing risk and returns in the equity market. So let’s spend some time on it. First

all of, this regression puts RM in a unique position. All other stocks and portfolios of

stocks will show up on the left hand side as the dependent variable, while RM always

sits on the right hand side as the independent variable. This is at the heart of the Bill

Sharpe’s insight: in the CAPM world, there is one risk that really matters (RM), and

everything else will be a reference to this unique portfolio. Second, the relation in the

CAPM world is linear, and we are running a linear regression in agreement with that.

Third, the regression coefficient β is indeed the CAPM beta. This greatly simplifies

the estimation process. Instead of doing cov(RGE , RM)/var(RM), we can simply run

a regression to estimate β. Most importantly, the standard error of β is given out for

free as part of the regression output. Otherwise, you will be scratching your head to

figure out how to calculate the standard error, because, so far, I’ve only taught you

how to calculate the standard error of μ̂.

• Running regression to estimate the CAPM alpha: By running the regression,

you also get an estimate of α, which does not seem to be part of the CAPM. But in
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fact, it is at the heart of the pricing relationship. Let’s re-arrange the regression in

Equation (2) to get:

α = RGE
t − rf − β

(
RM

t − rf
)
− εt . (3)

Now let’s take expectations on both sides to get:

α = E
(
RGE

t − rf
)
− β E

(
RM

t − rf
)
− E(εt) .

And what’s E(εt)? By construction, the regression residual, i.e., the time-series of εt

always has zero mean. So we now have

α = E
(
RGE

t − rf
)
− β E

(
RM

t − rf
)
.

So the CAPM pricing formula in Equation (1) is exactly as α = 0. Isn’t that neat?

Now the test of the CAPM is the same as testing whether or not α is zero. Remember

how I kept emphasizing that any estimator will always inherit the noise/randomness

in the data? Applying this lesson on the estimate for α, we need to figure out its

standard error. Luckily, this is given, again for free, as part of the regression output.

Otherwise, what would you do?4 Armed with the t-stat for α, we can now easily test

whether or not α is statistically significant.

Now you can appreciate why we keep including the clumsy rf in this regression. Its

presence does not interfere too much with our estimate for β, because the volatility of

rf is much small than that of stock returns. But by dragging rf along in this regression,

we get α! In other words, by running this regression, not only can we assess the risk

exposure of a stock, but also its “abnormal” return relative to the CAPM benchmark.

• CAPM dead or alive: If we can create a lot of portfolios whose α’s are significantly

different from zero, then the CAPM, as least its version in Equation (1) will be in

trouble. This is what happened to the CAPM in the 1990s, when academic researchers

started to construct trading strategies that will give us positive alpha’s. The most

famous examples are the size and value portfolios in Fama and French (1992) and the

momentum portfolios in Jegadeesh and Titman (1993). At the height of this research

activities, some people even write papers with the title “The CAPM is Dead,” which,

in my opinion, is certainly an exaggeration because the CAPM is more than just

Equation (1).

4In fact, α is like μ for the time-series of RGE
t − rf − β

(
RM

t − rf
)
. So a good approximation for the

standard error of α is std(εt)/sqrt(N), where ε is the regression residual.
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In fact, when Bill Sharpe was interviewed in 1998, he was asked exactly this question,

“Some people proclaim that the CAPM is dead. What do you think?” He responded

by saying that the insight of the CAPM is more than just the equation. Instead, the

true insight about the CAPM is the risk that really matters:

“The fundamental idea remains that there’s no reason to expect reward just

for bearing risk. Otherwise, you’d make a lot of money in Las Vegas. If

there’s reward for risk, it’s got to be special. There’s got to be some economics

behind it or else the world is a very crazy place. I don’t think differently about

those basic ideas at all.” – Bill Sharpe, 1988, Dow Jones Asset Manager

• Running regression to get R-squared: One last cool thing about running this

regression is it gives us the R-squared of the regression. Going back to the regression

in Equation 2, we see that it is a regression that links two random variables RGE and

RM . In an Excel spreadsheet, they show up as two columns. After the regression, we

get a third random variable ε, which is the residual of the regression. If you like, you

can back it out as a column in the Excel spreadsheet by,

εt = RGE
t − rf − α− β

(
RM

t − rf
)
.

As you might know, by construction, the residual ε has mean zero and is uncorrelated

with the independent variable: cov(RM
t , εt) = 0.

Effectively, this regression decomposes RGE into two random components: the first

one is associated with the market portfolio through the term β RM , and the other

is the regression residual ε. This decomposition turns out to be very meaningful.

In the CAPM language, the first term is the systematic component and the second

is idiosyncratic component. And the total variance of RGE is the sum of these two

components:

var(RGE) = β2 var(RM) + var(ε) .

The R-squared gives us the ratio of how much of the variance in RGE comes from the

systematic component:

R-squared =
β2 var(RM)

var(RGE)
,

and 1-R-squared gives us the ratio of how much of the variance in RGE comes from
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the idiosyncratic component:

1− R-squared =
var(ε)

var(RGE)
.

R-squared are the most useful in telling us how important a risk factor is. For example,

in the above regression, RM is used as a risk factor in explaining the variation in a stock

or a stock portfolio like RGE. A high R-squared indicates that the risk factor is very

important in explaining the variation. For example, take any actively managed equity

mutual fund returns and regress it on RM , the typical R-squared is over 90%, with

some funds very close to 98%. Later on, we will develop other risk factors such size,

value, and momentum. Out of all the risk factors out there, RM remains to be the most

important risk factor, second to none and by a wide margin. From this perspective, if

there is risk factor that you should be paying attention to, it is the market portfolio

RM .

• Why so much emphasis on this regression? As you can see, I’ve spent quite

some time focusing on just one regression. If before learning about this regression, the

CAPM concepts seem vague and inaccessible, they should come alive to you by now.

At least for myself, my understanding of the CAPM enhanced a great deal after having

to teach students about this regression.
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Appendices

A On Estimating the Expected Return

• t-stat and Sharpe ratio: You might notice that there is a connection between t-stat

and Sharpe ratio. To make things more clear, let’s assume that we are estimating the

expected excess return. For this, we use a time-series of excess stock returns: Rt − rf ,

where rf is the riskfree rate. For our current example, let’s assume that the riskfree

rate is a constant.

Let avg(R− rf) denote the sample mean of this time-series, and std(R) be the sample

standard deviation. Then the t-stat of the estimator for the expected excess return is

t-stat =
avg(R− rf)

std(R)/
√
N

=
avg(R− rf)

std(R)
×

√
N = Sharpe Ratio×

√
N .

So if you go to an investment meeting, where t-stat’s are usually not reported, you can

use the reported Sharpe ratio to back out the t-stat. Moreover, if the Sharpe ratios of

a wide range of products are reported, all with the same number of observations (N),

then you know that the product with the highest Sharpe ratio also gives you the most

significant (statistical speaking) expected excess return.

• Estimating μ at higher frequencies: Since the standard error of μ̂ depends on the

number of observations (N), why don’t we use the return data at a higher frequency?

Well, it turns out that it doesn’t really work. When it comes to the precision of μ̂,

it is the length of the time-series that counts, not the number of observations. So

chopping the time-series into finer intervals does not work. By contrast, when it comes

to estimating the volatility of stock returns, this approach of chopping data into finer

frequency does work and is widely used.

Here is why for the first moment (i.e., mean), chopping does not work. Using N years of

time-series of annual return data, we calculate the sample mean and sample standard

deviation and use avg(R) and std(R) to denote them. So the t-stat at the annual

frequency is

t-stat =
avg(R)

std(R)/
√
N

=
avg(R)

std(R)
×

√
N

Now let’s do things in a monthly frequency. The total number of observation in-

creases by a factor of 12. As a pretty good approximation, moving from the annual to
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monthly frequency, the sample mean becomes avg(R)/12 and the sample standard de-

viation becomes std(R)/
√
12. (Use log-returns and under the random walk model, this

approximation becomes precise. We will re-visit this when we cover the Black-Scholes

model.) So the t-stat at the monthly frequency is

t-stat =
avg(R)/12

std(R)/
√
12

×
√
N × 12 =

avg(R)

std(R)
×

√
N .

• Other ways to estimate μ: Since μ plays such a uniquely important role in invest-

ments, you can rest assured that there are countless efforts in estimating/predicting

this number. One student told me that in an interview, he was asked to design a deriva-

tive whose value would depend on μ. My answer: it is not possible, because of the

risk-neutral pricing (we will cover this later in the semester). There are also numerous

surveys soliciting predictions about the markets from investors and economists. Well,

when it comes to predicting the stock market, these survey data do not work very well

(we will cover this topic later in the semester).

Prof. Fama and French also had this interesting idea of estimating the expected return

using dividend and earnings growth rates, which are much less noisy than stock returns.

There is, of course, a pricing model that links stock prices to dividend or earnings, like

the Gordon growth model you see in 15.415 or 15.402.

B OLS Regression

B.1 Introduction

In Finance, we run regressions left and right. That is, very often. Because of the availability

of canned software routines, we have the luxury of not having to deal with the process that

happens in the background. This is a pity, because the process itself is actually informative.

So let me write this little note to add to the intuition behind an OLS regression. It is not

as formal as what you will get from an Econometrics class, but adequate.

Code 1: My OLS Regression Code

function [out,R2]=Reg_OLS(Y,X)

A=[ones(length(Y),1) X];

b=inv(A’*A)*(A’*Y);
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Eps=Y-A*b;

SE=sqrt(diag(inv(A’*A)*var(Eps)));

out=[b’; SE’; (b./SE)’];

R2=1-var(Eps)/var(Y);

% use this if need adjusted R2: adj_R2=R2−(1−R2)∗size(X,2)/(size(X
,1)−size(X,2)−1);

Inserted above is my Matlab code for OLS regression. Throughout the semester, I use

this little program to run regressions for all of the tables and figures in the lecture slides and

notes. The inputs are the regressand Y and the regressor X. If these names are confusing

(they are to me), then let’s call them dependent variable Y and independent variable X.

Or even simpler, left-hand side and right-hand side variables. The Y variable is always

one-dimensional: N × 1, where N is the number of total observations. The X variable is of

dimension N×k, where k is the number of independent variables (or explanatory variables).

For the CAPM regression in this class:

Ri
t − rf = α + β

(
RM

t − rf
)
+ εit ,

I can feed the program with Ri
t − rf as Yt and RM

t − rf as Xt and the program will give me

the regression output: estimate, standard error, t-stat, and R-squared. As you can see, the

matrix operation makes the formula quite simple, especially when we have more than one

explanatory variable. For example, as we expand the CAPM setting to the Fama-French

three-factor model, we will have three explanatory variables (market, size, and value).

B.2 A Concrete Example

One limitation of the matrix operation is that it is not very transparent. So let’s work with

an example with just one explanatory variable. To sharpen our focus, let me further assume

that both Y and X have zero mean. This way, we don’t have to deal with α, and can focus

only on β:

Yt = β Xt + εt ,

• The Regression Coefficient β: In running a regression, the mathematical program

we are trying to solve is in fact a linear prediction problem. The goal is to minimize

the prediction error:

min
β

∑
t

(Yt − β Xt)
2
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If you are good at solving optimization problems, it is pretty easy to see that the first

order condition of the above optimization problem gives us the solution:

β̂ =

∑
t YtXt∑
t X

2
t

.

Recall that X and Y are zero mean (for simplicity). So

1

N

∑
t

YtXt = cov (Yt, Xt) ;
1

N

∑
t

X2
t = var (Xt) .

Now you can see why we can recover the CAPM β by running a regression.

• The Standard Error: Note that I’ve put a hat on β to emphasize that this is an

estimator, inheriting the noise from the data. So it is a random variable itself (just

like μ̂). Now let’s calculate its standard error, which is the square-root of

var
(
β̂
)
= var

(∑
t YtXt∑
tX

2
t

)
=

var (εt)∑
tX

2
t

,

where I’ve abused the notation a bit. To be more precise, I should use var
(
β̂ |X

)
. In

other words, I am doing the calculation conditioning on X and taking advantage of

the result that the residual εt is by construction independent of Xt.

Using σε for the variance of the residual and σX for the variance of X (and remember

that both Y and X have zero mean), we can further simplify the standard error to

var
(
β̂
)
=

σ2
ε

N σ2
X

; s.e.(β̂) =
σε√
N σX

.

Going back to the intuition we’ve gained by working with μ̂, we know that the longer

the time-series (larger N), the more precise the estimator. Here we have the same

result: with more observations (larger N), the standard error for β̂ is smaller. Also

interesting is the fact that the residual variance σ2
ε has a direct impact on the precision

of β̂. Recall that the noisier the stock market (higher σR), the less precise the estimator

μ̂. Here it is the ratio of σε/σX that matters: for a given level of σX , the noisier the

residual (the unexplained component), the less precise the regression coefficient β.

• The More General Case: In making the example concrete, we’ve assumed that X

and Y are zero mean random variables. Taking out this assumption, we run the more
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general regression of

Yt = α + β Xt + εt .

The two important results we’ve obtained so far remain true:

β̂ =
cov(Yt, Xt)

var(Xt)
; s.e.(β̂) =

σε√
N σX

.

Moreover, you will find the quite intuitive result of

α̂ = E(Yt)− β̂E(Xt) ; s.e.(α̂) =

√
σ2
ε

N
+

(
s.e.(β̂)E(Xt)

)2

.

From this solution, you can see that α̂ is very similar to the mean estimator μ̂. If

the explanatory variable X is zero mean, then the estimation for α will not involve β.

In this case, α̂ is indeed the mean estimator for the residual εt. Applying this to the

CAPM setting, where σε is the volatility of the idiosyncratic risk taken by a portfolio

manager, you can see how the precision of his α is linked to his level of idiosyncratic

risk. Having to estimate his β adds a bit noise to the precision of α, but it is the

amount of the idiosyncratic risk that is the main driver for s.e.(α̂). So if a manager

achieves his α through exposing his portfolio to high idiosyncratic risk, his signal to

noise ratio will be low and the precision of his α will also be low.

• R-squared and its relation to t-stat: The R-squared of a regression provides

additional information. Going back to the CAPM regression, we notice that two stocks

with the same β could have very different R-squared’s. You can dial up the idiosyncratic

risk to decrease the R-squared while keeping the same β. But it turns out that there

is a one-to-one relation between R-squared and t-stat:

R-squared =
β2 σ2

X

σ2
Y

and

(t-stat)2 =

(
β̂

s.e.(β)

)2

=
N β2 σ2

X

σ2
ε

Comparing the two and using the fact that

R2 =
β2σ2

X

σ2
Y

; 1−R2 =
σ2
ε

σ2
Y
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we have

(t-stat)2 =
N R2 σ2

Y

σ2
ε

=
N R2

1− R2
,

where, to make the math look pretty, I’ve used R2 for R-squared. So if I give you two

stocks with the same t-stat for β (using the same number of observations N), their

R-squared must be the same.

• One final note: This note is not really necessary. It addresses the issue regarding

unbiasness in small sample and consistency in large sample. I am writing it simply for

those who notice that sometimes we scale the number of observations by N , sometime

N − 1, and sometimes N − 2.

Suppose you are given N observations of a random variable Z and you are asked to

estimate its variance. You must have been taught in one of your earlier statistics classes

that the unbiased estimator is

1

N − 1

N∑
t=1

(
Zt − Z̄

)2

Notice the term N−1 (not the usual N) is used as the scaling factor. Although we have

a total of N observations, the degree of freedom is only N − 1 because by having to

estimate the mean of Z (i.e., Z̄), we use up one degree of freedom. You can go through

the very tedious algebra (and I am sure you were asked to do so in your Statistics

class) to convince yourself that this is indeed true.

I have to confess that I am not super crazy about making this adjustment from N to

N − 1 to get an unbiased estimator. For large N , the difference between N − 1 and N

is negligible. If we take N to infinity, then adding or subtracting a finite number from

it will not matter. So I very much prefer to use

1

N

N∑
t=1

(
Zt − Z̄

)2

as an estimator. In the language of Econometrics, this is a consistent estimator: it

converges to the true value when the sample size N grows to infinity.

By the way, to do this adjustment for OLS regression, the degree of freedom is N − 2

for the case of one explanatory variable. We are losing two degrees of freedom because

in order to estimate the variance of the residual (σε) we need to first estimate the
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intercept and the slope coefficient. So the standard error for β̂ would be

s.e. (β) =
σ2
ε

Nσ2
X

=

∑
t ε

2
t/(N − 2)

Nσ2
X

On the other hand, this bias adjustment is not done in calculating the R-squared.

Consequently, the relationship between t-stat and R-squared would be

(t-stat)2 =
(N − 2)R2

1−R2
.

C Exercises

I will add more if possible. I also welcome suggestions from students.

1. In a paper written by Prof. Jiang Wang and his co-authors, it was reported that for

the Chinese market from July 1997 to December 2013, the average excess return of the

market portfolio is 0.60% per month with a t-stat of 0.97. What is the monthly stock

market volatility in China during this sample period? Compare it with the US market

volatility.

2. Can two stocks have the same β but different R-squared? If so, construct an example

for me? In which way are these two stocks similar? In which ways are they different?

3. Can two stocks have the same t-stat of β but different R-squared?

4. Suppose that there are many different companies whose stocks have the same beta,

say 1. Can you form a portfolio to diversify the risk to get a lower beta?

5. Suppose you have a put option on the S&P 500 index. Do you think it has a non-zero

beta? If so, it is positive or negative?

D Matlab Code

Code 2: Plot the Distribution of Rt and μ̂

Mu=0.12; Sigma=0.20; N=88;

SE=Sigma/sqrt(88);
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R_Grid=-0.40:0.0005:0.50;

PDF_R=normpdf(R_Grid,Mu,Sigma);

PDF_MuHat=normpdf(R_Grid,Mu,SE);

figure(1);clf;

plot(R_Grid*100,PDF_R,’b-’,R_Grid*100,PDF_MuHat,’r-’);

text(0.21*100,16,’\bf pdf of $$\hat{\mu}$$’,’Interpreter’,’Latex’,’FontSize’

,13)

ylabel(’\bf Probability Density’);

xlabel(’\bf Return (%)’);

text(-0.2*100,3.0,’\bf pdf of $$R_t$$’,’Interpreter’,’Latex’,’FontSize’,13);

text(-0.33*100,16,’\bf $$\hat\mu = \frac{1}{N} \sum_{t=1}^N R_t$$’,’

Interpreter’,’Latex’,’FontSize’,13);

title(’\bf The 95-Percent Confidence Interval’);

PDF_R=normpdf(R_Grid,Mu,Sigma);

PDF_MuHat=normpdf(R_Grid,Mu,SE);

Conf95_Left=Mu-1.96*SE;

Conf95_Right=Mu+1.96*SE;

Left=(Conf95_Left:-0.001:Mu-4*SE);

Right=(Conf95_Right:0.001:Mu+4*SE);

pdf_Left=normpdf(Left,Mu,SE);

pdf_Right=normpdf(Right,Mu,SE);

hold on;

fill([Left fliplr(Left)]*100,[zeros(1,length(pdf_Left)) fliplr(pdf_Left)],’y

’);

fill([Right fliplr(Right)]*100,[zeros(1,length(pdf_Right)) fliplr(pdf_Right)

],’y’);

hold off;
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When I presented the timeline of Modern Finance in class, one of the students asked

why the blue events (work developed by academics) stopped after the 1970s. Of course,

we academics kept writing papers, at an even faster rate. But the 1970s were a great time

to do Finance in the academic world. Theoretical papers that are foundation building and

trail brazing happened in that era. Since the 1990s, most of the exciting work in Finance

happened in the empirical area.

What we are going to cover in this class represents the most influential work in Finance

since 1990s. And the intellectual leader is Prof. Eugene Fama, who was awarded a Nobel prize

in 2013. The ideas behind the research papers helped inspire and create this fast growing

area called quant investing in the late 1990s and early 2000s. More recently, with the growing

popularity of factor investing, the mutual fund and ETF world is also incorporating these

ideas.

As a PhD student at Stanford GSB in the late 1990s, I didn’t know much about the

Fama-French factors. I was into my own research at that time. Fortunately, I had to teach

15.433 at MIT Sloan. So it was through having to teach the MBA students at Sloan that I

got to learn and admire the work of Prof. Fama and his co-authors.

1 Quant Investing

Both quant investors and stock pickers are interested in generating alpha, but they differ

in their approach. To argue which approach, stock picker or quant investing, is better is

meaningless, but to find out which one suits you better is extremely important. To quote

a recent column by John Authers from the Financial Times, “If we do want to try to do

better than passive then there are two logical ways to do it. Either we can adopt a tightly

disciplined approach designed to exploit persistent market anomalies or factors; or we can

focus tightly on a sector or industry and make concentrated bets with high conviction.” So

on the one end of the spectrum of this alpha generating business is an investor like Warren

Buffett, who makes concentrated bets with high conviction; and on the other end are many
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long/short equity quant funds using quant signals to exploit persistent patterns in the cross-

section of stocks. The Warren Buffett path has clearly been admired and traveled by many

but there are limited number of success stories. After all, how can you replicate a person’s

mind? The quant approach, on the other hand, has generated relatively more success stories.

This approach serves more as a tool and it is much easier to replicate. Not surprisingly, it

ended up as an over-crowded field. In terms of skills, quant investing really does not require

a lot of quantitative skills in the traditional sense. It requires a curious and creative mind,

love and respect for the data, and some basic programming skills such as regressions and

data cleaning, merging, and sorting.

The first observation of quant investing is that even within the US equity markets, there

are thousands of stocks to choose from. For a stock picker, it would be a daunting task to

cover them all. With the availability of computers and data, it seems obvious that they should

develop a systematic approach to search through the data for alpha. This, of course, assumes

that the patterns found in the data persist in the near future. This is where quantitative

signals come in. The key insight is that such quant signals are useful in separating one

group of stocks (high alpha) from another (zero or negative alpha). Potentially, there are

two interpretations or reasons as to why such signals might work. First, they help us exploit

the mis-pricing in the markets. Second, they represent differences in exposure to certain risk

factors (that are unrelated to the market portfolio). Subscribing to the first interpretation,

you believe that your alpha comes from market inefficiency. The second line of reasoning

leads you to believe that your alpha comes from exposures to certain systematic risk (that

is unrelated to the market portfolio). In this case, the alpha’s are simply beta’s in disguise.

One signature approach of quant investing is forming portfolios. This arises from the de-

sire to be exposed only to the risk (or anomaly) one is interested in. The portfolio approach

helps diversify away unwanted idiosyncratic risk. Another signature approach of quant in-

vesting in the hedge fund world is the long/short strategy. Again, this arises from the desire

to have a razor sharp focus on the target risk factor. The long/short strategy helps take out

the unwanted systematic risk (e.g., the market risk). The best place to learn about quant

investing is to read carefully the tables in Fama and French (1992, 1993). Afterwards, go to

Prof. French’s website and play with the data.

The most creative part of quant investing is to come up with signals that could generate

alpha, especially those signals that help us identify market inefficiency in the cross-section.

Unfortunately, most of the signals used by quant funds have their origin in academic papers

and, in my opinion, are not that creative. It either indicates that markets are not that

inefficient, or quant funds are not that creative.
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The need for more innovation in this area certainly shows up during the recent quant

meltdown in August 2007. What we learned from this event is that the quant investing space

is very crowded, populated by funds with very similar ideas. The initial success of quant

investing in the 1990s attracted many investors, and the quant investing world enjoyed a

great rise in the first half of 2000s.1 It turns out that many quant funds are trading on very

similar signals. Prof. Daniel, who was at Goldman during the quant meltdown, wrote an

interesting and informative set of slides. The initial trigger was in the sub-prime mortgage

market, and it spilled over to investment-grade credit markets shortly thereafter. As multi-

strategy hedge funds experiences losses in their illiquid mortgage and credit positions, they

liquidated their more liquid assets in the quant investing side to raise cash. As this unwinding

took place, many quant investing funds rushed to the door, triggering a 20-sigma move in the

quant investing space. Previously unrelated stocks suddenly started to move together during

the unwind. If you were not in the quant space, you probably would not have noticed the

20-sigma move. But if you are in the quant space, then most likely your portfolio experienced

a 10 to 20 sigma drop over one week.

In recent years, the basic ideas in quant investing have found their popularity in the

world of mutual funds and ETFs. While the sales pitch in the quant hedge fund world is all

about Alpha, now the emphasis is on Beta: smart beta and factor investing. In any case, if

you are interested in a career in this area, what we are going to cover in the next few classes

is going to be very useful. Coming straight from the original research papers, it is also the

gold standard.

2 Forming Portfolios using Quantitative Signals

• Popular quant signals: Quant investing uses stock characteristics as signals. Most

quant investors believe that their signals help capture the fundamentals that drive

alpha. Here is a list of widely adopted quant categories and strategies:

– Size: The market capitalization = stock price × number of shares outstanding.

– Valuation: How is the company priced relative to fundamental accounting mea-

sure? For this, we have the widely used book-to-market ratio:

BtM =
book value of equity

market value of equity
.

1I often infer the popularity of a field from the number of Finance professors (whom I personally know)
it managed to attract to switch jobs. In mid-2000s, I observed quite a few.
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– Momentum: How has the market responded to the company’s changing fortunes?

Sample Metric: price momentum.

– Profitability: What are the company’s profit margins? How efficient are its oper-

ations? Sample metric: earnings-to-sales ratio and OP (operating profitabil-

ity) in the five-factor model of Fama and French.

– Earnings Quality: Were earnings derived from sustainable sources? Sample met-

ric: the accruals-to-total-assets.

– Analysts Sentiment: Are analysts upgrading or downgrading their view of this

company? Sample metric: earnings forecast revisions.

– Management Impact: How is the company’s management employing its capi-

tal? Sample metric: change in shares outstanding or the Investment vari-

able (growth in firm assets) in the five-factor model of Fama and French.

In coming up with the above list, I mostly used the information from Prof. Daniel’s

slides. In addition, I also listed the two new Fama-French variables, Profitability

and Investment, from their recent five-factor model. We will cover size, value, and

momentum in detail. For most of the other signals, Googling will lead you to the key

research articles behind these strategies.

These signals differ in various ways. Some are momentum signals (e.g., earnings fore-

cast revisions), indicating a slow reaction to information. Some are contrarian signals

(e.g., valuation), indicating a reversal in price pattern due to over-reactions in the past.

Some are over a long horizon. For example, studies on change in shares outstanding

(due to seasoned equity offerings or share repurchase announcements) focus on returns

with holding periods of 3 or more years. Some are over a horizon of a few months (e.g.,

momentum).

• Sorting stocks into portfolios: The concept of sorting is pretty straightforward. Of

course, there are many details one needs to pay attention to. The best resources are

Fama and French (1992), which by now is the gold standard in this area. Prof. French’s

website also provides a great deal of information. It should be mentioned that Prof. French

offers a tremendous service to our profession by making the data available on his web-

site. If I didn’t have access to the materials posted on his website, I would have to

construct a lot of the tables and plots in this class from scratch.

In this class, we will first look at univariate sorts (by size or book-to-market) into

deciles, and then move on to double sorts (by size and book-to-market) into 5x5. One
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important convention is that the breakpoints of these sorts are first established by

using NYSE stocks only. The main reason is that the stock population in NYSE is

more representative.

It is also important to emphasize that sorting is done dynamically. Stock characteristics

fluctuate over time. So we need to periodically update this information and re-sort

stocks by their new characteristics so that the sorted portfolios contain stocks of the

right characteristics. The frequency of sorting depends on the variability of the signals.

For example, Fama and French sort their size portfolios once a year, using the market

value in June of year t for portfolio returns from July of year t to June of t+1. For

the momentum portfolios, however, the signal is the stock’s past returns, which are

more variable, and the sorting is done at a monthly frequency. More generally, the

variability of a signal also affects the portfolio turnover. For a signal such as market

cap, the portfolio turnover is low because market cap is relatively stable. By contrast,

for a momentum signal such as past stock returns, the portfolio turnover could be quite

high. All of these considerations could factor into the execution costs of a strategy.

• Size and BtM sorted portfolios: The size-sorted deciles are useful in our under-

standing of the overall size distribution of stocks listed on the three US exchanges.

Using the 2015 number, we see that the average market cap is a mere $116 millions

for stocks in decile 1, which contains 1362 stocks. By contrast, decile 10 has only 173

stocks. Given that the breakpoints are determined by NYSE stocks, this implies that

most of the AMEX and Nasdaq stocks fall into the smaller deciles. For stocks in decile

10, the average market cap is close to $84 billions. Of course, this is still no comparison

to those mega-large stocks such as Google ($427B), Apple ($661B), or Amazon ($244).

The book-to-market sorted deciles give us a sense of how much the equity value of a

firm differ from its book value. For some stocks, equity investors value the stocks to

the extent that they are willing to pay much more than the existing book value of its

equity. As a result, the market value of the equity takes into account the firm’s future

growth component, which is not reflected in the firm’s current book value. Such growth

stocks are of low book-to-market ratio and show up in the lower deciles. For example,

using the 2015 number, the average book-to-market ratio of stocks in decile 1 is 0.095:

for each dollar in market value, the book value is only 0.095. Or, for each dollar in the

book value, the market is willing to pay 1/0.095=10.5 dollars. You can imagine that

Google was once a growth stock. Back in 2006, Google had a book-to-market ratio

of 0.04 and its market cap was $107B. Right now, its price-to-book is 3.84 according

to Yahoo Finance. So its book-to-market ratio has gone up quite a bit in the past 10
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years to it current level of 0.26.

At the other end of the spectrum are stocks with very high book-to-market ratio.

These stocks, usually referred to as value stocks, have a depressed market value. Using

the 2015 number, we see that stocks in our decile 10 have an average book-to-market

ratio of 1.339.2 Basically, investors are not willing to pay the full book value for the

stock. For example, back in 2006, the book-to-market ratio of GM was 1.28. For each

dollar in book value, investors are only willing to pay only 1/1.28=0.78 dollar in the

stock market. On the morning of June 1, 2009, GM filed for bankruptcy protection.

In general, firms have a high book-to-market ratio prior to filing for bankruptcy, but

this does not mean that high book-to-market firms are bankruptcy firms.

At this point, it is worthwhile to emphasize again that sorting is done dynamically.

For example, back in 2006, GM, with its book-to-market value of 1.28, showed up in

the book-to-market decide 10. After its filing for bankruptcy protection, GM dropped

out of the sample. As of today (September 14, 2015), according to Yahoo Finance, GM

has a price-to-book ratio of 1.37, indicating a book-to-market ratio of 1/1.37=0.7299.

So now GM shows up in decile 7 or 8.

3 Testing the CAPM using Fama-French 25 Portfolios

Let’s start with the regression:

Ri
t − rf = αi + βi

(

RM
t − rf

)

+ ǫit , (1)

where Ri
t is the month-t return of a portfolio i. Recall that testing the CAPM pricing

equation is equivalent to testing whether or not αi is significantly different from zero. If we

can find many portfolios with large α’s, then the CAPM will be in trouble. Indeed, this is

at the heart of what we are going to do.

• Use the CAPM beta: We use the famous Fama-French 25 portfolios to test the

CAPM. For each portfolio i, we run the regression in Equation (1) to obtain its βi.

After obtaining an estimator for the market risk premium λM , we calculate the risk

premium for portfolio i according to the CAPM: βi λ
M . We call this number the risk

premium predicted by the CAPM. At the same time, we use the realized returns of

portfolio i to estimate the risk premium directly. We call this number the risk premium

2The reported average BtM is value weighted. That is, within each decile, we value-weight each stock’s
book-to-market ratio by its size to calculate the average BtM for the decile.
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Figure 1: The empirical performance of the CAPM, using the Fama-French 25 portfolios. For
each portfolio i, its risk premium measured from the data is plotted against that predicted
by the CAPM.

measured from the data. We now have 25 pairs of numbers, each pair corresponds to

one of the Fama-French 25 portfolios.

Figure 1 plots the 25 pairs of numbers: the risk premium measured from the data

(y-axis) and the risk premium according to the CAPM (x-axis). I understand that

both pairs of numbers are noisy because they are estimated from the data. But let’s

use them for now, and we will come back to a proper test later. Also, although the

estimations and regressions are all done using monthly returns, I annualized the risk

premium (by multiplying the monthly risk premiums by 12) for ease of communication.

Now let’s come back to Figure 1. If the CAPM works well, then these 25 dots should line

up pretty nicely along the 45-degree line: data and model in agreement. In practice,

however, most of these dots are clustered together along the x-axis dimension and

spread out along the y-axis dimension. Recall that plotted along the x-axis is model-

implied risk premium: βi λ
M . So effectively, the “clustering” implies that most of the

25 portfolios have very similar β. Moreover, given that the market risk premium λM

is close to 6% per year, this implies that most of the 25 portfolios have a β that is

very close to one. On the other hand, the wide variation along the y-axis dimension

indicates that those portfolios in fact perform very differently in reality: some perform
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well with a high risk premium, while some perform poorly with a low risk premium.

Overall, Figure 1 is not good news for the CAPM. Instead of the predicted relation

between risk premium and beta, we find a wide range of risk premiums for portfolios

that are very similar in beta. At this point, you might ask how much we should trust

those 25 pairs of numbers, which are estimated with noise. So let’s do our test more

properly. Recall that the key to the test is Alpha. We can estimate the alpha’s from

the plot by measuring the vertical distance between each dot and 45-degree line. From

the plot, we see that some portfolios (mostly value stocks) have positive alpha’s, while

other portfolios (mostly growth stocks) have negative alpha’s.

• Use the CAPM alpha: Recall that the alpha’s can be easily obtained from the

regression in Equation (1). Table 1 reports, for the 25 portfolios, the CAPM α, β, and

the adjusted R-squared from the 25 regressions. For those portfolios with statistically

significant α’s, I print the number in bold. The t-stat’s of the α’s are also reported in

the table. According to the CAPM, all of the α’s should be indistinguishable from zero.

But we have quite a few portfolios with statistically significant α’s. Moreover, there is

a pattern to it. For example, for small stocks in group A, moving along the book-to-

market dimension, the portfolio α’s turned from negative (and statistical significant)

to positive. The same pattern repeated for all size groups. For large stocks in group

E, none of the α’s are statistically significant, but you can see the magnitude of α’s

increasing as we move the book-to-market from low to high.

To jointly test the statistical significance of those 25 α’s, we can use the GRS test,

named after Gibbons, Ross, and Shanken (1989). It is actually a very cool test. It

maps the joint α test to how inefficient the market portfolio RM is. If you recall, the

CAPM tells us that the market portfolio is the tangent portfolio sitting at the mean-

variance frontier with the highest Sharpe ratio. By being able to construct portfolios

with positive alpha’s, the story breaks down: the market portfolio is no longer the

mean-variance efficient portfolio.

• The importance of the CAPM: Before closing this section, I would like to empha-

size one more time that this test result does not hurt the importance of the CAPM

model in Finance. In fact, without the model, we will not even know where and how

to start the test. Moreover, the later development, including the Fama-French models

we will see, always includes the market portfolio in the test. Indeed, the CAPM model

serves as the foundation for all models to come. I have yet to see one model without

the market portfolio in it. Finally, the main insight of the CAPM remains: there are

8
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Table 1: The Fama-French 25 Portfolios in the CAPM and the Fama-French Three-Factor
Model. All α’s are reported in annualized terms (x12). Statistically significant α’s are
reported in bold. Monthly data from January 1962 to July 2015.

CAPM The FF Three Factor Model
Portfolio α (%) t-stat β R2 (%) α (%) t-stat β s h R2 (%)

A1 -5.05 -2.19 1.41 62.81 -5.32 -4.69 1.06 1.38 -0.29 91.25
A2 1.88 0.95 1.23 63.50 -0.10 -0.13 0.96 1.30 0.04 94.20
A3 2.95 1.80 1.10 66.77 -0.09 -0.15 0.92 1.10 0.28 95.20
A4 5.57 3.46 1.02 64.34 1.65 2.57 0.89 1.03 0.46 94.48
A5 6.78 3.82 1.08 62.38 1.49 2.21 0.98 1.09 0.70 94.71
B1 -2.88 -1.68 1.39 74.93 -2.09 -2.73 1.11 0.99 -0.39 95.10
B3 1.49 1.08 1.17 76.33 -0.42 -0.62 1.01 0.87 0.13 94.35
B3 4.23 3.27 1.06 75.07 1.07 1.63 0.97 0.77 0.39 93.74
B4 4.96 3.78 1.02 73.07 0.89 1.43 0.97 0.73 0.56 94.15
B5 4.94 3.06 1.11 68.12 -0.66 -1.00 1.08 0.87 0.81 94.77
C1 -2.01 -1.41 1.33 79.58 -0.60 -0.84 1.09 0.73 -0.44 95.03
C2 2.40 2.23 1.12 82.83 0.67 0.85 1.04 0.53 0.18 91.10
C3 3.08 2.83 1.00 79.31 0.08 0.10 0.99 0.44 0.44 89.73
C4 4.29 3.68 0.96 75.49 0.38 0.50 1.00 0.40 0.62 90.18
C5 6.22 4.31 1.03 69.61 1.23 1.44 1.06 0.55 0.77 89.58
D1 -0.32 -0.30 1.22 85.24 1.46 2.05 1.06 0.38 -0.42 93.73
D2 0.40 0.45 1.08 86.89 -1.03 -1.25 1.08 0.22 0.21 89.15
D3 2.24 2.21 1.03 82.26 -0.44 -0.52 1.08 0.18 0.45 88.26
D4 4.28 3.96 0.96 77.91 0.85 1.09 1.02 0.22 0.57 88.79
D5 3.94 2.81 1.04 71.14 -0.84 -0.89 1.14 0.25 0.81 87.45
E1 -0.43 -0.56 0.99 88.52 1.88 3.44 0.98 -0.24 -0.36 94.19
E2 0.68 0.91 0.93 87.53 0.47 0.71 0.99 -0.22 0.09 90.24
E3 0.66 0.70 0.87 79.61 -0.65 -0.83 0.97 -0.23 0.30 86.20
E4 1.65 1.50 0.83 71.88 -1.38 -2.03 0.98 -0.20 0.60 89.41
E5 2.28 1.57 0.89 62.79 -1.76 -1.65 1.05 -0.08 0.76 80.48
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undiversifiable risks in the market, and you get rewarded for bearing this kind of risk.

There is no reward for holding diversifiable risk. In fact, it is this insight that prompts

people to locate new risk factors. The one-factor structure of the CAPM might not

work very well with the data, and the new multi-factor models might work better. But

all builds on this insight of locating systematic risk factors.

4 The Fama-French Three Factor Model

Our test of the CAPM informs us on how the CAPM failed to price the Fama-French 25

portfolios: value stocks outperform growth stocks, and small stocks outperform big stocks.

In the one-factor model of CAPM, the only risk factor is the market portfolio and the only

measure of risk is beta. There is no additional role for size or value in the model. So the

logical next step is to build a model that incorporates these two factors. This is what Fama

and French did in their 1993 paper by introducing the SMB and HML factors.

• The Fama and French factors: In order to construct the factors, Fama and French

use a coarser double sort. Along the size dimension, stocks are sort into two groups:

small or big. Along the value dimension, stocks are sort into three groups with 30%

in value, 40% in neutral, and 30% in growth. Because these portfolios are to be used

to construct factors, one would like to have them as diversified as possible. A coarser

sort would allow each bin to have more stocks and therefore improve diversification.

Using the 6 (2x3) portfolios, the SMB and HML factors are constructed as

– SMB (Small Minus Big):

RSMB = Rsmall
− Rbig ,

where Rsmall=1/3 (small value + small neutral + small growth) and Rbig = 1/3

(big value + big neutral + big growth)

– HML (High Minus Low):

RHML = Rvalue
− Rgrowth ,

where Rvalue=1/2 (small value + big value) and Rgrowth=1/2 (small growth + big

growth).

As you can see, the factors are constructed by a long/short strategy. For example, the

HML factor involves buying value stocks and selling growth stocks. The motivation
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behind such a factor is to help investors focus on the targeted risk factor, which is the

difference between values and growth stocks. Any unwanted risks are taken out from

the factor: the portfolio approach diversifies away the idiosyncratic risk in individual

stocks and the long/short strategy hedges out the exposure to the market risk.

As you might notice, SMB and HML are not totally orthogonal to the market risk. The

beta’s of small stocks are usually higher than those of big stocks. As a result, SMB has

a slightly positive beta (around 0.20). The beta’s of growth stocks are usually higher

than those of value stocks. As a result, HML has a slightly negative beta (around

−0.2). A purist would not like this. Nevertheless, by choosing to form their factors

using such a simple long/short strategy, Fama and French seem to value simplicity and

intuitiveness over perfection. I would have done the same thing given the cost and

benefit.

• The three-factor regression: Now we are ready to run the following regression for

our 25 portfolios:

Ri
t − rf = αi + βi

(

RM
t − rf

)

+ si R
SMB
t + hi R

HML
t + ǫit (2)

Notice that we’ve put the two new factors in the regression and label the corresponding

slope coefficients to be s and h. If you like, you can think of them as the “beta” on

SMB and HML.

Since the new factors are slightly correlated with the existing factor, RM
− rf , the

β in the current regression is no longer the CAPM beta. In fact, using Table 1, we

can see that the β from this new regression are slightly different from the CAPM β.

The benefit of using SMB and HML is that they are very simple to construct and also

very intuitive. As we will work in a regression framework for the three factor model,

having slightly correlated factors is not a problem at all. Just be careful with the

interpretation of the new β.

Table 1 also reports the values for the SMB beta s and the HML beta h. As we move

along the size dimension from group A to E, the estimated numbers for s move from

positive to negative. Likewise, as we move along the value dimension, from group 1

to 5, the estimated numbers for h move from negative to positive. It tells us that

indeed there is commonality in movement among small stocks that is different from

large stocks. Regressing returns of small stocks on the SMB factor picks up this

comovement. Similarly, values stocks comove together in ways that are different from

growth stocks. Hence the HML factor. Overall, these regression results tell us that
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size and value are not simply characteristics. Putting small stocks together against big

stocks actually forms a factor. Likewise, putting value stocks together against growth

stocks forms another factor.

Comparing the R-squared numbers in the one-factor regression with the three-factor

regression also tells a similar story. For example, the R-squared’s for small stocks (in

Groups A) are around 60% in the one-factor regression. In the three-factor regression,

the R-squared’s increase to around 90%. Of course, having two more factors always

improve the R-squared, but not by this much. This is telling us that the SMB factor

is picking additional commonality in small stocks.

• The Fama-French three-factor model: Borrowing from the CAPM, the pricing

relation of the three-factor model is pretty straightforward:

E(Ri
t)− rf = βi

(

E
(

RM
t

)

− rf
)

+ si E
(

R SMB
t

)

+ hi E
(

R HML
t

)

.

The risk premiums for the three factors can be estimated using the historical data.

Overall, the size premium is somewhat weak in recent periods. The estimated size

premium is 3.20% with a t-stat of 1.68. So it is not really significant. The value

premium is stronger: 5.15% with a t-stat of 2.78. For the same sample period from

1962 to 2014, the market risk premium is 6.46% with a t-stat of 2.64.

The empirical performance of the Fama-French three-factor model is plotted in Fig-

ure 2. Comparing this plot against the one for the CAPM, we can see a clear im-

provement. By now, we are not surprised that it would work. In the three-factor

model, small stocks have a positive factor loading on SMB and are compensated for

this exposure. So the model-predicted risk premium is higher than that in the CAPM,

where only beta matters. Likewise, value stocks have a positive factor loading on HML

and are compensated for this exposure. As a result, in Figure 2, the dots for those

portfolios in groups 4 and 5 move horizontally to the right, while those in group 1 move

horizontally to the left. So effectively, by having the two added dimensions along size

and value, the model performs better.

• Use the Fama-French three factor model:

The three-factor model can be used as a benchmark model to evaluate the performance

of fund managers. For example, you can put Peter Lynch’s performance on the left

hand side and regress it against the three factors. You can investigate his exposures

to the factors and evaluate how much of his performance derives from such exposures.
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Figure 2: The empirical performance of the Fama-French three-factor model, using the
Fama-French 25 portfolios. For each portfolio i, its risk premium measured from the data is
plotted against that predicted by the model.

The alpha from the regression tells you the magnitude of his performance that cannot

be explain by the three factors.

A fund manager might have a pretty nice looking CAPM alpha, but when evaluate

his performance against the three factor model, his three-factor alpha might be in-

significant. This implies that most of his CAPM alpha in fact comes from exposures

to the size or value factor. This is what people mean when they say “beta in dis-

guise.” For this fund manager, his CAPM alpha actually comes from a beta exposure

to a previously unknown risk factor called size or value. Maybe this is why as this

quant investing approach moves into the world of mutual funds and ETFs, people are

not selling them as alpha’s anymore. Instead, they are emphasizing on beta and risk

factors.
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Appendix

A On Running Multivariate Regression

Many students do not like the fact that SMB and HML are not orthogonal to the market

portfolio. For example, using annual data from 1962 to 2014, let’s regress SMB on the

market:

RSMB
t = αSMB + βSMB

(

RM
t − rf

)

+ ǫt .

We have a CAPM beta of 0.22, indicating that small stocks on average have a slightly higher

beta than large stocks. Run the same regression using the HML factor:

RHML
t = αHML + βHML

(

RM
t − rf

)

+ ǫt .

you get a CAPM beta of -0.21, indicating that growth stocks on average have a slightly

higher beta than value stocks.

How does this affect our multivariate regression in Equation (2)? The only real effect is

that the beta in the three-factor regression is no longer the CAPM beta. Other than this, I

cannot think of any significant “damage” of having a factor that is slightly correlated with

the market. Of course, Fama and French form their factors using this long/short strategy

exactly to take out the market component. As in many situations, simplicity is preferred.

In this case, it is really more simple and intuitive to use SMB and HML. If the cost is not

being able to read the CAPM beta directly from the three-factor regression, then it is an

acceptable cost.

Recall that we call E(RSMB) and E(RHML) the value and size premiums. If we want to

be really careful, we should call them the average returns of SMB and HML. The alpha of

the above regression, αSMB gives us the true performance of SMB: 1.76% with a t-stat of

0.91. And αHML is 6.51% with a t-stat of 3.44. So indeed, the size premium is small and

insignificant for the period from 1962 to 2014, while the value premium is pretty strong.

Also, in the above regressions, you will never put RSMB
t − rf on the left hand size. This

is because RSMB
t is already a long/short portfolio. If you really want, you could do

Rsmall
t − rf = αsmall + βsmall

(

RM
t − rf

)

+ ǫt ,

or

R
big
t − rf = αbig + βbig

(

RM
t − rf

)

+ ǫt .
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Moreover, you notice that αSMB = αsmall
− αbig and similarly for beta.

B Matlab Code

Code 1: Test the models using the Fama-French 25 portfolios

n_model=input(’which model? Market (1); FF 3 Factor (2)’);

load FF_Factors.txt;

start_time=196201;

end_time=201606;

FF_Factors=FF_Factors(FF_Factors(:,1)>=start_time & FF_Factors(:,1)<=

end_time,:);

Market=FF_Factors(:,2)/100;

SMB=FF_Factors(:,3)/100;

HML=FF_Factors(:,4)/100;

RF=FF_Factors(:,5)/100;

switch n_model,

case 1, X=Market;

case 2, X=[Market SMB HML];

end

load FF_Portfolio_25.txt;

FF_Portfolio_25=FF_Portfolio_25(FF_Portfolio_25(:,1)>=start_time &

FF_Portfolio_25(:,1)<=end_time,:);

n_Portfolio=size(FF_Portfolio_25,2)-1;

Portfolio=FF_Portfolio_25(:,2:end)/100-kron(RF,ones(1,n_Portfolio));

Name=[’A1’;’A2’;’A3’;’A4’;’A5’; ...

’B1’;’B3’;’B3’;’B4’;’B5’; ...

’C1’;’C2’;’C3’;’C4’;’C5’; ...

’D1’;’D2’;’D3’;’D4’;’D5’; ...

’E1’;’E2’;’E3’;’E4’;’E5’];

% output for alpha, beta, and R2 tables

if n_model==1, beta_CAPM=[]; alpha_CAPM=[]; R2_CAPM=[]; end

if n_model==2, beta_FF3=[]; alpha_FF3=[]; R2_FF3=[]; end

for i=1:n_Portfolio,
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[b,R2]=Reg_OLS(Portfolio(:,i),X);

switch n_model,

case 1,

R2_CAPM=[R2_CAPM; R2*100];

beta_CAPM=[beta_CAPM; b(1,2:end)];

alpha_CAPM=[alpha_CAPM; [b(1,1)*12*100 b(3,1)]];

case 2,

R2_FF3=[R2_FF3; R2*100];

beta_FF3=[beta_FF3; b(1,2:end)];

alpha_FF3=[alpha_FF3; [b(1,1)*12*100 b(3,1)]];

end

end

if n_model==1, beta_out=beta_CAPM; else, beta_out=beta_FF3; end;

Y=mean(Portfolio)’;

Y_fitted=beta_out*mean(X)’;

figure(n_model); plot(Y_fitted*12,Y*12,’r.’)

switch n_model,

case 1, title(’\bf The Empirical Performance of the CAPM’);

case 2, title(’\bf The Empirical Performance of the Fama-French Three Factor

Model’);

end

axis([0.02 0.14 0.02 0.14])

hold on;

for k=1:n_Portfolio

text(Y_fitted(k)*12+0.001,Y(k)*12,[’ ’ char(Name(k,1))]);

text(Y_fitted(k)*12+0.004,Y(k)*12,[’ ’ char(Name(k,2))]);

if n_model == 1,

if k==5, text(0.080,Y(k)*12,’Small Value’); arrow([0.080,Y(k)

*12],[0.072,Y(k)*12]);end

if k==1, text(0.10,Y(k)*12,’Small Growth’); arrow([0.10,Y(k)

*12],[0.092,Y(k)*12]);end

if k==25, text(0.023,Y(k)*12,’Big Value’); arrow([0.043, Y(k)

*12],[0.052,Y(k)*12]); end

if k==21, text(0.045,0.040,’Big Growth’); arrow([0.055 0.043],[0.06,Y(

k)*12]); end

else
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if k==1, text(0.108,Y(k)*12,’Small Growth’); arrow([0.105,Y(k)

*12],[0.095,Y(k)*12]);end

if k==5, text(0.083,Y(k)*12,’Small Value’); arrow([0.105,Y(k)

*12],[0.115,Y(k)*12]);end

if k==25, text(0.118,Y(k)*12,’Big Value’); arrow([0.116, Y(k)

*12],[0.106,Y(k)*12]); end

if k==21, text(0.025,0.07,’Big Growth’); arrow([0.038 0.067],[0.038,Y(

k)*12+0.003]); end

end

end

if n_model == 1,

xlabel([’\bf Predicted by the CAPM: \beta^i \times \lambda^M’] );

else,

xlabel([’\bf Predicted by the FF model’] );

end

ylabel(’\bf Measured from the data’)

hold on

plot([0.02 0.16],[0.02 0.16],’b--’)

hold off

Code 2: My OLS Regression Function

function [out,R2]=Reg_OLS(Y,X)

A=[ones(length(Y),1) X];

b=inv(A’*A)*(A’*Y);

Eps=Y-A*b;

SE=sqrt(diag(inv(A’*A)*var(Eps)));

out=[b’; SE’; (b./SE)’];

R2=1-var(Eps)/var(Y);

% use this if need adjusted R2: adj_R2=R2−(1−R2)∗size(X,2)/(size(X

,1)−size(X,2)−1);
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1 The Momentum Profit and the Four-Factor Model

• Momentum, past and present: The momentum profit is the strangest thing. You

sort stocks by their past returns into past winners and past losers. In the next few

months, the winner portfolio keeps “winning” and the loser portfolio keeps “losing.”

I can imagine the initial reaction received by Prof. Jegadeesh and Titman when they

first presented their results: not very warm. If I were there, I would have asked: could

there be a coding error?

Things certainly have changed since 1993, when the momentum paper was first pub-

lished in the Journal of Finance. Now there is momentum everywhere. Since the late

1990s, hedge funds have been doing long/short momentum strategies in equity, inter-

national equity, commodity futures, and others. Since the late 2000s, momentum-style

equity mutual funds are being offered to “regular” investors; and now you can also buy

momentum factor ETFs. Of course, in the world of mutual funds and ETFs, you can

only take long positions in the past winners. As a result, the number one risk exposure

in these products remains to be the market risk, not momentum.

• Forming momentum portfolios The momentum strategy itself is very simple and

the exact portfolio formation varies. By now, the strategy adopted by most fund man-

agers is: in month t, sort stocks by their month t-12 to month t-2 cumulative returns.

Notice that the returns in month t-1 are intentionally left out. It is well known that,

over the one-week up to one-month horizon, stock returns exhibit reversals (the also

famous short-term reversal). So including the month t-1 returns would contaminate

the momentum signal.

As usual, let’s double sort by size and momentum to get 25 (5x5) portfolios. As shown

in Table 1, each portfolio is indexed by size (A to E) and momentum (1 to 5). Our

focus is on the momentum dimension, but size is always an important control variable
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Table 1: Momentum Portfolios in the CAPM and the Fama-French Three-Factor Model.
The 25 portfolios are double sorted by size (from A to E) and past returns (from 1 to 5).
All α’s are reported in annualized terms (x12). Statistically significant α’s are reported in
bold. Monthly data from January 1962 to July 2015.

CAPM The FF Three Factor Model
Portfolio α (%) t-stat β R2 (%) α (%) t-stat β s h R2 (%)

A1 -8.19 -3.31 1.37 57.99 -12.14 -6.75 1.19 1.24 0.41 78.50
A2 1.68 1.00 1.05 63.57 -2.46 -2.66 0.94 0.97 0.52 89.40
A3 5.01 3.33 0.99 66.03 1.21 1.56 0.89 0.89 0.48 91.27
A4 6.57 4.36 1.00 66.72 3.39 4.32 0.88 0.92 0.35 91.26
A5 8.87 4.64 1.21 64.28 6.84 6.20 0.98 1.14 0.09 88.49
B1 -7.25 -3.44 1.45 68.20 -10.27 -6.18 1.31 0.95 0.32 80.84
B3 0.95 0.65 1.12 72.39 -2.38 -2.47 1.04 0.76 0.42 88.49
B3 3.47 2.82 1.03 76.06 0.44 0.60 0.96 0.67 0.39 91.81
B4 5.69 4.54 1.05 75.98 2.92 4.34 0.95 0.75 0.32 93.31
B5 6.97 4.16 1.28 72.38 5.97 5.82 1.06 0.95 -0.05 89.99
C1 -5.54 -2.78 1.37 68.03 -7.86 -4.33 1.29 0.61 0.27 74.17
C2 0.55 0.46 1.10 78.67 -2.13 -2.19 1.07 0.46 0.38 86.76
C3 2.34 2.18 1.01 80.01 -0.45 -0.59 0.99 0.46 0.40 89.98
C4 3.19 3.08 1.01 80.94 0.77 0.97 0.98 0.43 0.34 89.31
C5 6.87 4.58 1.21 74.71 6.51 5.80 1.04 0.70 -0.11 86.23
D1 -6.11 -3.08 1.34 67.05 -8.24 -4.24 1.33 0.31 0.31 69.53
D2 -0.05 -0.04 1.11 79.82 -2.25 -2.06 1.14 0.17 0.36 83.30
D3 1.83 1.98 1.00 84.15 -0.29 -0.36 1.03 0.16 0.35 88.30
D4 3.59 4.26 0.99 86.29 2.10 2.69 1.01 0.15 0.23 88.57
D5 5.49 4.03 1.15 76.12 5.52 4.55 1.03 0.44 -0.12 81.64
E1 -5.79 -3.07 1.24 65.92 -6.68 -3.54 1.30 -0.13 0.20 66.96
E2 -0.33 -0.28 0.94 73.42 -1.28 -1.12 1.03 -0.20 0.22 76.88
E3 -0.88 -1.08 0.90 84.74 -1.41 -1.90 0.98 -0.20 0.15 87.82
E4 1.20 1.46 0.89 84.10 1.19 1.57 0.95 -0.23 0.06 86.85
E5 3.30 2.70 1.02 75.83 4.47 3.69 0.99 -0.04 -0.21 76.95
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in any trading strategy. Ideally, we would like a strategy to work within each size

group, from A to E. And as shown in Table 1, the momentum strategy delivers such a

result. It should be noted that I use monthly returns to run the regressions, but report

the alpha’s in annualized terms for ease of communication (which might be a source

of confusion by now). In any case, the reported alpha’s in Table 1 are the monthly

alpha’s multiplied by 12. All other estimates are unaffected.

• The momentum profit: By now, I believe that you know how to read and evaluate

the numbers in Table 1. So I’ll be brief.

Focusing on one size category, say group A, and varying from A1 to A5, we move from

portfolios containing past losers to past winners. You can see the strong magnitudes

of these alpha’s and their t-stat’s: the CAPM alpha is -8.19% per year for A1 and

8.87% for A5. Both estimates are statistically significant with large t-stat’s. It is also

nice that within each size group, the alpha increases monotonically from group 1 to 5.

Moreover, even for stocks in the large cap group, the momentum profit is quite strong

and statistically significant: the CAPM alpha is -5.79% for E1 and 3.30% for E5.

Recall that for book-to-market, the results are not this strong for group E. Moving to

the right side of the Table, we see that the Fama French factors do not help us explain

the momentum profit. Not at all.

• More observations: By now, some of you might have come to like reading numbers.

If so, you could spend even more time on Table 1. Notice how the CAPM beta’s for

the two extreme portfolios (winner and loser) tend to be larger than the middle three

portfolios? This indicates that momentum portfolios tend to be more volatile. Of

course, if you are doing the long/short strategy, then the beta exposure decreases to

a large extend. Still the momentum strategy tend to be more volatile compared with

other strategies (see also page 3 of Prof. Kent Daniel’s slides where he reports the

standard deviations of the six popular strategies pursued by GSAM.)

Focusing on the size and value exposures in Table 1, you might also notice that the

winner portfolios tend to have negative exposures to HML while the loser portfolios

tend to have large and positive exposures to HML. This tells you that there is an

interaction between these two signals: growth stocks tend to be past winners or past

winners tend to be growth stocks. So to sharpen your momentum signal, you might

want to take advantage of this interaction term: hold past winners with high book-to-

market ratio and sell past lowers with low book-to-market ratio.

• Paper alpha vs. real alpha: While the momentum profit looks impressive on paper,
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the real alpha of the trading strategy might not be as impressive because of the execu-

tion costs involved with high portfolio turnovers. For example, the annual turnover of

a small-cap momentum mutual fund is close to 200%. So the real alpha of the strategy

will be cut by transaction costs. One of the main sources of transaction costs is price

impact, especially for a large fund pursuing momentum strategy in small-cap stocks,

where liquidity is known to be poor.

In general, keeping the execution costs low should be as important as generating al-

pha. Low execution costs contribute directly to portfolio performance. In today’s

trading environment, knowing how to trade large institutional-size portfolios to mini-

mize transaction costs separates a good asset manager from a mediocre one.

• Momentum in mutual funds and ETFs: For long-only equity mutual funds or

ETF pursuing momentum strategies, the typical momentum portfolio contains stocks

that are ranked by past performance among the top 1/3. For example, if we focus on

large-cap stocks in groups E, then the momentum portfolio is a value-weighted portfolio

of all the stocks in our E5 plus the top half of E4. For small-cap momentum funds, it

is a value-weighted portfolios of all the stocks in our A5 and the top half of A4. As

you can see in Table 1, such portfolios do have positive alphas. At the same time,

however, they also have a pretty large exposure to the market risk. In other words,

by holding a momentum portfolio, an investor’s number one risk exposure is not really

momentum. By pushing quant investing into the long-only space, the razor-sharp focus

on the targeted risk is lost because of the inability to do long/short.

• The four-factor model: Because the momentum profit cannot be explained by the

Fama-French factors, we add the momentum factor to the FF three-factor model to

form a four-factor model:

E(Ri
t)− rf = βi

(
E

(
RM

t

)
− rf

)
+ si E

(
R SMB

t

)
+ hi E

(
R HML

t

)
+ wiE

(
RMOM

t

)
,

where the new MOM factor is constructed in a way similar to the HML factor. Along

the size dimension, stocks are sort into two groups: small or big. Along the momentum

dimension, stocks are sort into three groups with 30% in high past returns, 40% in

neutral, and 30% in low past returns. Again, because these portfolios are to be used

to construct factors, one would like to have them as diversified as possible. Hence the

coarser sort. Using these portfolios, the momentum factor is constructed as,

RMOM = Rwinner −Rloser ,
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where Rwinner=1/2 (small high + big high) and Rloser=1/2 (small low + big low).

Finally, the factor exposures (β, s, h, w), can be estimated using the four-factor re-

gression:

Ri
t − rf = αi + βi

(
RM

t − rf
)
+ si R

SMB
t + hi R

HML + wiR
MOM + εit .

This four-factor model is also call the Carhart model, because it was first proposed in

a 1997 Journal of Finance paper written by Mark Carhart to examine the performance

of equity mutual funds. Carhart was a PhD student of Prof. Fama and helped run

the Global Alpha fund, founded by Cliff Asness in the late 1990s, at GSAM. At its

peak, the team managed over $185 billion in assets. In 2011, the fund was closed by

Goldman. It marked the end of an era.

• Using the four-factor model: The four-factor model can be used as a benchmark

model to evaluate the performance of fund managers. A fund manager following mo-

mentum strategy might have a pretty nice looking FF3 alpha, but when evaluate his

performance against the four factor model, his four-factor alpha might be insignifi-

cant. This implies that most of his FF3 alpha comes from exposures to the momentum

factor. Again, “beta in disguise.”

2 Quant Investing: crowded trades, over-used signals

• Popular quant signals: By now, there is a set of well established quant signals, with

size, value, and momentum being the most basic collection. For example, in Prof Kent

Daniel’s slides, he mentioned six quant-style portfolios held by GSAM’s Global Equity

Opportunities funds around 2007.

Value and momentum are two of the six quant signals. In addition, profitability,

measured as the earnings-to-sales ratio, is also a useful quant signal. Recently, Fama

and French propose a profitability signal that uses the operating profit (=revenues

minus cost of goods sold, minus selling, general, and administrative expenses, minus

interest expense) divided by book value of equity. They find that stocks with robust

profitability overperforms stocks with weak profitability and create a factor called

RMW (robust minus weak).

By now, you might notice that accounting data plays a pretty important role in signal

creation. This indeed is true. Many of the quant signals were first reported by account-
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ing professors. The quant signals relating to earnings quality is one such example. In

a 1996 paper published in the Accounting Review, Prof Sloan shows stock prices do

not fully reflect the information in the quality of earnings. Stocks with low earnings

quality (high accrual) underperform stocks with high earnings quality.

The quant signal using analysts forecast revision also comes from the accounting lit-

erature. In a 1991 paper, also published in the Accounting Review, Prof Stickel finds

that analysts revision affect prices, but prices do not immediately assimilate the in-

formation. In fact, prices continue to drift in the direction of the revision for about

six months after the revision. Another important pattern related to earnings news is

reported by Bernard and Thomas (1989). This is the famous post earnings announce-

ment drift: stocks with positive earnings surprises on their announcement day keep

drift upward in their stock prices a few weeks (up to 60 days) after the announcement

while stocks with negative earnings surprises keep drifting downward.

Finally, the sixth signal reported in Prof Kent Daniel’s slides is management impact.

This signal builds on two observations. Loughran and Ritter (1994) reports long-term

underperformance after IPO or SEO (seasoned equity offering), and Ikenberry, Lakon-

ishok, and Vermaelan (1995) reports long-term overperformance after announcements

of share repurchases. In their recent paper, Fama and French introduces a signal that

is similar in spirit. They use the firm’s asset growth as a signal for firm investment.

They find that stocks with low investment (low asset growth) outperform stocks with

high investment. Calling firms with low investment conservative, and high investment

aggressive, Fama and French introduce a new factor called CMA (conservative minus

aggressive). Together with the market portfolio, SMB, HML, RMW (just mentioned),

Fama and French build a new five-factor model.

• Crowded trades and over-used signals: By now, popular quant signals are a

common knowledge. This is an over-crowded space with over-used signals. Moreover,

the transparency of these trading strategies also makes the funds easy to predict,

inviting front runners.

The 2007 quant meltdown is clearly a result of over-crowding. This example itself is

interesting, but the lesson to be learned is not confined just to this one space. To a

large extent, the 1998 LTCM crisis was a parallel example in the fixed income arbitrage

space. Since the mid-1980s, the fixed-income market has enjoyed a great bull run with

an overall trend of decreasing interest rates (from double digits). By the early 1990s,

many fixed income arbitrage funds are having a lot of success. Success breeds imitation.

6



As a result, the market became over-crowded with many hedge funds in the space of

fixed-income arbitrage, doing similar yield curve trading. Sounds familiar?

In the case of LTCM, the actual trigger was Russia’s default on its local currency

debt, which LTCM did not have a lot of exposure to. Similarly, the initial trigger for

the 2007 quant meltdown was disruptions in the sub-prime mortgage market, which

most of the quant funds did not have any direct holdings. The sub-prime disruption

later spilled over to the credit market, and to currency carry trades. At the time,

what many quant investors didn’t realize was that the success in their space attracted

participation from investors outside of the quant space: statistical arbitrage and other

multi-strategy hedge funds.

As the multi-strategy hedge funds experienced the disruptions in the other markets,

they sought to liquidate assets to raise more cash. The least costly and the quickest

approach is to liquidate the most liquid holdings, which are the stocks in their quant

strategies. Hence the typical contagion story. The quant stocks started to spiral

down together not because they shared some negative fundamentals. Instead, the co-

movement was caused by the commonality in who were holding these stocks: quant

funds. For the 2007 quant meltdown, you need a special pair of quant goggles to see it.

Otherwise, the market looked quite normal during the first two weeks of August 2007.

But in the quant world, the portfolios were moving down by as much as 20 sigmas.

The draw-down affected all quant strategies in all geographical regions.

Similarly, back in 1998, the wall street firms had all the incentive to save LTCM because

they were holding similar assets and pursue the same trading strategies as LTCM. If

LTCM liquidated their portfolios to the market, the liquidity crisis will bring down

many of the investment banks. You might wonder: a liquidity crisis is only temporary,

why worry? Everything will bounce back, right? For example, in the second half of

August 2007, the quant funds rebounded and things were back to normal. Well, if you

are holding a leveraged position, then this is a totally different story: you might not

be able to survive the temporary liquidity crisis. Being levered during a liquidity crisis

brings into my mind the picture painted by one of Warren Buffett’s famous quotes:

Only when the tide goes out do you discover who’s been swimming naked.

In the case of LTCM, the leverage of of the fund has been widely documented and the

often quoted number is 30 to 1. (See, for example, the book by Roger Lowenstein).

In the case of the quant meltdown, Bob Litterman gave this description of GSAM’s

Global Equity Opportunities fund. There were +1000 positions on individual stocks,

with an average holding period in months. The portfolio is market neutral and industry
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neutral, with a volatility of about 10% per year and 1.4% per week. Up to 2007, the

average return was about 15% per year. In July 2007, however, it was down 15%. The

overall size of the fund was about $6 billions, with $24 billion long/short positions. So

effectively, with $6 billion equity, the firm’s assets were at around $48: 8 to 1. From

August 1 to 10, the fund was down 30%, an over 20 sigma drawdown.

• What next? The lessons learned from the quant meltdown:

– cannot be too big: whale.

– cannot be too crowded: run for the exit.

– cannot be too transparent: front running.

Clearly, it is important to have your unique trading strategies. As such, the search for

new quant signals is still on. Given the massive amount of “data mining” in the past

ten to twenty years, the amount of interesting signals left for us to discover might be

limited. Overall, this area is just not as exciting and creative as it was ten or twenty

years ago.

An alpha that looks good on paper does not necessarily translate to real alpha. Trans-

action costs such as price impact or short-sale constraint cut into the real alpha. This

is especially true for smaller and less liquid stocks. Unfortunately, most of the quant

signals work better in small to medium stocks. Another problem is that some quant

signals that used to work in the past ceased to work after the publication of the signal.

One push is to other asset classes, such as fixed income. But the fixed-income world

is probably smarter and faster than the equity world in the sense that most of the

fixed income arbitrage trades are indeed designed to exploit cross-sectional pricing

differences. For the corporate bond market, the lack of liquidity in that market does

not make it a suitable place for the traditional quant investing.

Another recent push is to mutual funds and ETFs. As we discussed earlier, for long-

only space, a large portfolio of the risk exposure comes not from the quant signal, but

from the market risk. This probably is the most limiting aspect of quant investing in

this space. Nevertheless, the push in that direction seems to be a recent trend. In

yesterday’s Financial Times, it was reported that Goldman has also joined the “smart

beta” ETF rush.
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3 Currency Carry Trade

• The FX market: In terms of trading, the foreign exchange market is the largest

and the most liquid market in the world. According to a BIS survey in 2013, the

daily trading volume of the currency market was $5.34 trillion, among which the dollar

trading volume in the spot market was around $2 trillion. By comparison, the average

daily dollar trading volume of NYSE group is $41 billion in 2015. The US Treasury

market, important and highly liquid, has a daily dollar trading volume around $500

billion. There are mixed trading motives behind the trillion dollar daily trading volume:

hedging currency exposure could be an important component, but currency speculation

accounts for a sizable percentage of the trading volume.

• Currency carry trade: Currency carry trade is one of the well known trading strate-

gies pursued by macro hedge funds. In a way, it is like quant investing, except that the

history of this trading strategy is probably longer than quant investing in the equity

space. Fama (1984) was one of the earlier papers documenting this pattern, which is

called forward premium puzzle in academic.

The strategy is simple and intuitive. Currencies with high interest rates (e.g., New

Zealand dollar or Australia dollars) are used as asset or target currencies and currencies

with low interest rates (Japanese Yen) are used as funding currencies. The strategy

is to buy the “target” currencies and borrow from the “funding” currency, carry this

position with a positive carry, and unwind it later in the spot market: sell the target

currency and buy back the funding currency. As a result, there are two drivers for the

portfolio returns: the interest rate differential, and the gain or loss in the spot market

when unwinding the trade. It is very similar to the two components in stock returns:

dividend yield and capital gains.

On average, this is a profitable trading strategy, but it is sensitive to the liquidity

condition of the global markets. Large losses in currency carry often incurs when there

is a global sell-off of risky assets. In a flight to quality, investors typically abandon

the risky assets and move to the safer securities such as US treasury or the perceived

safe haven currencies (e.g., the Swiss Franc, the Japanese Yen, and the US dollars).

Accompanied with the large losses in currency carry is the sudden strengthening of the

funding currency and weakening of the target currency. As carry traders rush to the

market to unwind their carry trades, the situation is further exacerbated.

• Currency Carry Profit: Let’s apply the portfolio approach we’ve learned from the
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quant investing to currency carry. Let’s use the US dollar as an anchor and calculate

portfolio returns from the perspective of a US investor. In month t, he borrows in US

dollar and buys one specific foreign currency. In month t+1, he unwinds the trade and

calculates the realized return.

In forming the portfolios, we use the interest rate differential between the foreign and

US one-month risk-free rates, i∗ − i as the quant signal. We sort foreign currencies

into six groups. Group 1 contains currencies with the highest interest rates: the

target currencies. Group 6 contains currencies with the lowest interest rates: the

funding currencies. For each portfolio, we calculate the holding period returns from

each currency and equal weight the returns across the currencies in the portfolio.

Table 2: Currency Portfolios Sorted by Interest Rates

CAPM
Rank exret (%) beta alpha (%)
1 0.79 0.19 0.69

[4.56] [3.08] [3.22]
2 0.35 0.17 0.26

[2.39] [3.64] [1.55]
3 0.28 0.12 0.22

[2.14] [2.36] [1.39]
4 0.15 0.08 0.11

[1.21] [1.91] [0.77]
5 -0.05 0.07 -0.08

[-0.38] [1.53] [-0.58]
6 -0.18 0.01 -0.18

[-1.37] [0.24] [-1.30]

Table 2 uses monthly data from January 1987 through December 2011. The number

of available currencies varies over time. For the period from 1987 through 2011, the

sample starts with 17 currencies and reaches a maximum of 34 currencies. Since the

launch of Euro in January 1999, the sample covers 24 currencies.

The average excess return for portfolio 1 is 0.79% per month and is statistically sig-

nificant. By comparison, the average excess return for portfolio 6 is slightly negative

and is insignificant. A typical currency carry trade would long portfolio 1 and short

portfolio 6. The difference between these two portfolio returns constitutes the typical

currency carry profit: around 0.97% per month (roughly 11% per year). Using the US

stock market portfolio as a benchmark, we find that the portfolio of target currencies

has a beta of 0.19, which is interesting given that the portfolio involves positions on
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currencies with no direct exposure to the stock market. By contrast, the portfolio of

funding currency has very little exposure to the US stock market. Overall, the CAPM

alpha of the currency carry trade remains large and significant.
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Just when Prof. Fama and his PhD/MBA students were busy working on the cross

section of expected stock returns, another area of Finance was taking shape. In this area,

tools developed in Econometrics and Statistics are applied to financial time series such as the

time-series of stock returns. Given how difficult it is to estimate the first moment (expected

returns), much of the attention was devoted to estimating the second moment, stock return

volatility. The most visible figure in this area is Prof. Rob Engle, who was awarded a Nobel

Prize in 2003 for “methods of analyzing economic time series with time-varying volatility

(ARCH).” The ARCH paper was published in 1982 when Prof. Engle was an Economics

professor at UCSD. The more famous GARCH extension was later published in 1986 by his

PhD student Prof. Bollerslev.

1 Volatility models and market risk measurement

• The need for better risk management tools: In the early 1990s, there were two

developments that made volatility models attractive and relevant. First, the need

of a better option pricing model becomes quite obvious after the 1987 stock market

crash. The Black-Scholes model builds a very good foundation, but it lacks flexibility

in handling the richer reality. In the Black-Scholes model, stock returns are normally

distributed with a constant volatility σ. Any casual inspection of the data would inform

us that volatility is not a constant. So having a better volatility model would be a first

step toward a better option pricing model.

Second, and even more pressing was the need for better risk management tools. The

mortgage-backed security was developed in the 1980s, and the over-the-counter deriva-

tives market started to take off by the late 1980s. By the early 1990s, the increasing

activity in securitization and the increasing complexity in the fixed-income products

have made the trading books of many investment banks too complex and diverse for
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the chief executives to understand the overall risk of their firms.

It was an industry wide phenomenon. For example, in “Money and Power,” Cohan

wrote about the difficult year of 1994 at Goldman after the two amazingly profitable

years in fixed-income in 1992 and 1993. In the book, he quoted Henry Paulson, “What

came out of the 1994 debacle was best practices in terms of risk management, The

quality of the people, and the processes that were put in place – anything from the

liquidity management to the way we evaluated risk and really the independence of that

function – changed the direction of the firm.”

• JPMorgan’s RiskMetrics: Among all Wall Street firms, JPMorgan’s effort was

by far the most visible and influential. This 2009 New York Times article titled

“Risk Mismanagement” gave a very good account of the events.

JPMorgan’s chairman at the time VaR took off was a man named Dennis

Weatherstone. Weatherstone, who died in 2008 at the age of 77, was a

working-class Englishman who acquired the bearing of a patrician during his

long career at the bank. He was soft-spoken, polite, self-effacing. At the

point at which he took over JPMorgan, it had moved from being purely a

commercial bank into one of these new hybrids. Within the bank, Weath-

erstone had long been known as an expert on risk, especially when he was

running the foreign-exchange trading desk. But as chairman, he quickly real-

ized that he understood far less about the firms overall risk than he needed

to. Did the risk in JPMorgans stock portfolio cancel out the risk being

taken by its bond portfolio – or did it heighten those risks? How could you

compare different kinds of derivative risks? What happened to the portfolio

when volatility increased or interest rates rose? How did currency fluctua-

tions affect the fixed-income instruments? Weatherstone had no idea what

the answers were. He needed a way to compare the risks of those various

assets and to understand what his companywide risk was.

What later became RiskMetrics was an internal effort developed within JPMorgan in

1992 in response to the CEO’s question. Quoting the New York Times article again,

By the early 1990s, VaR had become such a fixture at JPMorgan that Weath-

erstone instituted what became known as the 415 report because it was

handed out every day at 4:15, just after the market closed. It allowed him to

see what every desk’s estimated profit and loss was, as compared to its risk,
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and how it all added up for the entire firm. True, it didn’t take into account

Taleb’s fat tails, but nobody really expected it to do that. Weatherstone

had been a trader himself; he understood both the limits and the value of

VaR. It told him things he hadn’t known before. He could use it to help him

make judgments about whether the firm should take on additional risk or

pull back. And that’s what he did.

• Global risk factors: In 1994, JPMorgan started to make RiskMetrics publicly avail-

able. It published its technical document outlining its risk measurement methodologies.

It also made available two sets of volatility and correlation data used in the computa-

tion of market risk. In Spring 1996, I was hired as a research assistant to Prof. Darrell

Duffie to work on risk management and Value-at-Risk. I spent a lot of time reading

this technical document of RiskMetrics and I also downloaded the volatility and cor-

relation dataset everyday just to play with them and track the movements. It was

through having to deal with the datasets that the immensity of the global financial

markets became real to me.

For example, the 1996 RiskMetrics data files covered over 480 financial time series that

were important for the trading books of most investment banks. This includes

– Equity indices across the world.

– Foreign exchange rates.

– The term structure of interest rates across the world:

∗ money market rates (1m, 3m, 6m, and 12m) for the short end.

∗ government bond zero rates (2y, 3y, 4y, 5y, 7y, 9y, 10y, 15y, 20y, and 30y) for

the longer end.

– The term structure of swap rates across the world (2y, 3y, 4y, 5y, 7y, and 10y).

– Commodities: spot and futures of varying maturities.

• The variance-covariance matrix: In order to measure the firm-wide risk exposure,

one need to first map each position to these risk factors, and then calculate the volatility

of the overall portfolio or portfolios by asset class: interest rates, equity, currency,

and commodities. One of the key building block of this calculation is the variance-

covariance matrix of the risk factors. For the 480 risk factors used by JPMorgan in

1996, this involves calculating the volatility for each of the 480 risk factors, and then

calculate the pair-wise correlations between the 480 risk factors. In the rest of the

class, we will be busying doing these calculations.
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Let me quote a few paragraphs from the 2012 annual report of Goldman Sachs so as

to give you an update on the risk management effort on Wall Street since 1996.

We also rely on technology to manage risk effectively. While judgment re-

mains paramount, the speed, comprehensiveness and accuracy of information

can materially enhance or hinder effective risk decision making. We mark to

market approximately 6 million positions every day. And, we rely on our sys-

tems to run stress scenarios across multiple products and regions. In a single

day, our systems use roughly 1 million computing hours for risk management

calculations.

When calculating VaR, we use historical simulations with full valuation of

approximately 70,000 market factors. VaR is calculated at a position level

based on simultaneously shocking the relevant market risk factors for that

position. We sample from 5 years of historical data to generate the scenarios

for our VaR calculation. The historical data is weighted so that the relative

importance of the data reduces over time. This gives greater importance

to more recent observations and reflects current asset volatilities, which im-

proves the accuracy of our estimates of potential loss. As a result, even if our

inventory positions were unchanged, our VaR would increase with increasing

market volatility and vice versa.

As you can see, roughly 6 million positions are mapped into 70,000 market factors in

Goldman’s risk management system. If I understand their statement correctly, this

implies a variance-covariance matrix of 70,000 by 70,000.

Back in the mid-1990s, all three of my Chinese classmates at the NYU Physics depart-

ment went to work at Citibank after graduation. I was the only exception, who went

on to get another PhD in Finance. So much for the future of Physics, which was better

off without us. During one of my visits back to New York, I visited them at Citibank,

thinking how exciting it was for them to be working in the real world with a real pay-

check. And I was very surprised to see how bored they all looked. One of them worked

in the risk management group and his job was to calculate the variance-covariance

matrix everyday. He looked miserable. I guess this is not the most exciting job if you

have to do it everyday. Many years later, I got an email from Mr. Variance-Covariance,

who has become a managing director at Citibank. A happy ending, by Wall Street

standard.
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2 Estimating Volatility using Financial Time Series

In general, volatility is very easy to estimate. Unlike in the case of expected returns, volatility

can be measured with better precision using higher frequency data. The convention in this

field is to use daily data. For stock market returns, having one month of daily data could get

you a pretty accurate estimate. We will continue to use the time series of aggregate stock

returns as an example.

I should mention that in this field, log returns are being used more often than percentage

returns:

Rt = lnSt − lnSt−1 ,

where St could be date-t stock price, currency rate, interest rate, or commodity futures price.

At the daily frequency, the magnitude of returns are generally very small. Using the handy

Taylor expansion, we know that for small x,

ln(1 + x) ≈ x .

Repeating this for log-returns, we have

Rt = lnSt − lnSt−1 = ln

(
St

St−1

)
= ln

(
1 +

St − St−1

St−1

)
≈ St − St−1

St−1
.

In other words, working with log-returns or percentage-returns does not make too much of

a difference when returns are small in magnitude.

Also notice that our attention is no longer on the first moment. Getting the volatility

right is our main task. We calculate the variance by,

var(Rt) = E (Rt − μ)2 = E(R2
t )− μ2 .

The volatility estimate is

std(Rt) =
√

var(Rt) =
√

E(R2
t )− μ2 =

√
E(R2

t )×
√
1− μ2

E(R2
t )

.

At the daily frequency, μ is around a few basis points for the US equity market, while the

daily volatility is around 100 basis points (i.e., 1%). As a result, μ2/E(R2
t ) is a really really

small number and
√

1− μ2/E(R2
t ) ≈ 1 − 1

2
μ2/E(R2

t ) is very close to one. So it does not

make a big difference whether or not we subtract μ from the realized returns such as Rt in
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estimating the volatility. You will notice that most of the time, people drop μ for simplicity:

std(Rt) ≈
√
E(R2

t ) .

Of course, this relationship between daily vol and daily μ exists mostly true for assets in

the risky category. For fixed income product, this might not be true. If you would like to

be safe, one way to approach the data is to first demean the time-series data: Rt − μ, and

then apply the volatility models.

• SMA: The simple moving average model fixes a window, say one month, and use

the daily returns within this window to calculate the sample standard deviation. The

window is then moved forward by one step, say one day, and the whole calculation gets

repeated again.

In Figure 1, I use a moving window of one month and move the window one month at a

time to plot a monthly time-series of SMA volatility estimates. In this space, volatility

is usually quoted at an annualized level. So I multiply the volatility estimates by
√
252

(assuming 252 business days per year). This annualized volatility corresponds to the

volatility coefficient σ in the Black-Scholes model. So we also compare these volatility

numbers with the option-implied volatility.

Just so you are convinced that these volatility estimates can be estimated with a pretty

good precision using only one month of daily data, I also plotted the 95% confidence

intervals. If you compared Figure 1 against Figure 2, you can see the marked difference

in estimation precision. Using one month of daily data to estimate the average return,

what you get is very much noise.

Another observation I would like you to make is the variation of market volatility over

time. Its pattern is very different from that of market returns. Volatility is persistent: a

day of high volatility is usually followed by another day of high volatility. Volatility also

tends to spike up once in a while. If you plot these events against the NBER business

cycles, you see that volatility usually spikes up during recessions. But recessions are not

the only time when volatility spikes up. Whenever the market is in trouble, volatility

goes up. Let me name a few recent events: the 1987 stock market crash, the 1997 Asian

Crisis, the 1998 LTCM crisis, the 2000-01 tech bubble/burst, the 9/11, and the 2008

financial crisis. Finally, whenever volatility is at an usually high or low level, it tends

to revert back to its historical average. This pattern is called mean reversion. Using

a longer sample that includes the Great Depression, the historical average of volatility

is around 20%. Using the more recent sample, the average volatility is around 15%.
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Figure 1: Time-Series of Stock Volatility using SMA.
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Figure 2: Time-Series of Monthly Average Stock Returns using SMA.
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The plot has not been updated for the last few years. Nowadays, the best place to get

stock market volatility (without having to do any calculation) is the CBOE VIX index.

For example, over the one-week period from August 17 to 24, 2015, the VIX shoots up

from 13.02% to 40.74%, because of the concern over the Chinese stock market.

Comparing the volatility estimate with the VIX index, which is effectively the option

implied volatility, you notice that the option implied volatility seems to be consistently

higher than the volatility estimate. We will visit this issue again when we cover the

options market.

• EWMA: The exponentially weighted moving average model is an improvement over

the SMA model. Instead of applying equal weights to all observations with a fixed

window, EWMA applies an exponential weighting schedule. It chooses a decay factor

λ, which is a number between zero and one, and performs the volatility estimate by:

√√√√(1− λ)

N∑
n=0

λn (Rt−n)
2 .

Let’s first put aside the term 1− λ and focus on the terms within the summation. We

put a weight of 1 for today (n = 0), λ for yesterday, λ2 for the day before yesterday,

and so on. With this weighting schedule, as we move further back into the history and

away from today t, the contribution of (Rt−n)
2 decreases according to the exponential

schedule. Hence the name. Figure 3 gives a graphical presentation of this exponential

weighting scheme.

Going back to one of the paragraphs I quoted from Goldman’s annual report: “We

sample from 5 years of historical data to generate the scenarios for our VaR calculation.

The historical data is weighted so that the relative importance of the data reduces over

time. This gives greater importance to more recent observations and reflects current

asset volatilities, which improves the accuracy of our estimates of potential loss.” So

effectively, the length of the window N is set at five years and a decay factor is selected

to put more weight to the more recent events. In Goldman’s report, the value of

the decay factor was not reported. In RiskMetrics, λ was fixed at 0.94 for all time

series. Also, the choice of the window size is not important because the decay factor λ

effectively selects the window size for you. Figure 3 gives a nice graphical presentation

on how the window size is determined by the decay factor: a strong decay factor

(λ = 0.8) implies a smaller window while a mild decay factor (λ = 0.97) implies a

larger window. A window of 5 years is definitely not necessary: the return happened
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Figure 3: The Exponential Weighting Scheme in EWMA.

5 years ago has a weight of λ5×252, which is too small to matter.

Now let’s come back to the term 1− λ. Notice that

1 + λ+ λ2 + λ3 + . . . = 1/(1− λ) .

So (1−λ) is there because of normalization. In the same way, the normalization factor

in the SMA model is 1/N. In the SMA model, if I increase the window size N, then

each observation carries a smaller weight: a smaller 1/N. Likewise, if I change λ from

0.94 to 0.97 in EWMA, the effective window size increases (see Figure 3). As a result,

each observation carries a smaller weight: a smaller 1− λ.

• SMA and EWMA: The difference between these two volatility estimates becomes

most visible immediately after a large price movement. Figure 4 uses the famous Black

Wednesday of 1992 as an example to illustrate this point. This technical document

by RiskMetrics was first written around 1994. If it were written today, then the 2008

crisis would be plotted here as an example.

After a large price movement, up or down, the response of the EWMA estimate is very

fast, because it carries a higher weight for the most recent event. If the market calms
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Figure 4: The Black Wednesday 1992 and the Volatility Estimates of SMA and EWMA.
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down after the large price movement, then the EWMA estimate will soon come down

to a lower level. The behavior of the SMA estimate is the opposite. Its response is

typically sluggish and it carries that piece of information for the duration of its window

size. For this reason, the EWMA is the preferred volatility estimate when it comes to

monitoring market volatility at the daily frequency.

• Black Wednesday 1992: As a side, the 1992 sterling crisis was an important event

in the global currency market. The followings are excepts from Steven Drobny’s book

on “Inside the House of Money: Top Hedge Fund Traders on Profiting in the Global

Markets.”

The United Kingdom joined the European Exchange Rate Mechanism (ERM) in 1990

at a central parity rate of 2.95 deutsche marks to the pound. To comply with the

ERM rule, the UK government was required to keep the pound in a trading band

within 6 percent of the parity rate. In September 1992, as the sterling/mark exchange

rate approached the lower end of the trading band, traders increasingly sold pounds

against deutsche marks, forcing the Bank of England to intervene and buy an unlimited

amount of pounds in accordance with ERM rules. Finally, on the evening of September

16, 1992, Great Britain humbly announced that it would no longer defend the trading

band and withdrew the pound from the ERM system. The pound fell approximately

15 percent against the deutsche mark over the next few weeks, providing a windfall for

speculators and a loss to the UK Treasury (i.e., British taxpayers) estimated to be in

excess of £3 billion.

It was reported at the time that Soros Fund Management made between $1-2 billion

by shorting the pound, earning George Soros the moniker the man who broke the Bank

of England. But he was certainly not alone in betting against the pound. In fact, the

term global macro first entered the general public’s vocabulary on Black Wednesday.

Going back to our class on Predictability and Market Efficiency, there are few things to

be learned. First, you predict the market by following the information, which, in this

case, includes the ERM rule, the economic condition at UK, the government’s ability

and political resolve to defend its currency. Second, the “arbitrage” is risky. In order

for George Soros to make $1 billion with a 15% drop in sterling, his short position

at the time had to be over $6 billion. This is the style of global macro: large and

risky directional bets. Of course, they don’t always make money and we’ve seen a few

times when Soros lost by the same order of magnitude. Third, most of the global macro

opportunities (or losses) in currencies and emerging markets happened because of some
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frictions outside of the financial markets: currency pegging, government intervention,

central bank and policy errors, etc. As the governments and central banks become

smarter in their interaction with the markets, such outsize returns may be slowly

going away.

• Computing EWA recursively: Today is day t− 1. Let σt be the EWMA volatility

estimate using all the information available on day t− 1 for the purpose of forecasting

the volatility on day t. Notice the dating convention: the time-t estimate is observed

on day t − 1. In my personal opinion, we should date σt by t − 1, not t. But this is

the convention in this area. So let’s go with convention.

Moving one day forward, it’s now day t. After the day is over, we observe the realized

return Rt. We now need to update our EWMA volatility estimator σt+1 using the

newly arrived information (i.e. Rt):

σ2
t+1 = λ σ2

t + (1− λ)R2
t . (1)

A good exercise for you would be to start right from the beginning,

σ2
2 = λ σ2

1 + (1− λ)R2
1

and then apply the recursive formula a few times to convince yourself that this recursive

approach does get you the exponential weighting scheme of EWMA:

σ2
3 = λ σ2

2 + (1− λ)R2
2 = λ2 σ2

1 + (1− λ)
(
λR2

1 +R2
2

)
σ2
4 = λ σ2

3 + (1− λ)R2
3 = λ3 σ2

1 + (1− λ)
(
λ2R2

1 + λR2
2 +R2

3

)
. . .

σ2
t = λt−1 σ2

1 + (1− λ)
(
λt−2R2

1 + λt−3R2
2 + . . .+R2

t−1

)

For those of you who like things to be precise: as t → ∞, we are back to the ex-

act formulation of the EWMA. And whatever σ1 we started with does not make a

difference.

If you are an Excel user, you will appreciate the convenience of this recursive formula.

If you care about saving CPU time, you will also appreciate the convenience of this

recursive formula. When we update the information on day t to calculate σt+1, all of

the past information has been neatly summarized by σt. The new information waiting

for us to be included is the realization of Rt. We weight the new information R2
t by
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1− λ and “decay” the old information σ2
t by λ. Adding these two pieces together, we

get the updated variance estimate. It would be difficult not to appreciate the elegance

of this recursive approach. No?

• The auto-correlation coefficient: Another way to understand the recursive formula

of Equation (1) is that imposes the dynamic structure of σ2: persistent with an auto-

correlation coefficient of λ.

Recall that we regress stock return Rt+1 on its own lag Rt to examine the stock return

predictability. We find that from 1926 to 2004, the auto-correlation coefficient is pos-

itive and statistically significant. But the magnitude of the correlation is very small.

Moreover, this predictability is not very robust: over the various subsamples, the auto-

correlation coefficients become statistically insignificant. In other words, the random

walk model with zero auto-correlation is a reasonable model for the stock returns.

When it comes to the dynamic structure of volatility, however, the auto-correlation

coefficient plays a rather important role. Models such as EWMA and GARCH became

popular in practice because they allow volatility to be persistent with a high auto-

correlation cofficient. In estimating the auto-correlation in stock returns, we can simply

run a regression. In the case of volatility, however, we need to estiamte the volatility

along with the coefficient λ. For this, we need a more structured estimation approach

than a regression. (If you get into this area called Econometrics, you will realize that

the essence is really the same. In particular, a linear regression is really the product

of a maximum likelihood estimation. See Appendix A.)

• Estimating the decay factor: Figure 3 provides a graphical connection between the

decay factor λ and the sample size. A strong decay factor, say λ = 0.8, pays more

attention to the current events and underweights the far-away events more strongly. As

a result, the effective sample size is smaller with a stronger decay factor (e.g., smaller

λ). As you can see from Figure 5, a strong decay factor improves on the timeliness

of the volatility estimate, but the smaller sample size makes the estimate noisier and

less precise. On the other hand, a weaker decay factor, say λ = 0.97, improves on the

smoothness and precision, but that estimate could be sluggish and slow in response to

changing market conditions, as reflected in Figure 5. So there is a tradeoff.

– Minimize RMSE: Let’s consider two ways to pick the optimal decay factor.

In the first approach, we would like to minimize the forecast error between the

model’s prediction and the actual realization. Recall, on day t, we form σt+1 as a

13



2007 2008 2009 2010 2011
0

20

40

60

80

100

120

 year

 A
n

n
u

al
iz

ed
 V

o
la

ti
lit

y 
(%

)

 Annualized EWMA Volatility Estimate using Daily S&P 500 Index Returns

 

 
λ=0.8
λ=0.94

2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

 year

 A
n

n
u

al
iz

ed
 V

o
la

ti
lit

y 
(%

)

 Annualized EWMA Volatility Estimate using Daily S&P 500 Index Returns

 

 
λ=0.97
λ=0.94

Figure 5: Time Series of EWMA Volatility Estimates with Varying Decay Factors.
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forecast for the volatility on day t+1. So the model’s forecast error is R2
t+1−σ2

t+1.

Summing these forecast errors over the sample period, we calculate the root mean

squared error (RMSE) by,

RMSE =

√√√√ 1

T

T∑
t=1

(
R2

t+1 − σ2
t+1

)2

Note that the only parameter at our disposal is λ. Everything else comes from

the data. So let’s find the optimal λ∗ that minimizes the forecast error:

λ∗ = arg min
λ∈(0,1)

RMSE = arg min
λ∈(0,1)

√√√√ 1

T

T∑
t=1

(
R2

t+1 − σ2
t+1

)2

– MLE: In the second approach, let’s use the maximum likelihood estimation. To

be honest, using the MLE on this problem is really an overkill, but I would like

to use this opportunity to introduce you to MLE. Anybody working with data

should have done MLE at least once in their life.

Recall that we talk about the pdf of a normal, which is a Gaussian function. In

our current setting, the volatility is time-varying. So the stock return Rt+1 is

normally distributed only when conditioning on the volatility estimate σt+1:

f (Rt+1|σt+1) =
1√

2πσt+1

e
−

R2
t+1

2σ2
t+1 .

Notice that if I wanted to be very precise, I should have replaced R2
t+1 by (Rt+1−

μ)2 and use the MLE to estimate both λ and μ. But we talked about this. Setting

μ = 0 here is a good compromise to make.

The next step of MLE is to take log of the pdf:

ln f (Rt+1|σt+1) = − ln σt+1 −
R2

t+1

2σ2
t+1

,

I dropped 2π since it is a constant will not affect anything we will do later. We

now add them up to get what econometricians call log-likelihood (llk):

llk = −
T∑
t=1

(
ln σt+1 +

R2
t+1

2σ2
t+1

)
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As you can see, the only parameter in llk is our choice of λ. It turns out that the

best λ is the one that maximizes llk. In practice, we take -llk and minimize -llk

instead of maximizing llk.

What we just did came straight out of Econometrics. A good textbook on this topic

is the Time Series Analysis by James Hamilton. Read in particular the chapter on

Generalized Method of Moments. Most of the econometrics tasks we encounter in

Finance can be understood from the perspective of GMM, which was developed by

Prof. Lars Hansen at University of Chicago. Prof. Hansen shared the 2013 Nobel Prize

with Prof. Eugene Fama and Prof. Robert Shiller. In the Appendix, I include my old

PhD-era code for estimating the standard errors of mean, std, skewness, and kurtosis.

As you can see, my approach was very much influenced by the GMM approach. In the

Appendix, I wrote a brief note on MLE and linear regression, which could be a nice

entry point to motivate you to learn more about Econometrics.

• ARCH and GARCH: The ARCH model, autoregressive conditional heteroskedas-

ticity, was proposed by Professor Robert Engle in 1982. The GARCH model is a

generalized version of ARCH. ARCH and GARCH are statistical models that capture

the time-varying volatility:

σ2
t+1 = a0 + a1R

2
t + a2 σ

2
t

As you can see, it is very similar to the EWMA model. In fact, if we set a0 = 0, a2 = λ,

and a1 = 1− λ, we are doing the EWMA model.

So what’s the value added? This model has three parameters while the EWMA has only

one. So it offers more flexibility (e.g., allows for mean reversion and better captures

volatility clustering). If you are interested in estimating the GARCH model, you can

use the MLE method we just discussed. Instead of estimating σt+1 using EWMA,

you use the GARCH model. The EWMA has only one parameter λ to estimate. The

GARCH model has three parameters to estimate a0, a1, and a2. You will find that, just

like λ, a2 is very close to one. In fact, a2 captures the auto-correlation of the variance σ2
t :

an autocorrelation coefficient that is close to one indicates a very persistent time series.

Moreover, after some calculation, you notice that the long-run mean of the variance in

this model is a0/(1 − a1 − a2). You can see how having additional parameters could

provide more flexibility to the model.

The GARCH model has a pretty strong influence, and you are encouraged to dig deeper
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into the model if it interests you. We used to study quite a bit of GARCH at Stanford

GSB. But looking back, I feel that I get most of the key intuitions by working with

EWMA. Where there are too many moving parts and too many parameters, you tend

to focus more on dealing with the formulas and parameters and lose track of the essence

of the problem. That’s why simplicity is always preferred.

3 EWMA for Covariance

As mentioned at the beginning, our goal is to create the variance-covariance matrix for the

key risk factors influencing our portfolio. Suppose that there are two risk factors affecting

our portfolios. Let RA
t and RB

t be the realized day-t returns of these two risk factors. We

estimate the covariance between A and B by

covt+1 = λ covt + (1− λ)RA
t × RB

t

And their correlation:

corrt+1 =
covt+1

σA
t+1σ

B
t+1

,

where σA
t+1 and σB

t+1 are the EWMA volatility estimates.

This calculation of covariance and correlation is pretty straightforward once you master

the EWMA recursive formula. But let me use this opportunity to bring in volatility as a

risk factor and emphasize on its importance. As recent as the early 2000s, volatility as a risk

factor was not widely monitored by market participants. Of course, sophisticated investors

pay attention to their exposure to volatility risk. The general intuition is that if you are

short on volatility, you are going to lose during crisis. On the other hand, if you are long

on volatility, you are partially hedged during these crises. Exposures to volatility risk comes

certain non-linearity in one’s position. The most straightforward way to be long on volatility

is to buy at-the-money S&P 500 index options. As we will cover in our options class, such

long positions usually are expensive. That is, you are paying a premium for such positive

exposures.

Since the 2008 financial crisis, the volatility risk has got a broader audience. By now,

the VIX index is reported daily in a prominent position along with the Dow, the S&P, and

Nasdaq. It’s often called the fear gauge. Figure 6 plots the historical VIX for the past 15

years. Going over the various events in the past, you can certain appreciate why it is called

fear gauge.

Another important observation about the volatility risk factor is its increasing negative
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Figure 6: Time Series of CBOE VIX.

correlation between the market risk. Figure 7 plots the EWMA correlation estimate between

daily returns of the S&P 500 index and the daily changes in VIX. As you can this, this

correlation is always negative. The fact that there is a negative correlation between the stock

market return and its volatility has always been documented, well before CBOE published

its VIX index. As you can see, during the early sample period, the correlation was hovering

around -50%. Was I was a PhD student working on this topic in the late 1990s, a typical

number for this correlation would be -60%. There is certainly a trend of this correlation

becoming more negative in recent times. After the 2008 financial crisis, this correlation

certainly has experienced a regime switch to a more negative territory.

A negative correlation implies that whenever market drops down, the volatility goes up.

Using the interpretation of VIX as a fear gauge, this means that a down market is coupled

with increasing fear. The more negative correlation in recent years means a higher level of

sensitivity to down markets: a market sitting at its edge, more easily spooked. As we move

on to the options market, we will look at the “fear” component in VIX more closely.

4 Calculating Volatility and VaR for a Portfolio

• Portfolio volatility: Suppose that our portfolio has only two risk factors, whose

daily returns are RA and RB, respectively. Suppose we’ve done our risk mapping from

individual positions to portfolio weights on these two risk factors: wA and wB. If we
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focus our attention on the risk part of our portfolio, then we can even normalize the

portfolio weights so that wA+wB = 1. Let’s also assume that at the moment, our risk

portfolio has a market value of $100 million.

We first construct a variance-covariance matrix for our risk factors:

Σt =

(
(σA

t )
2 ρAB

t σA
t σ

B
t

ρAB
t σA

t σ
B
t

(
σB
t

)2
)

It is a 2×2 matrix, since we have only two risk factors. If you have 100 risk factors

in your portfolio, then you will have a 100×100 matrix. For example, in JPMorgan’s

RiskMetrics, roughly 480 risk factors were used. In Goldman’s annual report, 70,000

risk factors were mentioned. A risk manager deals with this type of matrices everyday

and the dimension of the matrix can easily be more than 100, given the institution’s

portfolio holdings and risk exposures. Notice also the timing here. For σt, you are

actually using all of the market information on day t− 1 (e.g., daily returns of assets

A and B up to day t− 1), for the purpose of forecasting volatility for day t.

Let’s time-stamp our portfolio weights by the actual time. Suppose today is t− 1 and
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let the portfolio weight be written in a vector form:

wt−1 =

(
wA

t−1

wB
t−1

)

Our portfolio volatility is

σ2
t =

(
wA

t−1 wB
t−1

)
×

(
(σA

t )
2 ρAB

t σA
t σ

B
t

ρAB
t σA

t σ
B
t

(
σB
t

)2
)

×
(
wA

t−1

wB
t−1

)

Using the notation we’ve developed so far, we can also write

σ2
t = w′

t−1 × Σt × wt−1 ,

which involves using mmult and transpose in Excel.

• Portfolio VaR: Suppose that our daily portfolio volatility is σ (daily number, unan-

nualized). The value of our portfolio, marked to the market, is $100 million. Assuming

that the portfolio return is normally distributed, we can estimate how much we stand

to lose in market value if a 5% tail event happens to our portfolio over the next day:

VaR (95%) = portfolio value× 1.645× σ ,

where 1.645 is the critical value for a 5% tail event. Some firms report 99% VaR, which

corresponds to the loss in market value if a 1% tail event happens to the portfolio over

the next day: our portfolio over the next day:

VaR (99%) = portfolio value× 2.326× σ ,

where 2.326 is the critical value for a 1% tail event.

As you can see, there are two main drivers for the portfolio VaR: the market value of

the portfolio and the portfolio volatility. The market value tells you the dollar exposure

of your firm’s trading book to risky assets and the portfolio volatility tells you how

volatile the risky assets are. For a chief executive of a firm, the VaR number is a useful

summary of these two important components of a firm’s trading book. Although VaR

is framed as a consideration over tail events, it is not really a measure of tail risk since

it is driven by volatility. We will come back to this issue again when we spend a class

on Market Risk Management.
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Appendix

A MLE and Linear Regression

Let’s consider the linear regression:

Yt = α + βXt + εt ,

where if we replace X with RM −rf and Y with Ri−rf , we are back with our favorite CAPM

regression.

Thinking in terms of MLE, we focus on the distribution of the regression residual εt. We

assume that εt is i.i.d. with normal distribution: zero mean and volatility of σε. Now let’s

repeat the MLE steps for this regression:

• We write down the pdf for the residual:

f(εt) =
1√
2πσε

e
− ε2t

2σ2
ε

• Take the log of the pdf:

ln f(εt) = − ln σε −
ε2t
2σ2

ε

= − ln σε −
(Yt − α− β Xt)

2

2σ2
ε

,

where 2π was again dropped.

• Summing up all observations to get

llk =
T∑
t=1

(
− ln σε −

(Yt − α− β Xt)
2

2σ2
ε

)

• Find the parameter values (σε, α, and β) that will minimize this,

−llk = T × ln σε +
1

2σ2
ε

T∑
t=1

(Yt − α− β Xt)
2

In the EWMA case, we use the computer to minimize -llk by varying λ. In the GARCH

case, we use the computer to minimize -llk by varying a0, a1 and a2. Here, we can actually
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do it by hand. Let’s forget σε for now, and focus on α and β. To miminize −llk is the same

as finding α and β so that

∂ llk

∂α
=

∑
(Yt − α− β Xt)

σ2
ε

= 0

and
∂ llk

∂β
=

∑
[Xt (Yt − α− β Xt)]

σ2
ε

= 0 .

Solving for the optimal α and β then reduces to solving the above two equations. The first

derivatives of llk with respect to the model parameters (e.g., α and β) are also called score.

If there are two parameters, then the score is a vector of two. In our current case, the score

should be a vector of three because there are three parameters: α, β, and σε. But as agreed,

let’s focus only on α and β and forget about σε.

Solving for the partial derivative (score) with respect to α, we have,

α =
1

T

∑
Yt − β

1

T

∑
Xt

Solving for the partial derivative with respect to β, we have

∑
Xt Yt − α

∑
Xt − β

∑
X2

t = 0

Plugging the solution for α into the equation above, we have:

∑
XtYt −

1

T

∑
Xt

∑
Yt = β

(∑
X2

t −
1

T

(∑
Xt

)2
)

Let me divide both sides of the equation by T so that you can see the result more clearly,

1

T

∑
XtYt −

(
1

T

∑
Xt

) (
1

T

∑
Yt

)
= β

(
1

T

∑
X2

t −
(
1

T

∑
Xt

)2
)

What we have is,

cov(X, Y ) = β var(X)

So, as a by product of our derivation, you get to know why running a regression gets you

the CAPM beta.

Also, for those of you who think more carefully, the fact that we assume ε is normally

distrubted might be bothering you. Don’t be. Even if ε is not normally distributed, we can
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still do this procedue, which is called quasi-maximum likelihood estimation. The estimates

might not be the most efficient, but they are still consistent. By going through this derivation,

my intension is to lead some of you to the door of econometrics. If you are interested, go

ahead. If not, turn around. One key calculation left out is how to calculate the standard

errors of α and β. For those of you who are interested in learning more, I would recommend

the chapters on GMM and MLE of James Hamilton’s book on Time Series Analysis.

B Matlab Code

Code 1: Plot SMA Volatility Estimates

load SP500_Daily.txt;

Data=SP500_Daily;

yr=Data(:,1);

mn=Data(:,2);

dy=Data(:,3);

Time=datenum(yr,mn,dy);

Ret=Data(:,4)*100;

time_mn=[]; vol_mn=[]; mu_mn=[];

for i_yr=min(yr):1:max(yr),

for i_mn=1:12,

i_Ret=Ret(yr==i_yr&mn==i_mn);

if ~isempty(i_Ret),

time_mn=[time_mn; datenum(i_yr,i_mn,30)];

[M,SE]=stat_fun(i_Ret);

vol_mn=[vol_mn; [std(i_Ret)*sqrt(252) SE(2)*sqrt(252)]]; %monthly

vol estimate with standard error

mu_mn=[mu_mn; [mean(i_Ret) std(i_Ret)/sqrt(length(i_Ret))]]; %

monthly mu estimate with standard error

end

end

end

% plot SMA vol estimates

figure(2);
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plot(time_mn,vol_mn(:,1),’b-’);

hold on;

datetick(’x’,’yyyy’)

BND=axis;

axis([datenum(1962,1,1) datenum(2011,12,31) BND(3) BND(4)]);

BND=axis;

plot([BND(1) BND(2)],std(Ret)*sqrt(252)*[1 1],’k--’)

hold off

% plot SMA vol estimates with confidence intervals

figure(10);

plot(time_mn,vol_mn(:,1)+1.96*vol_mn(:,2),’g-’,time_mn,vol_mn(:,1)-1.96*

vol_mn(:,2),’m-’);

hold on

plot(time_mn,vol_mn(:,1),’b-’,’LineWidth’,2);

hold off

BND=axis;

datetick(’x’,’yyyy’)

legend(’95% Confidence, Upper’,’95% Confidence, Lower’)

title(’\bf SMA estimates of \sigma and their 95% confidence intervals’);

ylabel(’\bf Annualized Volatility (%)’);

BND=axis;

axis([datenum(1962,1,1) datenum(2011,12,31) BND(3) BND(4)]);

% plot SMA mu estimates with confidence intervals

figure(11);

plot(time_mn,mu_mn(:,1)+1.96*mu_mn(:,2),’g-’,time_mn,mu_mn(:,1)-1.96*mu_mn

(:,2),’m-’);

hold on

plot(time_mn,mu_mn(:,1),’b-’,’LineWidth’,2);

hold off

BND=axis;

datetick(’x’,’yyyy’)

legend(’95% Confidence, Upper’,’95% Confidence, Lower’)

BND=axis;

axis([datenum(1962,1,1) datenum(2011,12,31) BND(3) BND(4)]);

ylabel(’\bf Monthly Average of Daily Returns (%)’);

title(’\bf SMA estimates of \mu and their 95% confidence intervals’);
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% plot SMA vol estimates together with NBER recessions

figure(3);

plot(time_mn,vol_mn(:,1),’b-’);

BND=axis;

hold on;

datetick(’x’,’yyyy’)

FY=[BND(4) BND(3) BND(3) BND(4)];

load NBER_Recession.dat;

hold on

for i=1:size(NBER_Recession,1),

FX=[datenum([NBER_Recession(i,1:2) 1])*[1 1] ...

datenum([NBER_Recession(i,3:4) 1])*[1 1]];

if FX(1)> datenum(1962,1,1),

fill(FX,FY,[0.75 0.75 0.75]);

hold on

end

end

plot(time_mn,vol_mn(:,1),’b-’,’LineWidth’,2);

hold on;

plot([BND(1) BND(2)],std(Ret)*sqrt(252)*[1 1],’k--’)

hold off;

BND=axis;

axis([datenum(1962,1,1) datenum(2011,12,31) BND(3) BND(4)]);

Code 2: Calculating Standard Errors

function [MOMENTS, SE]=my_stat(data)

T=size(data,1);

m1=mean(data);

m2=var(data);

m3=mean((data-m1).^3);

m4=mean((data-m1).^4);

MEAN=m1;

STD=sqrt(m2);
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SKEW=m3/m2^(3/2);

KURT=m4/m2^2;

h1=data-m1;

h2=h1.^2-m2;

h3=h1.^3-m3;

h4=h1.^4-m4;

h=[h1 h2 h3 h4];

T=length(h);

R=h’*h/T;

n_moving=5;

for i=1:n_moving

R_temp=h(i+1:T,:)’*h(1:T-i,:)/T;

R=R+(R_temp’+R_temp)*(1-i/(n_moving+1));

end

W=inv(R);

D=[-1 0 0 0; 0 -1 0 0; 3*m2 0 -1 0; 4*m3 0 0 -1];

COV=inv(D’*W*D);

SE=sqrt(diag(COV)/T);

D2=1/2/sqrt(m2);

C2=COV(2,2);

SE(2)=sqrt(D2*C2*D2/T);

D23=[-1.5*m3/m2^(5/2) 1/m2^(3/2)];

C23=COV(2:3,2:3);

SE(3)=sqrt(D23*C23*D23’/T);

D24=[-2*m4/m2^3 1/m2^2];

C24=COV([2 4],[2 4]);

SE(4)=sqrt(D24*C24*D24’/T);

MOMENTS=[MEAN STD SKEW KURT]’;
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For some, predicting the market is a safe conversation piece, just like talking about the

weather. I became a Finance professor in July 2000. The day before, I was a PhD student.

The day after, I became a professor. Nothing really changed. But because of the new label,

suddenly people were seeking for my opinion on financial matters. By far, the question I

got the most was can I teach them how to predict the market. Wanting to know something

about the future is hard wired in most of us. On Wall Street, the appetite for predicting

stock prices is as old as the existence of the markets. In this class, let’s take a look at the

empirical evidences on stock return predictability.

We will start with the efficient market hypothesis, using it as a framework to help us

understand what it means to be able to predict the market. People often believe that

market efficiency means that returns are unpredictable. This is not true. In an economy

with time-varying business condition or time-varying risk appetite, the expected returns are

time-varying and, most likely, persistent. As a result, you will see return predictability. The

more relevant question is: How strong is the predictability? We will look at some of the

empirical evidences.

1 Predictability and Market Efficiency

• Follow the information: The financial markets are an information central, where

people bring their information to trade. If it is a correct and useful piece of information,

which has not yet been incorporated into the price, then there is room for profit. But

as soon as the market price adjusts to the news, the information loses its usefulness

and there is no longer any profit to be made with this piece of information.

So when it comes to predicting the market, one should follow the flow of information.

A trader who wants to make a profit from predicting the market should always ask

himself: Am I good at collecting information? If so, then I have all the incentive to do
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so because I will be rewarded for bringing this information to the financial markets.

The next question is: What kind of information am I good at collecting, macro-level

for the entire economy, or micro-level for individual stocks? Depending on your talent,

the nature of your trading strategy will be very different. Global macro funds place

directional bets on the overall market: interest rate, foreign exchange, and maybe the

stock market. Long/short equity funds or fixed-income arbitrage funds avoid taking

any directional bet. Instead, they focus on the relative mis-pricing between groups of

stocks or bonds. At the super high-frequency domain, where the life span of information

is on the order of milliseconds, market making funds and statistical arbitrage funds

populate this space to facilitate trades and provide liquidity.

All of these market players are motivated by a common goal: making a profit. And they

are able to do so by bringing information to the markets. As a result of these efforts,

new and relevant information gets incorporated into the prices. And the markets

become more efficient.

• The efficient market hypothesis: It’s impossible to talk about market predictability

without bringing up the efficient market hypothesis, or the question about market

efficiency. So let me spend some time clarifying some of the confusions.

First of all, in my personal opinion, the efficient market hypothesis is simply a statement

that defines what it means to have an efficient market: when market prices incorporate

information. It is like saying, being happy means to have peace of mind.

Second, without a proper asset pricing model, there is no way to test the efficient market

hypothesis. With a proper model, then we are simply testing the model (e.g., the

CAPM) which usually assumes market efficiency. So there is really no point in sweating

over it. To be more specific, the efficient market hypothesis is not a stand alone test

on market efficiency. It is always a joint test. Market efficiency can only be tested

in the context of an asset pricing model that specifies equilibrium expected returns.

For example, market efficiency implies zero predictability only if the expected returns

that investors require to hold stocks are constant through time (or at least serially

uncorrelated). Otherwise, if expected stock returns are time-varying and persistent,

then there will be predictability in stock returns and it does not imply at all market

inefficiency.

Third, Finance in general and efficient market hypothesis in particular is really not a

system of beliefs. What we can offer in Finance are tools. Tools for clear thinking.

Don’t believe, don’t don’t believe. Use the tools, apply them to the data and to your
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own experiences, make an honest and sincere effort to figure things out for yourself.

• Orange juice: Since we are on the topic of market efficiency, let me tell one story

that impressed me the most over the years. It is about orange juice, written in a 1984

paper by Prof. Roll from UCLA. It is the kind of paper I’ve always wanted to write:

simplicity at its best; maximum power with minimum fluff.

Cold weather is bad for orange production. Orange trees cannot withstand freezing

temperatures that last for more than a few hours. The central Florida region around

Orlando, which accounts for more than 98 percent of U.S. production of frozen con-

centrated orange juice, occasionally has freezing weather. During the 6 and 1/4 year

period studied by Prof. Roll, there were four periods when the temperatures were below

30◦F, each accompanied by significant price increase in orange juice futures prices.

Overall, the most important determinant in the pricing of orange juice futures is

weather in central Florida. Quoting Prof. Roll, “So if the OJ futures market is an

efficient information processor, it should incorporate all publicly available long-term

and short-term weather forecasts. Any private forecasts should be incorporated to the

extent that traders who are aware of those forecasts are also in command of signifi-

cant resources. The futures price should, therefore, incorporate the predictable part of

weather in advance.”

With this idea in mind, Prof. Roll uses the OJ futures prices to predict the weather.

Not surprisingly, you will find a relationship between the two. The ingenious design of

Prof. Roll’s regression is to find out if the OJ futures prices can predict weather more

accurately than the National Weather Service. On the left hand side of his regression

is the temperature forecast error, which the percentage difference between the actual

temperature and the forecast temperature provided by the National Weather Service.

On the right hand side of his regression is the returns on orange juice futures.

What did he find? Orange juice futures prices are better at predicting the weather

than the National Weather Service. This predictability is especially strong for the

P.M. tempature forecast because of the sensitivity of orange trees to freezing temper-

atures.

• The value of millisecond: Let me tell you another story that fascinated me. It

borderlines on craziness, but is a good story. This the first paragraph of Flash Boys, a

recent book by Michael Lewis.

“By the summer of 2009 the line had a life of its own, and two thousand men were
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digging and boring the strange home it needed to survive. Two hundred and five crews

of eight men each, plus assorted advisors and inspectors, were now rising early to

figure out how to blast a hole through some innocent mountain, or tunnel under some

riverbed, or dig a trench beside a country road that lacked a roadside – all without ever

answering the obvious question: Why? The line was just a one-and-a-half-inch-wide

hard black plastic tube designed to shelter four hundred hair-thin strands of glass, but

it already had the feeling of a living creature, a subterranean reptile, with its peculiar

needs and wants. It needed its burrow to be straight, maybe the most insistently

straight path ever dug into the earth. It needed to connect a data center on the South

Side of Chicago to a stock exchange in northern New Jersey. Above all, apparently, it

needed to be a secret.”

All of these effort just so the speed of information transmission can be improved in the

order of ... millisecond. Let me quote Lewis again, since he is a much better writer.

“One way to price access to the line, Tabb thought, was to figure out how much money

might be made from it, from the so-called spread trade between New York and Chicago

– the simple arbitrage between cash and futures. Tabb estimated that if a single Wall

Street bank were to exploit the countless minuscule discrepancies in price between

Thing A in Chicago and Thing A in New York, they’d make profits of $20 billion a

year. He further estimated that there were as many as four hundred firms then vying

to capture the $20 billion.”

• Market efficiency is not a marble statue: In telling the previous two stories, I

would like to impress upon you the process through which markets become efficient.

Market efficiency is not really a doctrine for you to believe or disbelieve. It is a process,

a process of arbitrageurs participating in the markets with the objective of making a

profit. Sometimes, this process works; sometimes it fails. It is an organic process, not

a marble statue.

After the 2008 financial crisis, many people were hard on the efficiency market hypoth-

esis. Some people believed that the financial crisis was the result of a misguided faith

in market efficiency that encouraged market participants to accept security prices as

the best estimate of value rather than conduct their own investigation. Some wrote

that among the causes of the recent financial crisis was an unjustified faith in rational

expectations, market efficiencies, and the techniques of modern finance.

Seriously, I really don’t know how these people got their ideas. Rational expectation

builds on the understanding that all players in the market are motivated to optimize
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their risk and return tradeoff; market efficiency does not happen in the vacuum; it

happens only when investors bring their information to the market with the objective

of making a profit; and techniques of modern finance do help reduce trading cost and

improve risk sharing in the society.

As to 2008? The flow of information broke down at some point. Large banks were

sitting on supposedly super safe tranches of CDO and CDO2 without realizing or the

willingness to realize the real risk. The rest of the market had a very limited access

to this kind of balance-sheet (or off balance-sheet) level information and the market

prices failed to incorporate this information. But did the banks take these positions

out of their belief of market efficiency? I really doubt it.

• Market inefficiency and limits to arbitrage: Since we touched upon the topic of

market efficiency, I think it would be fair to mention the Behavior Finance literature

on market inefficiency. It was an area of Finance that grew in popularity after the tech

boom of 1990s. If you are interested in this topic, you can start with Prof. Shleifer’s

book, “Inefficient Markets: An Introduction to Behavioral Finance.”

The efficient market hypothesis assumes that the market incorporates the new informa-

tion right away. In practice, however, there is uncertainty surrounding the information

and the process of price discovery itself involves uncertainty. In certain situations,

a correct piece of information might not get incorporated into the price right away.

If the price moves temporarily in the opposite direction of his information, the arbi-

trageur might in fact lose money trading this information. This argument, proposed

by Shleifer and Vishny (1997) and often referred to as “limits to arbitrage” can help

explain why bubble can keep building up even when many people are calling it a bubble.

When Alan Greenspan, the then chairman of the Fed, gave the famous “irrational

exuberance” speech in December 1996, the Nasdaq was around 1,300. Initially, the

stock markets around the world dropped precipitously in reaction to the speech. But

the markets soon shrugged off the warning and started the most spectacular upward

trajectory in the history of Nasdaq. A little over three years after the speech, on March

10, 2000, the Nasdaq peaked at 5,048.62. Then it went down as fast as it came up,

and bottomed near 1,140 two and half years later on October 4, 2002.

One person who shared the same view with chairman Greenspan was Prof Shiller,

who later wrote a book titled “irrational exuberance.” Prof Shiller also shared the

2013 Nobel Prize with Prof Fama and Hansen. It was said that Prof Shiller, following

his own prediction about the internet bubble, actually shorted the Nasdaq in the late
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1990s, only to lose money because the market kept its upward trajectory for too long

and crashed much too late.

2 Predicting the Market

• What we’ve learned so far? Talking about market efficiency and market pre-

dictability at a hypothetical level is just not that interesting. Now that we are seven

classes into the semester, maybe we can start from what we’ve learned so far.

By learning about the various quant strategies, we do recognize that the alpha gen-

erated by a quant strategy does come from a certain ability to predict the future.

People might vary in their opinion on whether the alpha comes from market ineffi-

ciency (under/over-reactions) or systematic risk exposure. One observation I am sure

that you’ve made is that quant investors do not take a stand on the market risk. If

possible, they choose to avoid the market risk by taking long/short positions of two

portfolios with similar beta exposures.

And yet, the market risk remains the most important and pervasive. You’ve probably

noticed in our Assignment 1 that market-neutral hedge funds are not really market

neutral. For example, the hedge fund index in long/short equity has a beta around

0.40. Even for market-neutral hedge funds, the beta exposure is non-zero: around 0.20.

Overall, the market risk is an important risk and let’s try to understand it more.

In this class, we will focus on the “first moment” of the aggregate stock market and

move on to the “second moment” in the next class.

• How good are investors at predicting the market? You must have heard this

famous story about Rockefeller and his shoe shine boy. After receiving unsolicited

stock tips from his shoe shine boy in 1928, Rockefeller decided to get out of the stock

market. His rational: when a shoe shine boy started to give stock tips, the market

probably was reaching its peak.

I don’t know if the story actually happened to Rockefeller, but the gist of the story

got repeated again and again in the history of financial markets. Last year, from July

2014 to July 2015, I was on sabbatical and spent most of my time in Shanghai with

my parents. I was living a very simple life, far away from the financial establishments

in Shanghai. Yet one can hardly avoid the hype and then the disappointment of the

stock market. I had to tell my 80-year old father repeatedly that his optimal allocation
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to the stock market is zero, regardless of how much money other people were making

out of the market.

The empirical evidence paints a similar story: investors have no ability to predict the

future. In fact, their prediction is a response to the stock market. When the markets

are doing well, their prediction is optimistic; when the markets are doing poorly, they

become pessimistic. Moreover, their prediction affects their behavior. The flow to

equity mutual fund is driven heavily by the recent stock market performance. The

same pattern of flow chasing performance can also be found in bond mutual funds.

• Use past returns to predict the future: For anyone wanting to predict the stock

market, probably the very first regression would be:

Rt+1 = a + ρRt + εt+1 .

Given the time-series data, this is the easiest regression to run. The results are mixed,

depending on the horizon over which this regression is run. At the monthly horizon,

the autocorrelation ρ is generally positive and statistically significant. The magnitude

is small for the value-weighted portfolio and becomes larger for the equal weighted

portfolio. But this result is not very stable and could flip sign or become insignificant

during sub-sample analyses. Overall, the R-squared of this predictive regression is very

small, indicating that much of the future returns remains unpredictable.

In academic, there is a pretty large literature on this topic. If you are interested, you can

read “Permanent and Temporary Components of Stock Prices” by Fama and French (1988),

who ran this regression over a horizon of 3-5 years and found large negative autocor-

relations. In “Stock Market Prices Do Not Follow Random Walks: Evidence from

a Simple Specification Test,” Lo and MacKinlay (1988) propose the innovative vari-

ance ratio test as an alternative to the regression analysis. In “When are Contrarian

Profits due to Stock Market Overreaction?” Lo and MacKinlay (1990) explain that

despite negative autocorrelation in individual stock returns, weekly portfolio returns

are positively autocorrelated and are the result of important cross-autocorrelations.

• Stock returns and business cycle: In any Finance model, one main driver for stock

returns should be the underlying economic condition. Nevertheless, the link between

the two is not that strong in the data. For example, Prof. Shiller wrote a paper in

1984 entitled, “Do Stock Prices Move Too Much to be Justified by Subsequent Change

in Dividend?” In this paper, he made the observation that the stock market is too
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volatility (e.g., 20% per year) compared to the volatility in the fundamental: dividends

or earnings.

If you plot the time-series of realized stock returns against the business cycle, you do

find a link between the two. In particular, depressed expected business conditions are

associated with high expected excess returns. This observation gives rise to predictive

regressions using a set of variables that are related to business conditions, including

default spreads, term premiums, and dividend-price ratio. By far, the best predictor

for stock market returns is the dividend-price ratio. We will re-visit the default spread

and term premium as we cover the fixed-income market.

• Dividend-price ratio as a stock market predictor: Let’s run this regression at

the annual frequency:

Rt+1 = a + b

(
D

P

)
t

+ εt+1 ,

where D/P is the dividend-price ratio (aggregate dividend divided by the value-

weighted CRSP index). The general finding that is the coefficient b of this predictive

regression is positive and statistically significant.

The key to this regression is 1/P. The aggregate price level is usually depressed during

poor business condition (e.g. recessions). Going forward, the stock return is expected

to be high. Hence the positive regression coefficient. Using D/P is just a way to

scale the overall time trend of stock price increase. Using aggregate earnings, one can

use replace D/P by E/P, although the earnings number is more noisy and biases the

regression coefficient downward.

One important observation of this predictive regression is that the power of predictabil-

ity is very weak even for the best predictor. At an annual frequency, the R-squared

of this predictive regression is around 5%, indicating that 95% of the future variance

remains unpredictable.

• Market timing as a trading strategy: This kind of result explains why market

timing is not a very popular trading strategy among market participants. Of course,

there is nothing wrong with taking a long position on the market if your objective is

to be compensated from such a risk exposure. But if you are in and out of the market

with the belief that you can predict the market, then you should be very careful.

The empirical evidence tells you that you are going to be exposed to quite a bit of

uncertainty. Moreover, this is a very special kind of uncertainty — the market risk,

the most dangerous kind.
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This is why David Swensen wrote in his book, “Market timing, according to Charles

Ellis, represents a losing strategy: There is no evidence of any large institutions having

anything like consistent ability to get in when the market is low and get out when the

market is high. Attempts to switch between stocks and bonds, or between stocks and

cash, in anticipation of market moves have been unsuccessful much more often than

they have been successful. Serious investors avoid timing markets.”
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1 Options, an Overview

• Why Options? The development of options as an exchange-traded product was an

important landmark in the practice of Finance. It offers investors an alternate way to

buy and sell the risk inherent in the underlying stock. In the language developed later,

it offers non-linear exposures to the underlying stock or index. This non-linearity cuts

the entire distribution of stock returns into various pieces.

After the 2008 crisis, people sneered at the Wall Street practices such as tranching

and repackaging. I think this is very unfortunate. A small fraction of Wall Street

clearly mis-used and abused derivatives and contributed to the financial crisis in 2008.

Looking back into the history of financial innovation, this was not the first time, nor

will it be the last.

Finance is about optimal allocation of risk: match the right kind of risk to the right

kind of investors and distribute the right kind of investment to the right kind of firms

or entrepreneurs. If we think of this distributional effort as a network of pipelines,

then financial markets on equity, bond, foreign exchange, and commodity offer the

basic infrastructure. The limited flexibility of these markets gave rise to derivatives.

Options are a very good example. When we invest in the stock market, we have to

take the whole package: the entire distribution of the stock. In our earlier classes,

we talked about how we can minimize our exposure to idiosyncratic risk by forming

portfolios and how we can take out the market risk by long/short strategies. The

motivation behind options is the same. What if we are interested in hedging out not

the entire market risk, but only a specific portion of the market risk, say the left tail?

The long/short strategy will not help us do that: you are either all in or all out. But

buying a put option on the S&P 500 index will achieve this goal for you. Now the

question is how much are you willing to pay for this product? This is option pricing.
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Figure 1: The distribution of a stock plotted against the payoff function of call and put
options with varying strike prices.
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Let me expand on this example further. As illustrated in Figure 1, moving the strike

price of a call option from left to right with increasing strike prices, we are making

the call option more and more out of the money. At the same time, this call option

becomes more and more sensitive to the right tail of the distribution. Likewise, moving

the strike price of a put option from right to left with decreasing strike prices, we are

making the put option more and more out of the money. At the same time, this put

option becomes more and more sensitive to the left tail of the distribution. Effectively,

the market’s valuations of such OTM call and put options provide us information about

the right and left tails. As we learned early, the left and right tails are not abstract

concepts. They are made of extreme financial events: crises show up on the left tail

and rallies add to the right tail.

This is as if we are given a high definition camera with a super strong zooming ability.

We can point our camera to the right tail and zoom into that area using an OTM call

option. Likewise, an OTM put option allows us to zoom into the left tail. If you a

photographer, you would be overjoyed to own such a high-definition camera. Likewise,

if you are in the business of risk, you would naturally be drawn to these new financial

instruments.

• History: These new instruments called options first showed up as an exchange-traded

product in April 1973, exactly one month before the publication of the Black-Scholes

paper. On the first day of trading, 911 contracts of calls were traded on 16 underlying

stocks. One option contract is on 100 underlying shares.

By 1975, the Black-Scholes model was adopted for pricing options. This is an excerpt

from an interview with Prof. Merton: Within months they all adopted our model. All

the students we produced at MIT, I couldn’t keep them in-house; they were getting hired

by Wall Street. Texas Instruments created a specialized calculator with the formula in

it for people in the pits. Scholes asked if we could get royalties. They said, “No.” Then

he asked if we could get a free one, and they said, “No.”

It was not until 1977, four years after the trading of call options, when trading in put

options begins. In 1983, the first index option (OEX) begins trading and a few months

later SPX, options on the S&P 500 index, was launched. My PhD thesis was on option

pricing and when I first started to work on the CBOE data in 1997, OEX, options

on the S&P 100 index, still had a large market presence. By now, it has only a tiny

market share. In 1993, CBOE started to publish the VIX index, which was effectively

the Black-Scholes implied volatility for an at-the-money one-month to expiration SPX.
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In 2004, CBOE launches futures on VIX and later options on VIX.

• Trading Volume and Market Size: To gauge the activity of a market, the most

frequently used measure is trading volume. For the U.S. equity market, the exchange-

listed stocks are traded on 11 stock exchanges (“lit” markets) and about 45 alternative

trading systems (“dark pools”). According to summary data from BATS, for the month

of September 2015, the average daily trading in the stock market is 7.92 billion shares

and $321 billion (dollar volume). For the same month, the overall daily trading volume

in the options market is about 16.94 million contracts and $6.30 billion (dollar volume).

As you can see, in terms of trading volume, the options market is small compared with

its underlying stock market.

In comparing the trading volumes in the stock and options markets, one interesting

observation is that, after the 2008 crisis, the trading in the stock market has been

badly hurt. For example, the average NYSE group trading volume peaked around 2.6

billion shares per day in 2008 and has decreased quite dramatically to a level near 1.0

billion shares per day in 2013 and 2014. This is not an NYSE specific problem. The

overall stock market trading peaked in 2009 around 9.76 billion shares per day and

bottomed to 6.19 billion shares in 2013. By contrast, the trading volume in options

did not suffer this dramatic reduction. The average daily trading volume was around

14 million contracts in 2008, increased to 18 million contracts in 2011, and held up

steady at around 16 million contracts in 2013.

In terms of size, the U.S. equity market has a total market value of $26 trillion by

end-2014. At the end of September 2015, the open interest for equity and ETF options

is 292 million contracts, and 23.7 million contracts for index options. Given that the

average premium is around $200 for equity and ETF options and $1,575 for index

options, this open interest amounts to $95.7 billion in total market value. Again, the

options market is small compared to its underlying stock market.

• Leverage in Options: Although the options market is small compared to the un-

derlying stock market, the risk in this market is anything but small. Because of the

non-linearity, the leverage inherent in options could be large. Given an investment of

the same dollar amount, the profit and loss in options could be many times larger than

those in the underlying stocks.

For example, let’s consider a one-month at-the-money put option. Using the Black-

Scholes pricing formula, Figure 2 plots the returns to this option as a function of the

underlying stock returns, assuming the stock return volatility is 20% per year. As we
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can see from the plot, for a 10% drop in the underlying stock price, the option yields a

return over 300%. So the inherent leverage in options amplifies a dollar’s investment in

the underlying stock to 10 dollars in options. Likewise, a 10% increase in the underlying

stock price translates to a near -100% drop in the put option. This amplification effect

shows up in call options as well, except that the profit and loss of a call option is in the

same direction as the underlying stock. Because of these amplification effects, the beta

of options on the S&P 500 index can be easily around 20 or -20. Searching through

the thousands of stocks listed on the three major U.S. exchanges, you will not be able

to find one single stock with this kind of beta. This is what a very simple, almost

innocent, non-linearity in the payoff function does to the transformation of risk.

• Types of Options: Broadly speaking, there are three types of exchange-traded op-

tions: equity, ETF, and index options. Equity options are American-style call and put

options on individual stocks. One contract is on 100 underlying shares and the option

settles by physical delivery. This CBOE link gives the exact specifications of equity

options. Using the September 2015 numbers as an example, the average daily trading

volume for equity options is around 7.57 million contracts and $1.58 billion per day in

dollar trading volume.

On any given day, there are thousands of stocks with options traded. Larger stocks

usually have higher options trading volume. In September 2015, options on AAPL are

by far the most active options traded. Other popular stocks include FB, BAC, NFLX,

and BABA, although there is quite a bit of variation over time in terms which stock

options show up among the actively traded. If you are curious, this OCC link provides

monthly summaries of all equity and ETF option trading volume by exchange.

ETF options are American-style call and put options on ETFs. Again, one contract is

on 100 underlying shares and the option settles by physical delivery of the underlying

ETF. This CBOE link gives the exact specifications of ETF options. Since the mid-

2000s, the growth in ETF options is an important development in the options market.

For September 2015, the average daily trading volume for ETF options is around 7.33

million contracts per day, on par with the trading activity for equity options. The

dollar trading volume in ETF options averages to $1.50 billion per day, similar in

magnitude to equity options.

Among the popular ETFs are SPY, EEM, IWM, and QQQ, which command relatively

high option trading volume. By far, the most actively traded ETF option is SPY (op-

tions on SPDR). For September 2015, SPY options are traded on 12 options exchanges

6
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with an average daily volume of 3.3 million contracts.

Index options are European-style call and put options on stock indices. Except for mini

products, one contract is on 100 underlying index. Instead of physical delivery, the

settlement of index options is done by cash. This CBOE link gives the specifications

of SPX, the most important index options. For September 2015, the average daily

trading volume of SPX is about 1.14 million contract and $2.78 billion in dollar trading

volume. Recall that the overall dollar trading volume in the options market is about

$6.30 billion. This implies that over 30% of the options dollar trading volume comes

from SPX. It is therefore not surprising that all options exchanges would like to get

involved with this product. So far, CBOE is able to maintain the exclusive license in

this product.

You might also notice that both SPX and SPY are trading on the S&P 500 index.

There are, however, a few differences between these two products. SPX is on the index

itself while SPY is on the ETF SPDR, which is about 1/10 of the index. As a result,

per contract, SPX is larger in size than SPY. Recall that average daily trading volume

in SPY from 12 exchanges adds up to 3.3 million contracts. This translates to a daily

trading volume around $804 million, a large number for ETF and equity options but

small compared with the daily dollar volume of $2.78 billion for SPX. Finally, while

SPY is an American-style option, SPX is European-style; SPY is physical settlement

while SPX is cash settlement.

Regardless of their differences, SPX and SPY share the same underlying. Therefore

there must be market participants who actively trade between these two contracts to

profit from any temporary mis-pricing between the two. As a result, the pricing of

these two contracts should be very much aligned with one another, taking into account

of the difference in their exercise style. For those who are interested, it might be a good

exercise to go to the CBOE’s website to get quotes for near-the-money near-the-term

SPX and SPY call and put options, back out the Black-Scholes implied volatilities

from these contracts and see if there are any significant pricing differences (above and

beyond the quoted bid and ask spreads).

• Options Exchanges: As we see earlier, over 30% of the option dollar trading volume

comes from SPX: call and put options on the S&P 500 index. Not surprisingly, CBOE

fought really heard to keep its exclusive rights to SPX. In 2012, after 6 years of litiga-

tion, CBOE won the battle and was able to retain its exclusive licenses on options on

the S&P 500 index. As a result, CBOE remains its dominance in index options with

7

https://www.cboe.com/products/indexopts/spx_spec.aspx


over 98% of the market share. In addition to SPX, options on VIX have also grown in

popularity, which is also traded exclusively on CBOE.

In other areas, however, CBOE has not been able to retain its market power. Until

the late 1990s, CBOE was the main exchange for options trading. By the early 2000s,

however, CBOE was losing its market share in equity options to new option exchanges

like ISE. For equity options in September 2015, CBOE accounts for 16.32% of the

trading volume, PHLX has a market share of 17.50%, and the rest are shared by

BATS (14.37%), ARCA (11.81%), ISE (10.53%), AMEX (8.89%) and others. Trading

in ETF options took off around the mid-2000 and have been spread over many options

exchanges in a way similar to equity options: CBOE (15.93%), ISE (15.55%), PHLX

(15.02%), BATS (10.48%), ARC (10.15%), AMEX (10.14%), and others.

You might have noticed the fragmentation of the options market. Indeed, equity and

ETF options are traded in 12 different options exchanges. This phenomenon of market

fragmentation is not option specific. For example, US stocks regularly trade on 11

exchanges. In addition to these exchanges which are called “lit” markets, a non-trivial

amount (20% to 30% in 2015) of stock trading is done in alternative trading systems

such as “dark pool.”

• Market Participants: One advantage of options being traded on exchanges is its

accessibility. Investors of all types come to the market to trade. Another advantage

is its transparency. Information on transaction prices and volumes is readily available

to investors. On any given day, you can see how many put options are bought on the

S&P 500 index or on AAPL versus how many call options are bought. The same thing

cannot be said about the over-the-counter (OTC) derivatives market. While pricing

information on OTC derivatives can be obtained from Bloomberg or Datastream, the

real-time transaction information is very much protected by dealers as proprietary

information. In my personal view, if the trading information in products such as CDS,

CDO, synthetic CDO, and CDO2 were available to the public back in 2005, more

people would have paid attention to this market.

Like most markets, there are designated market makers in the options market. Their

presence in the market is to facilitate trading and provide liquidity. They make money

by quoting bid and ask prices: buy at the bid and sell at the ask. The bid-ask spread

(ask price - bid price) is the source of their profit. In the options market, the percentage

bid-ask spread is much larger than that of the underlying stock, reflecting the leverage

risk inherent in options. It is also a reflection of the relative illiquidity in options.
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When there are buying and selling imbalances, market makers might have to keep an

inventory, which exposes them to market risk. This risk exposure is further exaggerated

if this imbalance is caused by some private information the market maker is not aware of

(information asymmetry). The inventory cost and the cost of information asymmetry

are two important drivers for the bid and ask spread in financial prices. In the options

market, it is typical for a market maker to minimize his exposure to the underlying

stock by delta hedging.

Coming back to the topic of SPX and SPY, two options products with very similar

underlying risk. You might notice that there is a substantial difference in their bid/ask

spreads. In particular, the average bid/ask spreads (as a percentage of the option

price) are much higher for SPX than SPY. The average percentage bid/ask spread for

SPX is about 9% while that for SPY is about 1%. If the market risk is similar, then

where does this difference in trading cost arise?

Investors who trade against the market makers can be summarized into four groups:

customers from full service brokerage firms (e.g., hedge funds), customers from discount

brokerage firms (e.g., retail investors), and firm proprietary traders. Using CBOE

data from 1990 through 2001, we see that customer from full serve brokerage firms

are the most active participants in the options market while firm proprietary traders

concentrate their trading mostly on index options as a hedging vehicle. Of course,

these are older data and the options market has exploded after 2001.

Another way to look at the market participants is through their trading activities

against the market makers. Some investors come to the options market to buy options

to open a new position, while other buy options to close an existing position. Some sell

options to new a new position while others sell options to close an existing position.

In doing so, their trading motives are very different.

2 The Black-Scholes Option Pricing Model

• The Model: Let St be the stock price at time t. For simplicity, let’s first assume that

this stock pays no dividend. Later we will add dividend back. We model the dynamics

of the stock price by the following model (geometric Brownian motion):

dSt = μSt dt+ σ St dBt . (1)

This equation does not look very appealing at the moment, but you will come to
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appreciate or even like it later. Under this model, the expected stock return is μ and

its volatility is σ, both numbers are in annualized terms. So if you like, μ is about 12%

and σ is about 20%. Moreover, under this model, stock returns (to be more precise,

log-returns) are normally distributed. Let me use the rest of this section to explain

why it is so.

Let ST be the stock price at time T . Implicitly we are planning ahead for the time T ,

when the option expires. Standing here at time 0 and holding a European-style option,

all we care about is the final payoff:

Payoff of a call option struck at K = (ST −K) 1ST>K (2)

where 1ST>K = 1 if ST > K and zero otherwise. Let’s focus on call options for now.

Once we now how to deal with call options, the put/call parity will get us to put

options very easily.

Option pricing bolts down to calculating the present value of the payoff in equation (2).

How should this calculation be done? What is the discount rate to use in order to bring

the random cash flow to today? Let’s keep this question hanging for a while.

• Brownian Motion: Since it is the first time we are working with Brownian motions,

let me summarize the following three important properties of Brownian motions and

relate them to Finance:

– Independence of increments: For all 0 = t0 < t1 < . . . < tm, the increments are

independent: B(t1)−B(t0), B(t2)−B(t1), . . . , B(tm)−B(tm−1) . Translating to

Finance: stock returns are independently distributed. No predictability and zero

auto-correlation ρ = 0.

– Stationary normal increments: Bt − Bs is normally distributed with zero mean

and variance t−s. Translating to Finance: stock returns are normally distributed.

Over a fixed horizon of T , return volatility is scaled by
√
T .

– Continuity of paths: B(t), t ≥ 0 are continuous functions of t. Translating to

Finance: stock prices move in a continuous fashion. There are no jumps or

discontinuities.

• The Model in RT : Let’s perform this very important transformation:

ST = S0 e
R
T .
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Another way to look at it is by,

RT = ln(ST )− ln(S0) ,

which tells us that RT is the log-return of the stock over the horizon T . Now I am

going to do one magic and you just have to trust me on this. Next semester when you

take 450, you will learn the mechanics behind it, which is call the Ito’s Lemma.

dRt =

(
μ− 1

2
σ2

)
dt+ σ dBt

Comparing with equation (1), the dynamics of Rt is simpler. It does not have those μSt

and σSt terms. Instead, we have μ− σ2/2 as its drift and σ as its diffusion coefficient.

The extra term of σ2/2 is often call the Ito’s term.

With this dynamics for Rt, we can now fix the time horizon T and write out RT :

RT =

∫ T

0

dRt =

(
μ− 1

2
σ2

)
T + σ

√
T εT , (3)

where εT is a standard normal random variable (zero mean, variance equals to 1). You

will agree with me that
∫ T

0
dt = T . Let me explain why

∫ T

0
dBt = BT − B0 is

√
T εT :

it comes from the second property, stationary normal increments, of the Brownian

motion.

When it comes to valuation under the Black-Scholes model, the math will be done at

the level of equation (3). As you can see, it is not that scary, isn’t it? This model tells

us that the log-return of a stock over a fixed horizon of T is normally distributed with

mean (μ− σ2/2)T and standard deviation of σ
√
T . Other than the Ito’s term, σ2/2,

everything looks quite familiar. No?

• The Ito’s Term: Now let me explain why we have this Ito’s term. In the continuous-

time model of equation (1), the stock price grows at the instantaneous rate of μ dt:

E(ST ) = S0 e
μT ,

or equivalently, with a continuously compounded discount rate μ:

S0 = e−μT E(ST ) .
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Now let’s do the same calculation with our model for log-return in Equation (3),

E(ST ) = S0E
(
eRT

)
.

When it comes to calculating expectation of a convex function involving a normally

distributed random variable x, this is a useful formula for you to have

E(ex) = eE(x)+var(x)/2 .

Let me emphasize, this works only when x is normally distributed. Applying this

formula to the above calculation, we have

E(ST ) = S0E
(
eRT

)
= S0 e

E(RT )+var(RT )/2 = S0 e
(μ−σ2/2)T+σ2 T/2 = S0 e

μT ,

which is exactly what we wanted in the first place.

To summarize, the transformation from ST to ln(ST ) − ln(S0) introduces some con-

cavity, because ln(x) is a concave function. This is why −σ2/2 shows up in RT . The

transformation from RT to eRT introduces some convexity, because ex is a convex

function, and σ2/2 gets added back during the transformation. So everything works

out.

In essence, Mr. Ito is busy because we are doing concave/convex transformations on

random variables. If there is no random variable involved, then Mr. Ito will not be

this busy. For example, let’s make x a number by setting var(x) = 0. What do we

have for E(ex) = eE(x)+var(x)/2? We have E(ex) = ex and nothing else. The Ito’s term

disappeared.

• Risk-Neutral Pricing: Now let’s come back to the present value calculation. As

discussed earlier, the payoff of a call option at time T is as in Equation (2). It is a

random payoff, depending on the realization of ST . It is a non-linear random payoff

with a kink at the strike price K: the payoff is zero if ST falls below K and is ST −K

if ST rallies above K and the option is exercised at time T . So what is the present

value of this random non-linear payoff? Which discount rate should we use?

Risk-neutral pricing is the answer to that question. Although it has “risk-neutral” in

its name, it is anything but risk-neutral. Let me first tell you the approach of the
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risk-neutral pricing. Recall that after some hard work, we have

RT =

(
μ− 1

2
σ2

)
T + σ

√
T εT .

I am going to call this model the actual dynamics and label it by “P.” Then I am going

to introduce a different model, called risk-neutral dynamics and label it by “Q.”

Actual Dynamics (“P”): RT =

(
μ− 1

2
σ2

)
T + σ

√
T εT (4)

Risk-Neutral Dynamics (“Q”): RT =

(
r − 1

2
σ2

)
T + σ

√
T εQT (5)

By writing down the model in the Q-dynamics, I am bending the reality by forcing

the stock return to grow at the riskfree rate r. And then I am going to do my present

value calculation under this bent reality: 1) the expectation of the future cash flow is

done under the Q-measure and 2) this expectation is discounted back to today using

the riskfree rate r. And somehow, two wrongs make one right, the calculation works

out. You just have to trust me on this. This pricing framework is widely adopted on

Wall Street in fixed income, credit, and options.

• Pricing a Stock: Before applying this risk-neutral pricing framework on options ,

let’s first try it on something easier: the linear random payoff of ST . We know what

the answer should be: the present value should be S0. We’ve already done it under the

P-dynamics: S0 = e−μTE(ST ). It works out and using μ as the discount rate makes

perfect sense ... because this is how the dynamics is written.

Now let’s do it under the Q-dynamics:

e−rT EQ(ST ) = e−rT S0 e
rT = S0 .

So it also works! Just to emphasize that risk-neutral pricing has nothing to do with

investors being risk-neutral, let’s bring in a risk-neutral investor to price the same

stock. He takes the P-dynamics (because it is the reality) and discounts the cash flow

with riskfree rate r (because he is risk neutral):

e−rT EP(ST ) = e−rT S0 e
μT = S0 e

(μ−r)T

So he is paying more than S0 for the same cash flow. Why? Because he is risk-neutral.

Recall that if ST is the market portfolio, then μ − r is the market risk premium.
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Risk-averse investors demand a premium for holding the systematic risk in the market

portfolio. That gives rise to the positive risk premium in μ−r. A risk-neutral investor,

however, is not sensitive to risk. As such, he is willing to pay more for the stock.

This exercise might seem trivial mathematically, but it is very useful in clearing our

thoughts. In particular, I would like to emphasize that risk-neutral pricing does not

mean pricing using a risk-neutral investor. In a way, this name “risk-neutral pricing”

is unfortunate and confusing.

• Pricing the Option: We are now ready to price the option. Let C0 be the present

value of a European-style call option on ST with strike price K:

C0 = e−rTE ((ST −K) 1ST>K) = e−rTEQ (ST1ST>K)− e−rTKEQ (1ST>K)

Now let me cheat a little by going directly to the solution,

C0 = S0N(d1)− e−rTKN(d2) ,

where N(d) is the cumulative distribution function of a standard normal x:

N(d) = Prob (x ≤ d) =

∫ d

−∞

1√
2π

e−
x2

2 dx .

In Matlab, N(d) is normcdf(d). The two critical values d1 and d2 are,

d1 =
ln (S0/K) + (r + σ2/2) T

σ
√
T

; d2 =
ln (S0/K) + (r − σ2/2) T

σ
√
T

Comparing where we are now with the solution, we see some internal logic. In partic-

ular, it is obvious that

N (d2) = EQ(1ST>K) = ProbQ (ST > K)

and

N (d1) = e−rTEQ

(
ST

S0
1ST>K

)
.

• Understanding N(d2) in the Black-Scholes formula: The part associated with

N(d2) is actually pretty easy. It calculates the probability that the call option is in
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the money under the Q-measure. So let’s work it out:

ProbQ (ST > K) = ProbQ
(
S0 e

RT > K
)
= ProbQ

(
eRT > K/S0

)
= ProbQ (RT > ln(K/S0)) ,

where, in the last step, I took a log on both side of the inequality, which is OK because

ln(x) is a monotonically increasing function in x.

Now let’s use the Q-dynamics of RT in Equation (5) to get,

ProbQ (RT > ln(K/S0)) = ProbQ

((
r − 1

2
σ2

)
T + σ

√
T εQT > ln(K/S0)

)
.

Moving things left and right, we get

ProbQ

(
εQT >

− ln(S0/K)−
(
r − 1

2
σ2

)
T

σ
√
T

)
,

or equivalently,

ProbQ

(
− εQT <

ln(S0/K) +
(
r − 1

2
σ2

)
T

σ
√
T

)
,

which is really N(d2), knowing that εQT is standard normally distributed.

• Understanding N(d1) in the Black-Scholes formula: The part associated with

N(d1) is more subtle. Recall that

N (d1) = e−rTEQ

(
ST

S0

1ST>K

)

So N(d1) involves a calculation that takes into account that we are calculating the

expectation of ST when ST is greater than K (the option expires in the money). So it

is not a simple probability calculation such as N(d2). Here, it involves an interaction

term. As a result N(d1) should always be larger than N(d2). This is true because

d1 = d2 + σ
√
T . As you will see later, this difference between d1 and d2 is really where

the option value of an option comes from. In other words, σ
√
T is the best summary

of the option value.

Given the amount of math we have been doing up to this point, I have a feeling that

most of you are not willing to go further. For those of you who are interested, you can

do the math to prove that N(d1) is in fact e−rTEQ
(

ST

S0
1ST>K

)
.

For those who are not willing to go through the math, let me offer this observation.
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Under the Q-dynamics, the drift in RT is (r−σ2/2)T and the volatility is σ
√
T . That’s

how we get the expression of d2 (and our previous calculation just proved this point).

Comparing d1 and d2 this way, we notice that suppose we bend the reality further by

making the drift in RT to be (r + σ2/2)T and keep the same volatility. Then, under

this strange dynamics, let’s call it QQ, we have N(d1) = ProbQQ(ST > K). Intuitively,

because of the interaction term, the valuation is higher. One simple way to express

this higher valuation is by allowing RT to grow faster than its Q-measure, with a drift

of (r + σ2/2)T . Under this probability measure, the probability of ST is greater than

K (the option expires in the money) becomes N(d1). I’ll stop here.

• Add Dividend Yield: We are going to apply the Black-Scholes model to SPX. So it

is important that we can handle stocks paying dividend with a constant dividend yield,

which, for the S&P 500 index, is a good enough approximate. Let q be the dividend

yield. Again, let ST be the time-T stock price, ex dividend. Then, the stock dynamics

becomes,

dSt = (μ− q) St dt+ σ St dBt .

And the dynamics for RT changes to

Actual Dynamics (“P”): RT =

(
μ− q − 1

2
σ2

)
T + σ

√
T εT

Risk-Neutral Dynamics (“Q”): RT =

(
r − q − 1

2
σ2

)
T + σ

√
T εQT

And the Black-Scholes pricing formula becomes

C0 = e−qT S0N(d1)− e−rT KN(d2) ,

where N(d) is the cumulative distribution function of a standard normal and

d1 =
ln (S0/K) + (r − q + σ2/2) T

σ
√
T

; d2 =
ln (S0/K) + (r − q − σ2/2)T

σ
√
T

• Arbitrage Pricing and Dynamic Replication: In Finance, when it comes to

valuation, there are just two approaches: equilibrium pricing and arbitrage pricing.

We’ve touched on equilibrium pricing in the CAPM, where mean-variance investors

optimize their utility functions and the equity and bond markets clear. What we’ve

been doing so far in this class falls squarely into the category of arbitrage pricing. The

essence of arbitrage pricing is replication: replicate a stream of random payoffs with
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existing securities whose market values are known to us. The present value of this cash

flow equals to the cost of the replication.

The best example in our current setting is the put/call parity. As I am sure that you’ve

learned in 15.415 (or 15.401), the time-T payoff of buying a European-style call and

selling a European-style put (with the same strike price K) is the same as taking a

long position in the underlying stock and borrowing K from the bond market. The

present value of the underlying stock is e−qTS0, where, as usual, we use ex dividend

stock price. The present value of the bond-borrowing portion is e−rT K, with r being

the riskfree rate, continuously compounded. So the replication cost is e−qTS0−e−rT K.

The present value of buying a call and selling a put is, by definition, C0 − P0. As a

result, C0 − P0 = e−qTS0 − e−rT K .

As you can see, in getting this relation, we do not have to use any model, just simple

logic. In practice, this put/call ration holds pretty well in the market. There are

investors actively arbitrage between the options and the cash (i.e., the S&P 500 index

or the S&P 500 index futures via “E-mini”) markets. Even if the Black-Scholes model

fails (which it does), this relation still holds. Arbitraging using put/call parity is

very similar to arbitraging between the futures and cash markets (arbitraging between

Chicago and New York).

When it comes to pricing call and put options, however, we do need to use a model. So

far, we’ve used the Black-Scholes model. It turns out that even with a stock and a bond,

we can still replicate the non-linear payoff of an option. This is the important insight

of Prof. Black, Merton, and Scholes: dynamic replication. You need to continuously

rebalance your hedging portfolio, doing delta hedging at a super high frequency. I am

sure that you’ve got a heavy dosage of that in your 15.415. So I am not going to spend

time on dynamic replication or delta hedging.

Recall that the third property of a Brownian motion is continuity of paths. This implies

that stock prices move in a continuous fashion. There is no jumps or discontinuities.

This is why models like geometric Brownian motions are called diffusion models. As you

can see, the property of dynamic replication falls apart as soon as we move away from

the Brownian motion by adding random jumps to the model. This is just one example.

If we add another streams of random shocks to volatility, making it a stochastic process

(instead of a number σ = 20%), then this replication also falls apart.

As such, the Black-Scholes formula is very much confined to the model itself. We will

see that the Black-Scholes model does not hold very well in the market. We will then
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extend in two dimensions: adding jumps to the model to allow crashes; relaxing σ from

a number to a stochastic process and build a stochastic volatility model.

• Why so many equations? Since Fall 2015, because of the MFin students, I made

a conscious effort in being as rigorous as possible and giving you as much detail as

possible. While using the Black-Scholes model as a black box is fine for most people,

I feel that most of you deserve to know a little bit better. In past years, 15.450 was

taught along with 15.433. So I made the comfortable choice of letting the professor in

15.450 carry more of the math burden. Now that 15.450 has been moved to the Spring

semester, I feel that I’ve lost my excuse. And Prof. Wang kept asking me to push you

more. So this is my effort in pushing you.

If you’ve seen this before, don’t presume that you know everything. Honestly, I started

to work in this area as soon as I entered the PhD program at Stanford GSB 20 years

ago. But I’ve only developed these intuitions over the years. So take your time to

digest the materials and make them your own.

3 Using the Black-Scholes Formula

• Pricing ATM Options: By definition, an at-the-money option has the strike price

of K = S0 e
(r−q)T . Going back to d1 and d2, we notice that by setting the strike price

at this level, d1 =
1
2
σ
√
T and d2 = −1

2
σ
√
T . Effectively, by having an option with this

strike price, we take away the moneyness component of the option and focus exclusively

on the option value. Also notice that at this strike price, e−qT S0 = e−rT K, which

implies that, via the put/call parity, C0 = P0 for this pair of at-the-money call and

put options. For the case of σ = 20% and T = 1/12, we have d1 = σ
√
T/2 = 0.0289.

Figure 3 plots the respective N(d1) and N(d2) for the case.

Applying the Black-Scholes formula, we have

C0 = P0 = S0 (N(d1)−N(d2)) = S0

[
N

(
1

2
σ
√
T

)
−N

(
−1

2
σ
√
T

)]
.

Using the fact that N(d) is the cdf of a standard normal:

N(d) =

∫ d

−∞

1√
2π

e−
x2

2 dx ,
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Figure 3: The N(d1) and N(d2) for an one at-the-money call or put option with one-month
to expiration. The underlying stock volatility is 20%.

we can further simplify the pricing formula,

C0

S0
=

P0

S0
=

1√
2π

∫ 1
2
σ
√
T

− 1
2
σ
√
T

e−
x2

2 dx .

Now let’s use a Taylor expansion that is very useful in Finance: ex ≈ 1 + x , for small

x. Applying this to the integrand,

e−
x2

2 = 1− x2

2
.

Let’s replace the integrand with this approximate:

C0

S0
=

P0

S0
≈ 1√

2π

∫ 1
2
σ
√
T

− 1
2
σ
√
T

(
1− x2

2

)
dx =

1√
2π

(
σ
√
T − 1

24

(
σ
√
T

)3
)

≈ 1√
2π

σ
√
T ,

where I dropped the cubic term to make our approximation even simpler. But you can

see, if you include the next order of approximation, the net effect will make the option

price lower. This approximation works well for small σ
√
T . For a typical one-month
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option on the S&P 500 index, σ = 0.20 and T=1/12, we have σ
√
T being around

0.0577. As a comparison, the higher order term
(
σ
√
T

)3

/24 is 8× 10−6. So this level

of σ
√
T , our approximation works really well.
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Figure 4: The ratio of an at-the-money call or put option price to the underlying stock price,
C0/S0 or P0/S0, as a function of σ

√
T . The approximation of C0/S0 = P0/S0 ≈ σ

√
T/

√
2π

is in red and the Black-Scholes pricing is in blue.

As shown in Figure 4, as σ
√
T becomes large, this approximation becomes imprecise.

Moreover, the approximation is bias upward compared with the Black-Scholes pricing.

This makes sense because the next higher order term is negative. It also makes sense

because C0/S0 cannot grow linearly with σ
√
T forever. The call option price is bounded

from above by the underlying stock price: C0/S0 cannot be bigger than 1. At some

point, this ratio has to taper off.

What kind of options will give us σ
√
T that is too large for this approximation to

work? Options on volatile stocks with long time to expire. For example, for an option

with σ = 100% and 1 year to expiration, σ
√
T = 1. As you can see from Figure 4, our

approximation is no longer very good.

• ATM Options as Financial Vehicles on σ
√
T : In spending time to analyze the

at-the-money options, we learned an important lesson. In fact, it is the cleanest way to
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understand what options are really about. By buying a call option, we get a positive

exposure to the underlying stock; by buying a put option, we get a negative exposure.

Neither of these exposures is unique to options. There are other ways we can get this

kind of exposure. And the exposure can be easily hedged out by stocks. But what’s

unique about options is the volatility exposure. In the Black-Scholes model, volatility

is a constant. So you might not appreciate the significance of this volatility exposure.

As soon as we allow volatility to move around, which is true in reality, then you find

in options a vehicle that is unique in offering exposures to σ
√
T . Nothing in the stock

market can offer this kind of exposure.

Recall that dynamic replication makes options a redundant security within the Black-

Scholes model. At that point, you might be wondering to yourself that: if it is redun-

dant, then what is the point? Well, in reality, with random shocks to volatility and

fat-tails in stock returns, options are not at all redundant. That is why, as beautiful

and revolutionary as the dynamic replication theory is, I do not want us to spend too

much time on it.

Going back to our discussions regarding N(d1) and N(d2), the example of ATM options

further clarifies what really matters in d1 and d2. It’s the fact that d1 is always

larger than d2, by the amount of σ
√
T in the Black-Scholes model. If you trace back

to the calculation of d1, you notice that it comes from EQ (ST1ST>K), the positive

interaction between ST and 1ST>K . Within the Black-Scholes setting, we have the

exact formulation of this option value. As we later move away from the Black-Scholes

model, N(d1) and N(d2) will be replaced by other formulas. That is why I have been

emphasizing calculations like EQ (1ST>K) and EQ (ST1ST>K) for call options. These

calculations are the main building blocks of a call option, whose values might be

different in different models. Likewise, for put options, calculations like EQ (1ST<K)

and EQ (ST1ST<K) are the main building blocks.

• The Black-Scholes Option Implied Volatility: Once we understand that options

are unique financial vehicles for volatility, then volatility will be the first thing we

would like to learn from options. Indeed, the Black-Scholes option implied volatility is

such a concept.

For a call option with strike price K and time to expiration T , we can calculate its

Black-Scholes price by plugging the model parameters. We obtain the underlying stock

price S0 from the stock market, the riskfree rate r from the Treasury or LIBOR market.

If this option is on the S&P 500 index, we can assume a flow of dividend payment in
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the form of a dividend yield q. We can approximate q with its historical average, say

2%. Now the only parameter left for us to move around is σ. Of course, we can go

to the underlying stock market to measure the volatility. But let’s not do that. Let’s

instead back out the volatility σI so that the model price for this option agrees with

the market price of this option. This is the Black-Scholes implied volatility.

In doing this exercise, we are not assuming the Black-Scholes model is correct. We

are only using the model as a tool for us to transform the option price from the dollar

space to the volatility space. Why is this useful? Because options with different strike

prices and times to expiration will differ quite a lot in their market value. A deep in-

the-money option might be worth hundreds of dollars, while a deep out-of-the-money

option on the same underlying might be worth just a few dollars. A short-dated options

is worth much less than a long-dated options. Since all of these options are on the same

underlying, you would like to be able to compare their pricing. But comparing these

options in the dollar space is not at all intuitive. By contrast, all of these options share

the same underlying. Hence the same σ. So comparing these options in the volatility

space is much more intuitive and productive. In fact, in OTC markets, options are

typically quoted not in dollar but in the Black-Scholes implied volatility. This is

analogous to the adoption of yields in the bond market. So Black-Scholes implied vols

in options and yields in bonds.
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Appendix

A Valuation Models in Finance

As we move on to options and fixed-income products, concepts such as present value cal-

culation will take center stage. Looking back, you might have noticed that in our equity

classes, we worked almost exclusively in the return space. We analyze the distribution of

stock returns, estimate the expected return, investigate the return predictability, and study

the various models of return volatility. Very rarely did we talk about valuation. For exam-

ple, AAPL has a market capitalization of $642B with $112 a share right now. What kind of

Finance models do we use to price this stock? Can the same model be used to price other

stocks? How well does such a model work in practice?

The one exception was when we work with the book-to-market ratio in the Fama-French

model. We use the book value of equity as a benchmark for the market value of equity.

If investors think of buying the stock as buying the book value of the firm, then this ratio

should be around one. In practice, we noticed a wide range of book-to-market ratios. For

example, as of July 2015, the average book-to-market ratio is around 0.095 for stocks in

decile 1 and 1.339 for those in decile 10. AAPL with its book-to-market ratio of 0.2 belongs

only to decile 2. Conceptually, we can say that stocks with low book-to-market ratios are

those with great growth potential. As such, investors are willing to pay multiple (in the case

of 0.095, 10 times) of the book value. Quantitatively, however, why some stocks are priced

at 10 times while other stocks are priced at 0.75 times? Do we have one good model to give

accurate prices to this cross-section of stocks with varying book-to-market ratios?

By now, you’ve probably been taught various valuation models that combine cash flows

with discount rates. You project the future cash flows of a firm or a project and discount them

back using some discount rates estimated using a Finance model, say the CAPM. Without

a question, these frameworks are useful in helping us think through the key components in

a valuation project. But, quantitatively, these models do not offer the kind of precision and

rigor as other models in Finance. And in practice, this seems to be true as well.

When I first read the fascinating book on the RJR Nabisco deal, “Barbarians at the

Gate,” my mouth was wide open as I flipped through the pages. For such a large deal, the

valuation seems to be rather flexible. Over the short time span of one month and 11 days,

the valuation moved from the initial $17 billion with $75 a share to $24.88 billion with $109

a share. This might be an extreme case, but other books on private equity, for example,

“King of Capital,” left me with the same impression: there is a lot of flexibility in valuation
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in this space. If you look at the venture capital space, where even the projection of future

cash flow is very much up in the air, you see a similar pattern. I am not an expert in either

of these areas, but it is safe to say that the level of precision required of a Finance model

is relatively low in these areas, or the margin of errors allowed for such valuation models is

rather high.

In writing this introduction on valuation, my objective was to compare and contrast the

role of valuation in various parts of Finance. On the one end of the spectrum, you have

valuations in VC and private equity. In this space, the cash flows are highly uncertain;

which discount rates to use is also not clear. The role of a valuation model in such a setting

is indeed very limited. If you are working in this area, spending time to perfect your Finance

model is not at all your number one priority. On the other end of the spectrum, you have

valuations in options and fixed income. In options, the cash flow comes from the fluctuation

of the underlying stock price. In fixed income, the cash flow comes from the coupon and

principal payments. In both cases, the cash flow can be modeled rather precisely and the

present value calculation can be done with super high precision. In these areas, people take

their valuation models rather seriously. If anything, the danger is that people take their

models too literally to the extent that they are lost in their models.

I hope that you do not read this introduction as “one against another.” This concern

made me move this introduction to the appendix so as not to distract you from the main

topic. The role of a professor is to offer knowledge and perspective. As a student, your

responsibility is to absorb the useful, discard the useless and build a system for yourself. I

can see how a teacher can influence his students (OK, maybe not MBAs). My cousin in

Shanghai used to hate English because her English teacher was not nice to her. Isn’t that

crazy?

B The Motives for Option Trading

The motives behind options trading could vary from speculation to hedging. Investors with

private (legal or illegal) information might choose to trade in the options market to take

advantage of the inherent leverage in options. This usually happens more at the level of

options on individual stocks, where option investors trade their private information about

the idiosyncratic component of the stocks. I have a paper with Allen Poteshman on this

topic.

As a graduate from Chicago GSB, Allen was able to get a very unique dataset from

CBOE with details on option trading volumes on open buy and sell, close buy and sell from
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1990 through 2001. Around the same time, I was teaching 15.433 and had to educate myself

about quant investing and sorting portfolios with signals. Like some of you, after learning

about this cross-sectional approach, I started to think about trading strategies. Since I spent

most of my time thinking about options, the idea came quite naturally to me: would it be

cool to have a signal from the options market and use it to trade in the stock market? The

most obvious signal would be put/call ratio. Consider a stock with a lot of put option volume

traded on it versus a stock with a lot of call option volume traded on it. One is a bearish

signal on the stock and the other bullish.

My problem was that I did not have good options data with clean volume information to

test this idea. Most of the publicly available data mixes open buy with close buy and open

sell with close sell. As a result, the pure signal from open buy is contaminated by close buy.

Likewise for the sell volume. So my test results using the publicly available data were weak

and I did not want to write a paper with these weak results. This is how I located Allen and

his unique dataset. I sent him an email, he sent me a disc with his data and we started to

work together.

We form stock portfolios by their put/call ratios and track their performance for the

next week. We find that stocks with low put/call ratio outperform stocks with high put/call

ratio by 40 basis points over the next day and 1% over the next week. This predictability is

stronger for smaller stocks. We also find that option volumes by customers from full service

brokerage firms (e.g., hedge funds) are by far the most informative. By contrast, option

volumes by firm proprietary traders do not have any predictive power. Our interpretation is

that prop traders use exchange-traded options mostly for hedging needs, which is supported

by the fact that prop traders are much more active on index options than equity options.

After we finished our paper in 2003 or 2004, we got a lot of interest from practitioners.

We even heard from CBOE, who asked us where we got the data. We told them that the

data was sitting in their mainframe and offered to help them package and sell the data (so

that we can have free access). They said “No.” Later they started to sell this data at a pretty

high price. Several years later around 2009 or 2010, a former student of Allen got this big

grant for data purchase. So I asked her to buy the very expensive CBOE data to do the same

test on the more recent data. The strong predictability we found over the 1990-2001 sample

no longer exists in the recent time period. It is difficult to say if our paper has any direct

impact, but the market seemed to become a little more efficient. After writing this paper,

Allen became more interested in the practice of Finance and left his tenured professorship

to join D.E. Shaw. He also got us a coverage on the New York Times.
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The Black-Scholes option pricing model, along with the arbitrage-free risk-neutral pricing

framework, is something of a revolution in Finance. It managed to attract many mathemati-

cians, physicists, and even engineers to Finance. But if the progression stopped right at the

level of modeling and pricing, it would have been rather boring: you take the pricing formula,

plug in the numbers, and get the price. So things would have been pretty mechanical. Real

life is always more interesting than financial models. In this class, let’s bring the model to

the data and enjoy the discovery process.

1 Bring the Black-Scholes Model to the Data

• ATM Options and Time-Varying Volatility: Volatility plays a central role in

option pricing. In the Black-Scholes model, volatility σ is a constant. If you take this

assumption literally, then the Black-Scholes implied vol σI
t should be a constant over

time. In practice, this is not at all true. As we learned in our earlier class on time-

varying volatility, using either SMA or EWMA models, the volatility measured from

the underlying stock market moves over time. Recall this plot, Figure 1, in Classes

8 & 9, where the option-implied volatility is plotted against the volatility measured

directly from the underlying stock market. In both cases, stock return volatility varies

over time.

One interesting observation offered by Figure 1 is that the option-implied volatility is

usually higher than the actual realized volatility in the stock market. In other words,

within the Black-Scholes model, the options are more expensive than what can be

justified by the underlying stock market volatility. If you believe in the Black-Scholes

model, then selling volatility (via selling near-the-money options, calls or puts) will be

a very profitable trading strategy.

Figure 2 plots the time-series of VIX (option-implied volatility using SPX) against

the time-series of the S&P 500 index level. As you can see, the random shocks to
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Figure 1: Time-Varying Volatility of the S&P 500 Index. The red line is the option-implied
volatility using SPX traded on CBOE. The blue line is measured directly from the underlying
stock market using daily returns of the S&P index.
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VIX, especially those sudden increases in VIX are often accompanied by sudden and

large drops in the index level. Of course, this observation is outside of the Black-

Scholes model, where σ is a constant. But this plot gives us the intuition as to what

could go wrong with selling volatility: you lose money when the markets are in crisis.

Basically, by selling volatility on the overall market (e.g., SPX), your capital is at risk

exactly when capital is scarce. In the language of the CAPM, you have a positive beta

exposure.

But this positive beta exposure is more subtle than the simple linear co-movement

captured by beta. As highlighted by the shaded areas, volatility typically spikes up

when there are large crises. Just to name a few: the October 1987 stock market crash,

the January 1991 Iraq war, the September 1993 Sterling crisis, the 1997 Asian crisis, the

1998 LTCM crisis, 9/11, 2002 Internet bubble burst, 2005 downgrade of GM and Ford,

2007 pre-crisis, March 2008 Bear Stearns, September 2008 Lehman, the European and

Greek crises in 2010 and 2011, and the August 2015 Chinese spillover. In other words,

what captured by Figure 2 is co-movement in extreme events, like the crisis beta in

Assignment 1 (risk exposure conditioning on large negative stock returns). Also, as

shown in Figure 2, not all crises have the same impact. For example, the downgrade

of GM and Ford was a big event for the credit market, but not too scary for equity

and index options.

The comovement in Figure 2 gives rise to a negative correlation between the S&P 500

index returns and changes in VIX, which ranges between -50% to -90%. Figure 3 is an

old plot from Classes 8 & 9, which uses the EWMA model to estimate the correlation

between the two. As you can see from the plot, the correlation has experienced a

regime change. During the early sample period, the correlation hovers around -50%,

while in more recent period, the correlation has become more severe, hovering around

-80%.

All of these observations have direct impact on how options should be priced in practice:

the Black-Scholes model need to allow σ to vary over time. The time variation of σ

should not be modeled in a deterministic fashion. As shown in Figure 2, the time

series of σt is affected by uncertain, random shocks. So just like the stock price St

follows a stochastic process (e.g., geometric Brownian motion), σt itself should follow

a stochastic process with its own random shocks. Moreover, the random shocks in σt

should be negatively correlated with the random shocks in St to match the empirical

evidence in Figure 2. There is a class of diffusion models called stochastic volatility

models developed exactly for this purpose.
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These models are similar to the discrete-time models like EWMA or GARCH, which

also allow volatility to be time-varying. But one distinct future of stochastic volatility

models is that it has its own random shocks. In EWMA or GARCH, the time-varying

volatility comes from the random shocks in the stock market. We will come back to the

stochastic volatility model later in the class, which are very useful in pricing options

of different times to expiration, linking the pricing of long-dated options to that of

short-dated options.

• OTM Options and Tail Events: In developing our intuition for the Black-Scholes

model, we’ve focused mostly on the ATM options, which are important vehicles for

volatility exposure. Now let’s look at the pricing of the out-of-the-money options.

Recall the risk-neutral pricing of a call option,

C0 = EQ
(
e−rT (ST −K)1ST>K

)
= e−rT EQ (ST1ST>K) − e−rT K EQ (1ST>K) ,

where the pricing bolts down to calculations involving EQ(1ST>K EQ(ST1ST>K . For

K > S0e
rT , the call option is out of the money. In fact, the larger the strike price K,

the more out of the money the option is, and the smaller EQ(1ST>K . So if we focus on

OTM calls, we zoom into the right tail.

Likewise, the risk-neutral pricing of a put option is,

P0 = EQ
(
e−rT (K − ST )1ST<K

)
= e−rT K EQ (1ST<K) − e−rT EQ (ST1ST<K) ,

where the pricing bolts down to calculations involving EQ(1ST<K EQ(ST1ST<K . For

K < S0e
rT , the put option is out of the money. In fact, the smaller the strike price K,

the more out of the money the option is, and the smaller EQ(1ST<K . So if we focus on

OTM puts, we zoom into the left tail.

Within the Black-Scholes model, the above calculations can be taken to the next level

using the probability distribution of a standard normal:

P0 = e−rT K EQ (1ST<K) − e−rT EQ (ST1ST<K) = e−rT KN(−d2) − S0N(−d1) ,

where I’ve changed the color coding so that this equation matches with Figure 4. More

specifically, for a 10% OTM put striking at K = S0 e
r T × 90%, we can re-write the
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.

above pricing into:

P0

S0

=
e−rTK

S0

N(−d2) − N(−d1) = 0.90× N(−d2) − N(−d1)

Figure 4 gives us a graphical presentation of what matters when it comes to pricing

such OTM options: the left tail in red and the slice in yellow. The areas in red and

yellow are mapped directly to the CDF of a standard normal (hence N(−d1) and

N(−d2) - N(−d1)) because we are working under the Black-Scholes model. But the

intuitive goes further. For any distribution (even it is not normal), what matters for

the pricing of this OTM put option is the left-tail distribution. If this left tail is fat

because of many financial crises, then the pricing of OTM put options should reflect

these tail events. In Assignment 3, you will have a chance to work with a model with

crash and see the link between fat tails and option prices.

As mentioned a few times, the actual distribution of stock market returns is not nor-

mally distributed. This is especially true for returns at higher frequencies (e.g., daily

returns). As such, the Black-Scholes model fails to capture the fat tails in the data.

As we will see, this becomes a rather important issue when it comes to pricing options.
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Conversely, by looking at how these OTM options are priced, we learn about investors’

assessment and attitude toward these tail events.

• Option Implied Smirks: After the 1987 stock market crash, one very robust pattern

arose from the index options (SPX) market called volatility smiles or smirks.

Consider the nearest term options, say one month to expiration (T=1/12). Let’s vary

the strike price of these options. Typically, for options with one month to expiration,

you can find tradings of OTM puts and calls that are up to 10% out of the money. It

is generally the case that OTM options are more actively traded than in-the-money

options. This makes sense. If you are using options for speculations, you would prefer

options that are cheaper (and are liquid) so that you can get more action for each dollar

invested in options. If you are using options for hedging, it is likely that you are hedging

out tails events. So either way, the OTM puts and calls are referred instruments than

ITM options.

Between OTM calls and puts of SPX, it is generally the case that OTM puts are more

actively traded and the level of OTM-ness can reach up to 20%. For the S&P 500

index, a typical annual volatility is 20%, implying a monthly volatility of 5.77%. So

for a 10% OTM put option, it takes a drop of 1.733-sigma (10%/5.77%) move in the

S&P 500 index over a one-month period for this option to come back to the money.

Using the market prices of all the available SPX puts and calls, we can back out the

Black-Scholes implied volatility σI for each one of them. If investors are pricing the

options according to the Black-Scholes model, then we should see σI being exactly the

same for all of these options, regardless of the moneyness of the options. What we see

in practice, however, is a pattern like that in Table 1.

Table 1: Short-Dated SPX Puts with Varying Moneyness on March 2, 2006.

P0 S0 K OTM-ness T σI PBS
0

9.30 1287 1285 0.15% 16/365 10.06% ?
6.00 1287 1275 0.93% 16/365 10.64% 5.44
2.20 1287 1250 2.87% 16/365 12.74% 0.92
1.20 1287 1225 4.82% 16/365 15.91% 0.075
1.00 1287 1215 5.59% 16/365 17.24% 0.022
0.40 1287 1170 9.09% 16/365 22.19% 0.000013

Table 1 lists six short-dated OTM put options with exactly the same time to expiration

but varying degrees of moneyness. The first option is nearest to the money, striking
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at K = 1285 when the underlying stock index is at S0 = 1287. The last option is the

farthest away from the money, striking at K = 1170. The S&P 500 index needs to drop

by over 9% over the next 16 calendar days in order for this option to be in the money.

Not surprisingly, options are cheaper as they are farther out of the money. But what’s

interesting is that their Black-Scholes implied vols exhibit this opposite pattern: the

more out of the money a put option is, the higher its implied vol. In other words, even

though the pricing of $0.40 (per option on one underlying share of the S&P 500 index)

seems very cheap in dollars and cents, it is actually over priced. Plugging a σ = 10.06%

to the Black-Scholes model (which a closer to the market volatility around March 2,

2006), the model price for this OTM put is $0.000013. In other words, this option is so

out of the money, the Black-Scholes model (with normal distribution) deems its value

to be close to zero. In practice, however, there are people who are willing to pay $0.40

for it.

Why? Don’t they know about the Black-Scholes option pricing formula? If they care

about tail events, then what about OTM calls which are sensitive to right tails? As we

see in the data, the tail fatness shows up in both the left and the right. But the OTM

calls are not over-priced. If anything, the implied vols of OTM calls are on average

slightly lower than ATM options. That is why we are calling this pattern volatility

smirk, which is an asymmetric smile.

• Expected Option Returns: Another way to look at the profit/loss involved in

options is to calculation their expected returns like we do in the stock market. Table 2

was reported in a 2000 Journal of Finance paper by Prof. Coval and Shumway.

Table 2: Expected Options Returns

Strike - Spot -15 to -10 -10 to -5 -5 to 0 0 to 5 5 to 10
Weekly SPX Put Option Returns (in %)

mean return -14.56 -12.78 -9.50 -7.71 -6.16
max return 475.88 359.18 307.88 228.57 174.70
min return -84.03 -84.72 -87.72 -88.90 -85.98
mean BS β -36.85 -37.53 -35.23 -31.11 -26.53
corrected return -10.31 -8.45 -5.44 -4.12 -3.10

Option data from Jan. 1990 through Oct. 1995.

As shown in Table 2, the weekly returns of buying put options are on average negative.

There are quite a bit of variation in these returns. For the farther OTM put options,
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the return could be as positive as 475.88%, or as negative as -84.03%. This option has

a beta of -36.85, which is due to the inherent leverage of these options. The CAPM-

alpha of this investment is -10.31% per week. Whoever is selling this option would

make a lot of money...on average. But he needs to be well capitalized when an event

like 475.88% happens.

Calculations like those in Table 2 are rather imprecise because of the large variations

in option returns. So we do not want to take the numbers too literally. But the

qualitative result of this Table is important: when it comes to investing in options,

there are large variations in option returns. Moreover, buying put options give you

negative alpha. The more out of the money the put option is, the more negative the

alpha becomes. For investors who are selling such put options, they are able to capture

such alpha. But such trading strategies are in generally very dangerous. You need to

be well capitalized to survive large crises like the 1987 stock market crash. Otherwise,

you are just one crisis away from bankruptcy.

The results shown here in the return space is very much consistent with the earlier

results in the implied-vol space, where OTM put options are over priced relative to

near-the-money options. The level of over-pricing gets more severe as the put option

becomes more out of the money and are more sensitive to market crashes. So it is not

surprising that the put option returns are on average negative. Most of the times, you

purchase an insurance against a market crash, but the crash does not happen and your

put option expires out of the money. But once in a while, a crisis like 1987 or 2008

happens, then this put option brings you over-sized returns. Sitting on the other side

of the trade are investors who sell/write you these crash insurances. Most of the times,

they are able to pocket the premiums paid for the insurance without having to do

anything. But once in while, they lose quite a bit of money if a crisis like 1987 or 2008

happens. As such, the risk profile of such option strategies differs quite significantly

from that of a stock portfolio, where all instruments are linear. In Assignment 3, you

will have a chance to see this kind of risk/return tradeoff of options in more details for

yourselves.

2 When Crash Happens

• Crash and Crash Premium: The empirical evidence we’ve seen so far indicates that

strategies involving selling volatility and selling crash insurance are profitable. As you

will see for yourself in Assignment 3, the return distribution of such option strategies
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differs quite significantly from that of a stock portfolio, where all instruments are linear.

In the presence of tail risk, options are no longer redundant and cannot be dynamically

replicated. As such, two considerations involving the tail risk become important in

the pricing of options. First, the likelihood and magnitude of the tail risk. Second,

investor’s aversion or preferences toward such tail events. The “over-pricing” of put

options on the aggregate stock market (e.g., the S&P 500 index) reflects not only the

probability and severity of market crashes, but also investors’ aversion to such crashes

— crash premium.

In fact, as you will see in Assignment 3, the probability and severity of market crashes

implicit in the volatility smirk are such that investors are pricing these OTM put

options as if crashes like 1987 would happen at a much higher frequency. In other words,

investors are willing to pay a higher price for such crash insurances even though they

are “over-priced” relative to the actual amount of tail risk observed in the aggregate

stock market. And the sellers of such crash insurances are only willing to sell them if

they are being compensated with a premium, above and beyond the amount of tail risk

in the data. This crash premium accounts for most of the “over-pricing” in short-dated

OTM puts and ATM options.

By contrast, this “over-pricing” is not severe for OTM calls because they are not very

sensitive to the left tail. Instead, OTM calls are sensitive to the right tail. From how

such options are priced relative to OTM puts, it is obvious that investors are not eager

to pay the same amount of premium for insurances against the right tail. This makes

perfect sense. The intuition comes straight from the CAPM. An OTM call is a positive

beta security, which provides positive returns when the market is doing well. It is icing

on the cake. By contrast, an OTM put pays when the market is in trouble — a friend

in need is a friend indeed.

• Bank of Volatility: LTCM was a hedge fund initially specialized in fixed-income

arbitrage. It was extremely successful in its earlier years. Success breeds imitation.

Soon, the fixed-income arbitrage space was crowded and spreads in arbitrage trades

were shrinking. In early 1998, LTCM began to short large amounts of equity volatility.

Betting that implied vol would eventually revert to its long-run mean of 15%, they

shorted options at prices with an implied volatility of 19%. Their position is such that

each percentage change in implied vol will make or lose $40 million in their option

portfolio. The size of their vol position was so big that Morgan Stanley coined a

nickname for the fund: the Central Bank of Volatility. For more details, you can read
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Roger Lowenstein’s book on LTCM.
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Figure 5: Time Series of CBOE VIX index in 1998.

During normal time, volatility does revert to its mean. So the idea behind the trade

makes sense. Moreover, as we’ve seen in the data, selling volatility (via ATM options) is

a profitable strategy on average because of the premium component. But the premium

was not a free lunch: it exists become of the risk involved in selling volatility. As we’ve

seen in the data, when the volatility of the aggregate market suddenly spikes up, the

financial market usually is in trouble. Whenever the market is in the crisis mode, there

is flight to quality: investor abandon all risky asset classes and move their capital to

safe havens such as the Treasury bond market.

For the case of LTCM in 1998, it had arbitrage trades in different markets (e.g., equity,

fixed-income, credit, currency, and derivatives) across different geographical locations

(e.g., U.S., Japan, and European). Lowenstein’s book gives more detailed descriptions

of these arbitrage trades. One common characteristics of these arbitrage trades is

that they locate some temporary dislocation in the market and speculate that this

dislocation will die out as the market converges back to normal. In a way, these

arbitrage trades betting on convergence make money because they provide liquidity

to temporary market dislocations. The key risk involved in these arbitrage trades is

that timing of the convergence is uncertain. Sometimes, instead of converging, the
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dislocation becomes even more severe before converging back to normal.

Prior to the Russian default in the summer of 1998, these arbitrage trades were not

highly correlated. But after the default, most of these previously uncorrelated arbitrage

trades lost money for LTCM at the same time. This certainly includes the volatility

trades. As shown in Figure 5, early in the year, volatility was fluctuating around 20%.

By summer 1998, however, the market became quite volatile because of the Russian

default. At its peak, the VIX index was around 45%. Recall that LTCM was selling

volatility when VIX was around 19% in early 1998. The position was such that each

percentage change in implied vol will make or lose $40 million. So if the volatility

converges back to its long run mean of 15%, then roughly 4×$40 = $160 can be made.

But if instead of converging, the volatility increases to 45%, you can imagine the loss.

The Russian default affected not only LTCM but other hedge funds and prop trading

desks who pursued the same kind of convergence trades. At a time like this, capital

becomes scarce, and all leveraged investors (e.g., hedge funds or prop trading in in-

vestment banks) are desperately looking for extra source of funding. They do so by

unwinding some of their arbitrage trades, further exacerbating the widening spreads.

At a time like this, holding a security that pays (e.g., an existing long position in puts)

could be very valuable. By contrast, a security that demands payment (e.g., an ex-

isting short position in puts) would be threatening to your survival. Therefore, being

on the short side of the market volatility hurts during crises. That is why volatility is

expensive (i.e., ATM options are over-priced) in the first place.

• The 2008 crisis: The OTM put options on the S&P 500 index is a good example

for us to understand crash insurance. In writing a deep OTM put option, the investor

prepares himself for the worse case scenario when the option becomes in the money.

This happens when the overall market experiences a sharp decline. The probability

of such events is small. But if he writes a lot of such options believing that the

exposure can somehow be contained by the low probability, then he is up for a big

surprise when a crisis does happen. As we learned from the recent financial crisis, some

supposedly sophisticated investors wrote such OTM put options without knowing the

real consequence.

Gillan Tett from Financial Times wrote an excellent book called Fool’s Gold with

details of how investment banks developed and later competed for the market shares

of the mortgage-linked CDO products. The following is a brief summary.

By 2006, Merrill, who was late into the CDO game, topped the league table in terms
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of underwriting CDO’s, selling a total of $52 billion that year, up from $2 billion in

2001. Behind the scenes, Merrill was facing the same problem that worried Winters at

J.P. Morgan: what to do with the super-senior tranch?

CDO’s are the collateralized debt obligations. It pools individual debt together and

slices the pool into tranches according to seniority. For a mortgage-linked CDO, the

underlying pool consists of mortgages of individual homeowners. The cashflow to the

pool consists of their monthly mortgage payments. The most senior tranch is the first

in line to receive this cashflow. Only after the senior tranch receives its promised

cashflow, the next level of tranches (often called mezzanine tranches) can claim their

promised cashflow. The equity tranch is the most junior and receives the residual

cashflow from the pool.

As default increases in mortgages, the cashflow to the pool decreases. The equity

investors will be the first to be hit by the default. If the default rate further increases,

then the mezzanine tranch will be affected. The most senior tranch will only be affected

in the unlikely event that both equity and mezzanine investors are wiped out and the

cashflow to the pool cannot meet the promise to the most senior tranch. Such super

senior tranches are usually very safe and are Aaa rated. By contrast, the mezzanine

tranches are lower rated (Baa) because of the higher default risk. And the credit

quality of the equity tranch is even lower.

The pricing of such products is consistent with their credit quality: the yield on the

mezzanine tranches is higher than the senior tranches to compensate for the higher

credit risk. Investors, in an effort to reach for yield, prefer to buy the mezzanine

and equity tranches. As a result, the investment banks underwriting the CDOs are

often stuck with the super senior tranches. As the business of CDOs grew, the banks

are accumulating more and more highly rated super senior tranches. Initially, Merrill

solved the problem by buying insurance (credit default swaps) for its super-senior debt

from AIG.

Let’s take a look at what the super-senior tranch is really about. It is highly rated

because of the low credit risk. Imagine the economic condition under which this credit

risk affecting the super-senior tranch will actually materialize: when the default risk is

so high that both mezzanine and equity investors are wiped out. A typical argument

for the economics of pooling is that default risk by individual homeowners can be

diversified in a pool. This is indeed true when we think about the risk affecting the

equity tranch: one or two defaults in the pool would affect the cashflow to the equity

tranch, but would not affect the mezzanine tranch, let alone the senior tranch. So the
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risk affecting the senior tranch has to be a very severe one. The default rate has to be

so high that the cashflow dwindles to the extent that it would eat through the lower

tranches and affect the most senior tranch. In other words, many homeowners must be

affected simultaneously and default at the same time to generate this type of scenario.

By then, the risk is no longer idiosyncratic but systemic. So writing an insurance on

a senior tranch amounts to insuring a crisis — a deep OTM put option on the entire

economy.

In late 2005, AIG told Merrill that it would no longer offer the service of writing

insurance on senior tranches. By then, however, AIG has already accumulated quite

a large position on such insurance. Later, AIG was taken over by the US government

in a $85 billion bailout and the insurance on senior tranches was honored and made

whole by AIG (and the New York Fed).

After AIG declined to insure their super senior tranch, Merrill decided to start keeping

the risk on its own books. At the same time, Citigroup, another late comer, was also

keen to ramp up the output of its CDO machine. Unlike the brokerages, though,

Citi could not park unlimited quantities of super-senior tranches on its balance sheet.

Citi decided to circumvent that rule by placing large volumes of its super-senior in

an extensive network of SIVs (Special Investment Vehicle) and other off balance sheet

vehicles that it created. Citi further promised to buy bank the super-senior tranch if

the SIVs ever ran into problems with them.

Now let’s try to understand what Merrill and Citi are actually doing by retaining the

super-senior tranch. Effectively, they are holding the super-senior tranch without an

insurance. If you are holding a US treasury bond, you don’t have to worry about

credit risk (except for when the US government defaulted). So holding a super-senior

tranch without an insurance is like holding a default-free US treasury bond and selling

a deep OTM option on the overall economy at the same time. Before, they were able

to buy that put option from AIG to hedge out this risk. Now, they are bearing this

risk themselves.

Then the crisis happened in 2007 and 2008, and the mortgage default rate increased to

such an extent that it started to affect the super-senior tranches. In other words, the

deep OTM put options became in the money. During the 2007-08 crisis, the pricing

of these super-senior tranches became one of the biggest headaches on Wall Street.

Merrill and Citi, along with other Wall Street banks, had to take billions of dollars of

writedowns.
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3 Beyond the Black-Scholes Model

• A model with market crash: In Assignment 3, you will be working closely with a

model that allows market to crash. It is a simplifies version of the model in Merton

(1976).

• A model with stochastic volatility: I’ll briefly mention these models in class.
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Appendix

During my office hours, I got a few questions about the Brownian motion and risk-neutral

pricing. Let me use this appendix to explain some of the details.

A Brownian Motion
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Figure 6: One sample path of a Brownian motion.

To understand the Brownian motion, let’s create one. Let’s start from time 0 and end in

time T. Let’s further chop this time interval into small increments. For example, in Figure 6,

T=1 and the interval between 0 and 1 is chopped evenly into 50 smaller increments with

size Δ = 1/50. We can now start to create a sample path of the Brownian motion:

B0 = 0

BΔ − B0 =
√
Δ εΔ

B2Δ − BΔ =
√
Δ ε2Δ

. . .

BT − BT−Δ =
√
Δ εT .
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where the ε’s are independent standard normals. In creating this sample path, we use the first

two properties of the Brownian motions: independence increments and stationary normal

increments. I’ve attached the Matlab code I used to create this plot in this note. You can

run it and each time you will get a different sample path.

For our purpose of pricing a European-style option, what matters is the distribution of

BT . But if we are interested in pricing an American-style option, then the entire path of Bt

matters and at each node, we will make a decision of whether or not to exercise early. So

the grid should be as fine as possible (larger N and smaller Δ).

Now back to our original process for St:

dSt = μSt dt+ σ St dBt ,

where to avoid distraction, I have set the dividend yield q = 0. As usual, we work with

Xt = lnSt and, using the Ito’s Lemma, we have

dXt =

(
μ− 1

2
σ2

)
dt+ σ dBt .

The nice thing about working with lnSt is that you can integrate out the process:

XT = X0 +

∫ T

0

(
μ− 1

2
σ2

)
dt+

∫ T

0

σ dBt

= X0 +

(
μ− 1

2
σ2

)
T + σ (BT −B0)

= X0 +

(
μ− 1

2
σ2

)
T + σ

√
T εT ,

where in the last step I use
√
T εT to express BT − B0. Recall that the log-return RT is

defined by RT = lnXT − lnX0. We have

RT =

(
μ− 1

2
σ2

)
T + σ

√
T εT

B Change of Measure, Risk-Neutral Pricing

Under the original measure (P-measure), the process runs as

dXt =

(
μ− 1

2
σ2

)
dt+ σ dBt .
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If we were to do option pricing under this measure, we know that we cannot do

C0 �= e−rTE (ST −K)+ .

This is a big no-no in Finance because it approaches the pricing as if we were risk neutral.

Interestingly, this is why the method of “risk-neutral” pricing arises. It is mostly a math-

ematical result. If you Google Girsonov theorem or the Radon-Nikodym derivative, you

will see the related math result. But the math result has its relevance in Finance. Let me

approach it this way.

In Finance, we develop this concept of pricing kernel or the stochastic discount factor.

Armed with this pricing kernel ξT , we can do our pricing:

C0 = e−rTE

(
ξT
ξ0

(ST −K)+
)

.

Under the Black-Scholes setting, the markets are complete and the pricing kernel is unique.

In fact, as an application of the Girsonov theorem, this pricing kernel is of the form

ξT =
dQ

dP
= e−γ BT− 1

2
γ2 T .

This ξT is what the mathematician would call the Radon-Nikodym derivative. Notice that

by construction E(ξT ) = 1.

As mentioned earlier, the pricing kernel is unique under the Black-Scholes setting. So the

constant γ is uniquely defined. In Finance, we call this parameter the market price of risk

and for the Black-Scholes setting, it is γ = (μ− r) /σ, which in fact is the Sharpe ratio. In

a more general setting, γ can itself be a stochastic process. Also notice that with a positive

market price of risk, γ > 0, ξT is negatively correlated with BT (hence negatively correlated

with XT and ST ). This is what you were taught in Finance 15.415. When ST experiences

a positive stock, the stochastic discount factor is smaller; when ST experiences a negative

stock, the stochastic discount factor is bigger. This asymmetry has its origin in the fact that

investors are risk averse and the risk in ST is systematic (undiversifiable).

It turns out that we can create a new measure Q, called the equivalent martingale mea-

sure, for the original P and the pricing becomes,

C0 = e−rTE

(
ξT
ξ0

(ST −K)+
)

= e−rTEQ
(
(ST −K)+

)
,
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and the link between these two measures is ξT = dQ/dP .

Now let’s construct this new Q-Brownian:

dXt =

(
μ− 1

2
σ2

)
dt+ σ dBp

t

=

(
r − 1

2
σ2

)
dt+ σ

(
μ− r

σ
+ dBP

t

)

=

(
r − 1

2
σ2

)
dt+ σ dBQ

t ,

where the Q-Brownian is defined as

dBQ
t =

μ− r

σ
+ dBP

t .

And this change of measure, from P to Q, is the essence of the risk-neutral pricing.

The name of “risk-neutral” pricing is ironical: the whole thing arises from the observation

that we cannot do

C0 �=e−rTEP (ST −K)+ .

But if we are willing to change our probability measure from P to Q, under which

dXt =

(
r − 1

2
σ2

)
dt+ σdBQ

t ,

then we can indeed do

C0=e−rTEQ (ST −K)+ .

C Change of Measure, One More Application

This mathematical tool can be further exploited. Recall that we need to do this calculation

in our Black-Scholes option pricing,

e−rT EQ (ST1ST>K)

What if we can drop ST and change it to

S0E
? (1ST>K)

That would make our math very simple.
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In fact, we can drop ST like the way we dropped ξT . As long as the process is positive,

there is an equivalent martingle measure waiting for us to help us simplify the math. This

is where the new measure QQ comes from. You can start with the observation that

ST = eXT = eσ BT +other deterministic terms

You can then check

dXt =

(
r − 1

2
σ2

)
dt+ σdBQ

t

=

(
r +

1

2
σ2

)
dt− σ2 dt+ σdBQ

t

=

(
r +

1

2
σ2

)
dt+ σ

(
−σ dt+ dBQ

t

)

So if we define

dBQQ
t = −σ dt+ dBQ

t ,

under which

dXt =

(
r +

1

2
σ2

)
dt+ σdBQQ

t .

Then we can indeed get

e−rT EQ (ST1ST>K) = S0E
QQ (1ST>K) .

I am being a bit sloppy in my notation, but I trust a careful and thorough student would fill

in the details (including the other deterministic terms).

D Matlab Code

Code 1: Brownian.m

T=1; N=50;

Delta=T/N;

EPS=randn(N,1);

T_vec=(0:Delta:T)’;

B=0; B_vec=B;

20



for i=1:N,

B=B+EPS(i)*sqrt(Delta);

B_vec=[B_vec; B];

end

figure(1); clf; hold on;

plot(T_vec,B_vec,’r.’);

BND=axis;

for i=1:N,

plot(T_vec(i)*[1 1],BND(3:4),’y-.’);

end

plot(T_vec,B_vec,’rx’,T_vec,B_vec,’b-’);

hold off;

ylabel(’\bf B_t’);

xlabel(’\bf t’);

text(1.01,B,’\bf B_T’);

text(-0.08,B_vec(1),’\bf B_0=’);

title(’One Sample Path of B_t from 0 to T=1’)
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1 Why Risk Management?

• Capital Markets Imperfection: According to Modigliani and Miller (1958), in

perfect capital markets, adding or subtracting financial risk has no impact on the

market value of a publicly traded corporation or on the welfare of its shareholders. In

the real world, capital markets are imperfect. This imperfection gives rise to the need

for risk management.

At the core of risk management for financial institutions is the concept of “capital

adequacy.” If new capital could be obtained in perfect financial markets, we would

expect a financial firm to raise capital as necessary to avoid the cost of financial distress.

In such a setting, purely financial risk would have a relatively small impact, and risk

management would not be important. In practice, however, capital is a scarce resource,

especially when it is most needed.

Compared with other types of corporations, financial firms have relatively more liquid

balance sheets, made up largely of financial assets. This relative liquidity allows a

typical financial firm to operate with a high degree of leverage. For example, major

broker-dealers regulated by SEC frequently have a level of accounting capital that is

close to the regulatory minimum of 8% of accounting assets, implying a leverage ratio

on the order of 12.5 to 1. As we will see later in the class, for Goldman Sachs, the

ratio of book assets to book equity was 10.3 to 1 in 2014, with 23% of the liabilities

financed by long-term liabilities and 11% financed by Repo (usually overnight and

short-term). In 2007, the leverage was even higher: the asset-to-equity ratio at 26.2;

and the financing leaned more toward short term: only 18% long-term financing and

close to 15% Repo financing.

Ironically, in light of the relatively high degree of liquidity that fosters high leverage, a

significant and sudden financial loss (or reduced access to credit) can cause dramatic
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illiquidity effects. This, has been the experience for many financial firms during the

2007-08 crisis. Some survived (e.g., Morgan Stanley and Goldman Sachs), some were

bought out (e.g., Bear Stearns, Merrill, and Wachovia), and some failed (e.g., Lehman

and WaMu). For individual firms, weathering sudden financial losses with adequate

capital matters for its own survival. For regulators, it is about the financial stabil-

ity of the entire system, which has become highly inter-connected through interbank

transactions including OTC derivatives trading.

• Liquidity Mismatch in Assets and Liabilities: Let’s strip the complexity of a

financial institution to its bare minimum with this simple example of a bank. It takes

in deposits at the short-end of the yield curve and makes loans at the long-end. This

maturity transformation is at the core of a bank’s profitability. As we will learn in the

fixed-income class, the yield curve is typically upward sloping with the spread between

the long- and short-term yields averaged to about 100 to 200 basis points. In addition,

the longer maturity loans made by banks to firms are usually defaultable, adding

another 100 to 200 basis points of credit spread (assuming the loans are investment

grade).

With fractional-reserve banking, the bank is allowed to hold reserves that are only a

fraction (e.g., 10%) of their deposit liabilities. For our example, let’s assume that the

bank is 100% financed by liabilities. It takes in 100 dollars of demand deposits (i.e.,

liabilities), holds 10 dollars of reserve (i.e., cash or safe assets) and lends out 90 dollars

in longer maturity and defaultable loans (i.e., risky assets).

A run on a bank happens when depositors suspect that the bank has made bad invest-

ments in its risky loans and is no longer solvent. They rush to the bank simultaneously

to withdraw their deposits. While the demand deposits are highly liquid and can be

withdrawn in a moment’s notice, the loans sitting on the asset side of the bank’s bal-

ance sheet are typically of longer maturity and not as liquid. This liquidity mismatch

between a bank’s assets and liabilities is the root cause of a bank run: an otherwise

solvent bank needs to raise capital quickly to meet the simultaneous demands from

panicking depositors acting out of fear.

In a perfect financial market, the bank should be able to raise additional funding using

its loans as collateral. But because of information asymmetry regarding the credit

worthiness of the loans, potential investors are reluctant to extend funding to the bank

(with such a short notice and under a bank run scenario). Moreover, if this bank run

happens during a crisis, then capital is even more scarce, making it more difficult for
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the bank to raise new funding.

So the most likely action of the bank is to sell its long-term assets, often hastily and

at fire-sale prices. If multiple banks are facing runs at the same time during a crisis

situation, then they would be selling similar long-term assets at severely discounted

fire-sale prices. In the U.S., the FDIC deposit insurance has been an effective way to

stem out bank runs of this kind. Knowing that their deposits are safely guaranteed by

FDIC (up to a certain dollar amount for each depositor), depositors will not rush to

the bank to withdraw simultaneously. Consequently, bank runs purely due to liquidity

mismatch can be avoided.

• Equity as a Buffer: I made the previous example as simple as possible so that

we can focus on the heart of the issue: liquidity mismatch. To make the example

more realistic, we can further add an equity piece. In doing so, we learn another very

important concept: the role of equity as a buffer for risk management.

Suppose the bank is now financed by 90% liabilities (i.e., demand deposits) and 10%

equity. Let’s keep the same allocation between risky and riskless assets: 90% risky

loans and 10% cash. Now let’s see how the 10% equity piece can function as a buffer

to cushion the fall of the bank. Suppose the bank has already experienced deposit

withdrawal of 10 dollars and has exhausted its 10 dollars of reserves. As the next

dollar of withdraw comes in, the bank has to sell a piece of its risky loans. Suppose the

fire sale price is 50% of the initial value. To raise 1 dollar of cash, the bank therefore

has to sell 2 dollars (book value) of risky loans, incurring a one-dollar loss due to the

fire sale. Now the total book value of assets are 88 dollars (90-2), the liabilities are at

79 dollars (90-10-1), and equity absorbs the one-dollar write-down and is at 9 dollars.

As you can see, equity functions as a buffer to cushion the fall of the bank. Without this

equity piece, the bank would have been insolvent. It is obvious that a higher capital

ratio (Equity/Asset) adds more buffer and strengthens the financial health of a bank.

As you will see later in the class, capital ratios of various kinds are an important part

of the regulatory requirements for banks. Although they come in different varieties,

depending on how assets and equity are calculated, the essence of these capital ratios

is to evaluate the capital adequacy (i.e., the thickness of the buffer) of a bank. In this

example, the equity/asset ratio is 10/100=10%. Using the approach of risk-weighted

assets (RWA), where cash counts as zero, the RWA of the bank is 90 dollars. Then the

capital ratio is 10/90=11.11%. You will find this simple model to be quite handy as

we discuss capital ratios for the banking industry.
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• The Balance Sheet of Goldman: For a financial intermediary such as Goldman

Sachs, its balance sheet is certainly more complex than that of a simple bank. But the

basic idea is similar.

So let’s start with Goldman’s 10K reports. Table 1 summarizes the company’s assets,

liabilities, and shareholders’ equity for a few selected years. You must have learned

how to read a financial statement from your accounting classes. So let me focus only

on the items that are important for us. I’ve also changed the names of a few items so

that the table would fit in one page.

Before getting into details, let me mention a few events that are important for Goldman.

The company went public in 1999. the first 10K form was published in 1999 with 197

pages. Between 1999 and 2006, the length of the 10K forms fluctuated between 103

pages in 2001 and 298 pages in 2005. The 2007 10K form had 372 pages. On September

21, 2008, Goldman became a bank holding company and the Federal Reserve Board

became its primary regulator. Its 2008 form has 731 pages, followed by 411 in 2009,

336 in 2010, 367 in 2011, 480 in 2012, 366 in 2013, and 410 in 2014.

In conjunction with the increasing thickness of the 10K forms, financial intermedi-

aries like Goldman are facing increasing reporting requirements. Indeed, the financial

services industry has been the subject of intense regulatory scrutiny in recent years.

The 2010 Dodd-Frank Act significantly altered the financial regulatory regime within

which Goldman operates. The implementations of Dodd-Frank and Basel III are still

on going, which would have a direct and significant impact on the risk-management

practice of this industry.

– Assets: Now let’s focus our attention on Table 1. As of December 2014, Goldman

holds assets in total of $856 billion. For our purpose, the item that matters the

most is “financial instruments owned,” which is also the largest item, valued at

$312 billion. Going back to our example of a simple bank, this item is similar to

the risky loans made by a bank. In the case of Goldman, of course, the collection

of risky assets is more diverse. We will focus on this item shortly.

The two items under “collateralized agreements” are effectively collateralized lend-

ing, which are relatively safe in terms of market and credit risk, but are subject

to counterparty credit risk. Likewise, items under “receivables” are also sensitive

to counterparty credit risk. For the purpose of risk management, measuring and

controlling counterparty credit risk is an important component, as you will see

later, these items show up in the firm’s credit risk weighted assets.
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Table 1: Goldman Sachs’ Assets, Liabilities, and Shareholders’ Equity

Assets

in millions 2014 2010 2008 2007
Cash and cash equivalents 57,600 39,788 15,740 10,282
Cash and securities for regulatory and other purposes 51,716 53,731 106,664 119,939
Collateralized agreements:
Repo Lending and federal funds sold 127,938 188,355 122,021 87,317
Securities borrowed 160,722 166,306 180,795 277,413

Receivables:
Brokers, dealers and clearing organizations 30,671 10,437 25,899 19,078
Customers and counterparties 63,808 67,703 64,665 129,105
Loans receivable 28,938

Financial instruments owned 312,248 356,953 328,325 452,595
Other assets 22,599 28,059 30,438 24,067
Total assets 856,240 911,332 884,547 1,119,796

Liability and Shareholders’ Equity

in millions 2014 2010 2008 2007
Deposits 83,008 38,569 27,643 15,370
Collateralized financings
Repo financing 88,215 162,345 62,883 159,178
Securities loaned 5,570 11,212 17,060 28,624
Other 22,809 38,377 38,683 65,710

Payables:
Brokers, dealers and clearing organizations 6,636 3,234 8,585 8,335
Customers and counterparties 206,936 187,270 245,258 310,118

Financial instruments sold short 132,083 140,717 175,972 215,023
Unsecured short-term borrowings 44,540 47,842 52,658 71,557
Unsecured long-term borrowings 167,571 174,399 168,220 164,174
Other liabilities and accrued expenses 16,075 30,011 23,216 38,907
Total liabilities 773,443 833,976 820,178 1,076,996
Total shareholders’ equity 82,797 77,356 64,369 42,800
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Figure 1: Goldman’s financial instruments, long and short positions.

– Financial instruments owned: As shown in Figure 1, the $312 billion of risky

assets mostly includes Treasury and agency bonds ($48 billion), foreign govern-

ment and agency bonds ($37 billion), mortgage and other asset-backed loans and

securities ($11 + $6.5 billion), bank loans ($15 billion), corporate debt securities

($21 billion), equity and convertible debentures ($96 billion), and derivatives ($63

billion). So effectively, the risk factors influencing this portion of the balance sheet

include interest rate, currency, equity, and commodities.

– Balance sheet allocation to business segments: In terms of balance sheet

allocation, most of the $312 billion in financial instruments is attributable to

two business segments of Goldman. The segment of Institutional Client Services,

which “maintain inventory positions to facilitate market-making in fixed income,

equity, currency and commodity products,” holds majority ($230 billion) of the

financial instruments. The segment of Investing & Lending, whose activities in-

clude “investing directly in publicly and privately traded securities and in loans,

and also through certain investment funds managed by Goldman,” holds $47 bil-

lion.1

1Page 69 of Goldman’s 2014 10K.
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Figure 2: Goldman’s Annual Revenues by Business Segment.

From 2009 to 2010, there was a change in how Goldman divide its business seg-

ments. My guess is that these two segments belong to the old segment of Trading

and Principal Investments. Figure 2 reports the annual revenues by business

segment. As you can see, the segment of Trading and Principal Investments (In-

stitutional Client Services + Investing & Lending for post 2010) accounts a large

portion of Goldman’s revenue and is also the most volatile. Later as we move on

to risk management, this segment would be our main focus.

– Financial instruments sold short: Figure 1 also reports short positions on

financial instruments, valued at $132 billion. On the financial statement, this item

shows up in liabilities. For our understanding of the firm’s market risk exposure,

this item is as important as the $312 billion long positions on financial instruments.

It includes short positions on US Treasury and agency bonds ($12 billion), foreign
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government and agency bonds ($20 billion), corporate debt securities ($5 billion),

equity and convertible debentures ($28 billion) and derivatives ($63 billion). The

10K report does not report the correlation between the risk exposure of the long

and the short positions. If the long/short positions are paired as hedging positions,

then the net risk exposure will be small. To the extreme, we can say that the net

exposure is $312 billion minus $132 billion. Otherwise, we need to take a portfolio

approach and take into account of the correlations. More on this later.

– Derivatives Assets and Liabilities: The value of derivatives assets is $63 bil-

lion and derivatives liabilities is $63 billion, which are sizable positions in relation

to Goldman’s overall positions in financial instruments. Given the inherent lever-

age of derivatives, the actual risk exposure per dollar position in these derivatives

positions is much higher than the other linear instruments on the list. Again,

without knowing the underlying correlations between the derivatives assets/lia-

bilities, it is difficult for us to assess the net exposure. If these derivatives positions

are the result of market making activities, then most of the $63 billion assets and

liabilities in derivatives will net out and the net exposure will be small.

Figure 3 gives a more detailed description of Goldman’s derivatives positions by

major product type on a gross basis. For example, the gross value of interest-rate

derivatives totals to $786,362 million in assets and $739,607 million in liability

with a total notional amount of $47,112,518 million. As of December 2014, the

total notional amount of interest-rate OTC derivatives was $505 trillion, making

Goldman an important participant in this market. Compared with the $63 billion

derivatives assets and $63 billion derivatives liabilities, these gross value numbers

are much larger because they exclude the effects of both counterparty netting

and collateral, and therefore are not representative of the firm’s counterparty

exposure.

Because of these derivatives positions, Goldman are connected to it many coun-

terparties: financial troubles of its counterparties could have a material impact

on Goldman (e.g., AIG in 2008) and Goldman’s own financial troubles could

have a material impact on its counterparties (e.g., Lehman’s default on Lehman’s

derivatives counterparties). For regulators worrying about financial institutions

that are too connected to fail, understanding these derivatives positions should be

high on their priority list. After all, the super-senior tranches were a huge cause

of concerns during the 2007-08 financial crisis.

– Liabilities: According to Table 1, the total liabilities of Goldman in 2014 were
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Figure 3: Goldman’s Derivatives Positions.
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at $773 billion, with $167 billion financed by long-term borrowings. The other

sources of funding, including unsecured short-term borrowings and Repo financing

are mostly short term in nature. Going back to the example of a simple bank,

these short-term financings correspond to the demand deposits. Unlike the case

of demand deposits, which are FDIC insured, there is no insurance on such short-

term funding sources. So some of these short-term financings could evaporate in

a moment’s notice. Some of the short-term fundings are collateralized (e.g., Repo

financing), while some are unsecured (e.g., inter-banking lending or commercial

paper).

Table 2: Assets-to-Equity and Financing

2014 2010 2008 2007
assets ($m) 856,240 911,332 884,547 1,119,796
equity ($m) 82,797 77,356 64,369 42,800
assets-to-equity ratio 10.3x 11.8x 13.7x 26.2x
total liabilities ($m) 773,443 833,976 820,178 1,076,996
long-term borrowings ($m) 167,571 174,399 168,220 164,174
other long-term financings ($m) 7,249 13,848 17,460 33,300
% of long-term liabilities 22.60% 22.57% 22.64% 18.34%
total liabilities ($m) 773,443 833,976 820,178 1,076,996
Repo financing ($m) 88,215 162,345 62,883 159,178
% of Repo financing 11.41% 19.47% 7.66% 14.78%

Table 2 shows that in 2014, long-term liabilities account for 22.60% of Goldman’s

total liabilities, while in 2007, the number was only 18.34%. In recent years, fi-

nancial firms such as Goldman have experienced disruptions in the credit markets,

including reduced access to credit and higher costs of obtaining credit. As such,

it is important for them to maintain stable funding in the form of long-term debt.

On the other hand, because of the positive term spread (long term yields minus

short term yields), long-term financing is more costly.

As we see in Table 2, Repo financing accounted for 11.41% of Goldman’s liability

in 2014 and 14.78% in 2007. This form of short-term (usually overnight) and

collateralized (e.g., Treasury and agency bonds, corporate bonds, and equity)

financing is an important source of funding for most investment banks.

– Leverage: With total assets at $856 billion, total liabilities at $773 billion, and

shareholders’ equity at $82 billion, the leverage of a financial firm such as Goldman

is markedly different from that of a non-financial firm. As shown in Table 2, the
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assets-to-equity ratio was around 10 to 1 in 2014 and 26 to 1 in 2007.

• Runs on Financial Institutions: We talked about how a bank run could happen

because of the liquidity mismatch between assets and liabilities. After going through

the balance sheet of Goldman, it is obvious that the same kind of liquidity mismatch

exists in a financial intermediary like Goldman. In particular, long-term liabilities as

a percentage of Goldman’s total liabilities is 21.67% in 2014 and 15.24% in 2007. In

other words, Goldman relies on short-term financing which could evaporate quickly

if the markets are no longer confident of Goldman’s solvency. Such was the case for

Lehman in 2008. After Lehman’s default, the solvency of Morgan Stanley and Goldman

was seriously questioned by market participants. They had to go out and raise new

capital: Morgan Stanley from Japan’s Mitsubishi bank on a weekend in the form of a

check of $9 billion and Goldman Sachs from Warren Buffett.

Whenever there is liquidity mismatch in assets and liabilities, there is potential of a run.

The 2008 run on money market funds is one such example. Money market funds are an

important component of the shadow banking system and are an important source of

short-term financing for financial institutions such as Goldman. Money market funds

hold commercial paper issued by financial firms such as Goldman and Lehman, and

also lend to these dealers in the Triparty Repo market.

Usually, the assets held by market funds are short term, highly liquid, and of minimum

credit risk. This includes short-term Treasury securities and highly rated commercial

paper. They mimic bank accounts by allowing check-writing and by fixing the price of

a share at $1 – meaning investors could reasonably expect to suffer no losses. Many in-

dividual investors keep some cash in money funds, usually in connection with a broader

brokerage account. Institutions, including corporations, municipal governments, and

pension funds, also find money funds to be a convenient place to park their cash.

In 2008, one of the money market funds, the Reserve Primary Fund took more risks

than many, in an attempt to achieve higher returns and attract more investors. It had

invested about $785 million in Lehman’s commercial paper, which became worthless

after the Lehman default on Monday, September 15, 2008. A run on the fund quickly

began, with about $40 billion withdraw (2/3 of the fund’s value) by the end of the day

on Tuesday.

The run was not only on this fund alone, it was quickly developing into a run on the

entire industry of prime money market funds. In the three weeks between September

10 and October 1, $439 billion would run from the prime funds, while $362 billion
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would flow in to the government-only funds (funds invested at least 99.5% in cash,

short-term Treasury securities, and Repos collateralized by Treasury securities). This

run on money market funds also dried up the commercial paper’s market, cutting an

important source of short-term funding for financial and non-financial companies.

In 2007 and 2008, we also witnessed the runs on financial institutions such as Bear

Stearns, Lehman, Merrill, Morgan Stanley, and even Goldman Sachs. Again, one

common characteristics of these firms is the liquidity mismatch between their assets

and liabilities. Such firms usually rely heavily on short-term liabilities such as inter-

bank lending (Fed Funds and Euro-Dollar), Repo financing (Triparty Repo via money

market funds), and commercial paper. Unlike commercial banks such as J.P. Morgan,

these firms do not have a broad deposit base. The short-term funding sources they

rely upon are subject to runs, especially during financial crises, and the runs on money

market funds certainly did not help. Moreover, if a bank was suspected to be the next

Lehman, it would have even more trouble funding itself through the short-term funding

sources in Fed Funds, Repo, or commercial paper. At the same time, its long-term

assets are deteriorating and its counterparties are requesting for more collateral for

existing liabilities connected with derivatives positions.

As you’ve read in the popular press, it has been a death spiral in real time. By the way,

the Mitsubishi story was in Andrew Ross Sorkin’s book on “Too big to fail,” which

reads like a thriller (if you are looking for entertainment on a weekend).

2 Market Risk Measurement

• Value-at Risk: For financial institutions, the larger economic consequences of market

risk are felt over relatively short time horizons, often over a few weeks, if not days.

Discussions between regulators and their constituent financial institutions have results

in a widely applied measure of market risk called value-at-risk.

For a portfolio of securities (long and short positions), VaR is the potential loss in

value due to adverse market movements over a defined time horizon with a specified

confidence level.

– The scope of the VaR calculation: Going back to the Goldman’s balance

sheet, the items listed in Figure 1 will be the scope over which the VaR calcu-

lation is done. Moreover, only those financial instruments in Goldman’s trading

book will be included in the VaR calculation while financial instruments held in
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Goldman’s banking book are excluded from the VaR calculation. The firm has

the discretion in choosing where to allocate a security: to its trading book or

banking book. Securities in the banking book are held to maturity, while those

in trading books are more frequently traded. So the VaR calculation will cover

only the portion of the financial assets listed in Figure 1 that are allocated to the

bank’s trading book.

– Confidence level and time horizon: The typical confidence level p is 99% or

95%, focusing on the 1% or 5% worst-case scenario. To go further out in the tail,

sometimes banks also calculation VaR with a confidence level of 99.6%, which is

linked to the 0.4% worst-case scenario.

For a typical broker-dealer or proprietary trading operation, the larger economic

consequences of market risk are felt over relatively short time horizons. So the

typical time horizon is over two weeks (10 days) or one day.

– Goldman’s VaR: For both risk management purposes and regulatory capital

calculations, Goldman uses a single VaR model which captures risks including

those related to interest rates, equity prices, currency rates and commodity prices.

The VaR used for regulatory capital requirements (regulatory VaR) differs from

risk management VaR due to different time horizons and confidence levels: 10-

day and 99% for regulatory VaR and one-day and 95% for risk management VaR.

These two VaR calculations also differ in the scope of positions on which VaR is

calculated. For our analysis, we will focus on the VaR reported by Goldman for

risk management purpose: one-day and 95%.

• Calculating VaR: The original intention of the VaR measure is to capture the tail

events: the amount of portfolio loss when a 5% left-tail event happens over a day. The

actual implementation of the VaR measure, however, relies heavily on the assumption

of a normal distribution.

Let’s start with a simple example of a portfolio consisting entirely of the S&P 500

index. Suppose that the current market value of the portfolio is $100 million. Using

the historical return data available up to day t, the EWMA model gives us a volatility

forecast σt+1 for the next day’s stock return Rt+1. Standing at day t, the value of the

portfolio at the end of day t + 1 would be $100M × (1 +Rt+1). As discussed in the

volatility class, the mean of Rt+1 is negligible for this one-day horizon. So let’s focus

on the impact of volatility on the profit/loss of this portfolio.

Focusing on the potential loss, we are interested in how much we would lose if a 5%
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tail event happens. Assuming normal distribution, a 5% tail corresponds to a critical

value of −1.645σ; a 1% tail corresponds to a critical value of −2.326σ. Using these

number, the loss in portfolio value associated with a 5% worst-case scenario would be

VaR = $100M× 1.645× σt+1

For daily returns on the S&P 500 index, the volatility is about 1%. So VaR= $1.645M.

As you can see, although VaR was designed to capture the tail events, the actual

implementation of VaR uses a normal distribution. As a result, calculating VaR bolts

down to calculating volatility:

VaR = portfolio value× 1.645× daily portfolio sigma .

Moreover, given how VaR is phrased, one might mistaken VaR as a predictor of the

future. In practice, VaR is a measure of the past because the portfolio volatility is

estimated using historical returns. In fact, if you calculate the VaR for a risky portfolio

right before the any of the crisis, you will not be able to pick up anything above and

beyond what the volatility estimate can give you. In this sense, VaR is a more reactive

measure: reacting to market volatility.

Figure 4 plots the time-series of VaR for a hypothetical portfolio consisting entirely

of the S&P 500 index. Suppose that this portfolio has a market value of $100 million

on January 2, 2008. For comparison, I also plot the time-series of the daily EWMA

volatility of the S&P 500 index multiplied by 1.645. On January 2, 2008, two time-

series started at the same level because VaR = $100M × 1.645× Sigma.

As shown in Figure 4, the time variation of VaR has two driving forces: the market

value of the portfolio and the portfolio volatility. As the year progressed, this passively

managed portfolio kept losing its market value. As a result, the blue line (VaR) is

lower than the red line (volatility). By late October and early November, it is obvious

that the portfolio has lost quite a bit of its value because the difference between the

blue line and the red line became quite large. Overall, however, it is obvious that the

time variation in VaR tracks the volatility movement quite closely.

• Calculating VaR for a Portfolio: As shown in Figure 1, the trading portfolio of a

large financial intermediary such as Goldman could be large and complex. In one of its

10K forms, Goldman mentioned 6 million individual positions, 70,000 market factors

and 1 million computing hours in its risk management calculations:
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Figure 4: Time series of daily VaR for a portfolio of the S&P 500 Index with an initial
market value of $100 million on Jan. 2, 2008.
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“We also rely on technology to manage risk effectively. While judgment remains

paramount, the speed, comprehensiveness and accuracy of information can materially

enhance or hinder effective risk decision making. We mark to market approximately 6

million positions every day. And, we rely on our systems to run stress scenarios across

multiple products and regions. In a single day, our systems use roughly 1 million

computing hours for risk management calculations.

When calculating VaR, we use historical simulations with full valuation of approxi-

mately 70,000 market factors. VaR is calculated at a position level based on simulta-

neously shocking the relevant market risk factors for that position. We sample from 5

years of historical data to generate the scenarios for our VaR calculation. The histori-

cal data is weighted so that the relative importance of the data reduces over time. This

gives greater importance to more recent observations and reflects current asset volatil-

ities, which improves the accuracy of our estimates of potential loss. As a result, even

if our inventory positions were unchanged, our VaR would increase with increasing

market volatility and vice versa.”

– Risk Factors: The first task of a risk manager is to identify risk factors that are

important for risk management purposes. Suppose there are N risk factors. For

this N risk factors, the risk manager calculates the covariance-covariance matrix

using the EWMA approach. On day t, Σt+1 is the covariance-variance matrix

calculated using return data up to day t:

Σt+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(σ1)
2 ρ12σ1σ2 ρ13σ1σ3 . . . ρ1Nσ1σN

ρ21σ2σ1 (σ2)
2 ρ23σ2σ3 . . . ρ2Nσ2σN

ρ31σ3σ1 ρ32σ3σ2 (σ3)
2 . . . ρ3Nσ3σN

. . . . . . . . . . . . . . .

ρN1σNσ1 ρN2σNσ2 ρN3σNσ3 . . . (σN)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where ρij is the correlation between risk factor i and j and σi is the volatility for

risk factor i. To simplify the notation, I dropped the time-subscripts for ρ and σ,

which are EWMA estimates using data up to time t and time-stamped by t + 1.

– Risk Mapping: Given the N risk factors, the next step is to map the individual

positions in the firm’s portfolio into positions on the risk factor. For example, a

$100 million position in AAPL maps to $100 million position in the risk factor

for the US equity market. After this risk mapping is done, the risk manager will
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have a vector of portfolio weights on day t:

Wt =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

. . .

wN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where wi is the portfolio weight associated with risk factor i. Again, I dropped

the time subscripts for wi to simplify the notation.

– Portfolio Volatility and VaR: Armed with the variance-covariance matrix Σ

and the portfolio weights W , the portfolio volatility can be calculated using the

matrix operation:

σ2
t+1 = W ′

t × Σt+1 ×Wt ,

where W ′
t is the transpose ofWt. This might be a good time for you to get yourself

familiar with matrix operations such as mmult and transpose in Excel. Once the

portfolio volatility is obtained, the portfolio VaR is

VaR = portfolio value× 1.645× daily portfolio sigma .

If we are interested in calculating VaR for positions related only to interest rates,

we can construct an interest rate portfolio weight W IR by turning off the portfolio

weights on other risk factors (i.e., making the weights zero). We can then calculate

the volatility associated with only the interest rate exposure:

(
σIR
t+1

)2
=

(
W IR

t

)′ × Σt+1 ×W IR
t

• Goldman’s VaR, Magnitude: Table 3 reports Goldman’s daily average VaR for

a few selected years. Goldman also reports VaR separately for the risk exposures in

interest rates, equity, currency, and commodities. As you can see, the individual VaR’s

do not add up to equal to the total VaR because of the diversification effect. Only

when these four risk factors are perfectly correlated, would we expect to see the four

individual VaR’s to sum up to equal to the total VaR.

The VaR numbers for Goldman are in the range of $100 million. Recall that in cal-

culating the these VaRs, the key ingredients are the portfolio value and the portfolio
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Table 3: Goldman’s Average Daily VaR

Financial Instruments
in millions 2014 2010 2008 2007

Long 312,248 356,953 328,325 452,595
Short 132,083 140,717 175,972 215,023
Long - Short ($m) 180,165 216,236 152,353 237,572

Average Daily VaR
in millions 2014 2010 2008 2007

Total 72 134 180 138
Interest Rates 51 93 142 85
Equity Prices 26 68 72 100
Currency Rates 19 32 30 23
Commodity Prices 21 33 44 26

volatility:

VaR = portfolio value× 1.645× daily portfolio sigma .

If we know one of them, then knowing VaR can help us back out the other. The problem

is that neither the portfolio value or the portfolio sigma is reported by Goldman. Still,

let’s do some guess work.

Let’s first suppose that the long/short positions are paired positions and the net ex-

posure is long minus short. So for 2014, the number is $180,165 million. Suppose that

10% of these positions have been allocated by Goldman to its trading book and fall

under the scope of VaR calculation. So portfolio value = $18 billion. Then

daily portfolio sigma =
VaR

portfolio value× 1.645
=

$72

$18, 016.5× 1.645
= 24 basis points .

Repeat the same exercise for 2007 (again assuming the trading portfolio consists only

10% of the long-short positions):

sigma =
VaR

portfolio value× 1.645
=

$138

$23, 757.2× 1.645
= 35 basis points .

For 2008, the inferred volatility is higher, around 72 basis points. For 2010, it is 31

basis points.

To assess these levels of daily volatility, let’s compare them with numbers that we are
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familiar with. As you know, the equity market has a daily volatility around 100 basis

points. For the fixed income market, the standard deviation of the daily changes in

the 10-year yields is around 7 basis points. Assuming a duration of 8 years for 10-year

bonds, the daily volatility of 10-year treasure bond is about 56 basis points. The typical

annual volatility for a currency portfolio is about 9%, making the daily volatility of a

currency portfolio at about 57 basis points.

Now back to our inferred volatility of around 24 basis points in 2014, which seems low

compared to the numbers we are familiar with. There could be several reasons for

this. The diversification benefit across the asset classes will further reduce the overall

portfolio volatility. The hedging activities within the trading book will reduce the

portfolio volatility. Finally, it is also possible that the trading book is smaller than the

10% assumption we made earlier. Or it could be that the trading book of Goldman is

of very low volatility. In any case, this is not meant to be a serious exercise looking

into the trading book of Goldman.

• More on the Portfolio: In estimating the portfolio value of Goldman, we assumed

that the long/short positions are paired and think of the net exposure as long minus

short. Let’s do a little better than that.

Using the 2014 number, it is long $312B and short $132B. So the portfolio weight

on the long portfolio RL
t is wL = 312/(312 − 132) = 173%, the weight on the short

portfolio RS
t is wS = −73%, and the total portfolio is

Rt = wLRL
t + wS RS

t = 173%RL
t − 73%RS

t

The volatility of the portfolio is

var(Rt) = (wL)2 var(RL
t ) + (wS)2 var(RS

t ) + 2ρwLwS std(RL
t ) std(R

S
t ) ,

where ρ is the correlation between these the long and short portfolios. It is difficult

for us to assess the magnitude of ρ without seeing the book. So let’s think of different

scenarios.

Suppose ρ = 1 and std(RL
t ) = std(RS

t ) = σ, the volatility of the portfolio becomes

var(Rt) = (wL)2 σ2 + (wS)2 σ2 + 2wLwS σ2 = (wL + ws)2σ2 .

We are back to the earlier assumption that the long/short positions are paired and the
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net exposure is $312 billion minus $132 billion.

Suppose ρ is not 1 but close to one. It is very likely that there are hedging activities

between the long/short portfolios, but the hedging will not take out all of the risk. As

a result, the portfolio volatility would be higher because of the leverage involved in the

long/short portfolio.

Take the extreme case of ρ = 0, and again assuming std(RL
t ) = std(RS

t ) = σ, the

portfolio volatility is
√

(wL)2 + (wS)2σ, which is 1.88σ for the 2014 case. This is not

surprising because leverage increases portfolio volatility. Again, these are not meant

to be a serious investigation into the trading book of Goldman. Rather, I am using

them as useful exercises on calculating the volatility of a portfolio.

• Goldman’s VaR, Time-Variation: Let’s also take a look at the time-variation of

Goldman’s VaR to see if there is anything we can learn. Figure 5 plots Goldman’s daily

VaR in 2008 (from Goldman’s 10K), along with the VaR of a hypothetical portfolio

consisting entirely of the S&P 500 index. I set the hypothetical portfolio to have an

initial market value of $8 billion so that the portfolio VaR at the beginning of the

year matches the VaR number for Goldman’s portfolio. Of course, unlike the passive

portfolio in the S&P 500 index, the Goldman’s portfolio is actively managed and most

likely, the positions were adjusted to the market conditions at the time.

As shown in Figure 5, for 2008, the Goldman’s VaR bottomed to a level close to $130

million in mid-February (with a visible spike in mid-January). In the last quarter of

2008, Goldman’s VaR peaked to a level around $240 million. As discussed earlier, the

VaR of a portfolio increases for two reasons: increasing portfolio volatility or increasing

market value of the portfolio. Overall, it is difficult for us to learn too much from this

time-series plot of Goldman’s VaR. The visible spike in mid-January was interesting (no

significant increase in the stock market volatility on the same day), and was probably

due to a sudden increase in Goldman’s portfolio volatility.

For a risk manager, sudden spikes in VaR could be alarming as well as informative.

It was reported in the media that in December 2006, Goldman’s various indicators,

including VaR and other risk models, began suggesting that something was wrong. Not

hugely wrong, but wrong enough to warrant a closer look. As a result of that effort,

Goldman started to reduce their exposure to mortgage-back securities in late 2006.

In a large financial firm such as Goldman, trading and market-making take place

in a decentralized fashion on various trading desks. In calculating the VaR number,

individual positions scattered in different parts of the firm are aggregated and compiled
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Figure 5: Time-Series of Daily VaR of Goldman Sachs in 2008 vs. Daily VaR of $8 billion
in the S&P 500 Index in 2008
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into one large portfolio. At the market close, executives of the firm have information

of the firm’s overall portfolio value as well as its loss and profit from the days before;

the portfolio volatility as well as its increase or reduction from the days before. This

effort itself is meaningful for the firm, and how to make the VaR measure useful relies

crucially on the judgment of a good risk manager.

It would be naive for a risk manager to believe that a VaR of $100 million means that

the potential portfolio loss (of a 5% worst-case scenario) is somehow in the neighbor-

hood of $100 million. If this is how VaR is being used in practice, then, quoting the

hedge fund manager David Einhorn, VaR is “relatively useless as a risk-management

tool and potentially catastrophic when its use creates a false sense of security among

senior managers and watchdogs. This is like an air bag that works all the time, except

when you have a car accident.”

• Days Exceeding VaR: On each business day, Goldman compares its daily trading

net revenues with the VaR calculated at the end of the prior business day and report,

in each year’s 10K form, the number of days the firm incurs trading losses in excess of

the 95% one-day VaR. Figure 6 plots this VaR exception from 1999 through 2014. As

a comparison, the VaR exception numbers for a hypothetical portfolio of the S&P 500

index are also plotted in Figure 6.

Let’s start with bottom panel of Figure 6. Given the definition of 95% VaR, the

expectation is that the VaR limits would be exceed 5% of the days in a year: 5%×252 =

12.6. In some years, because of the tail fatness, the days of VaR exception were above

12.6 days (e.g., 2007 and 2008). In general, the numbers fluctuate around 12.6 days

per year. The top panel reports the days of VaR exception for Goldman. The results

are quite peculiar: most of the years, the numbers were either 0 or 1. Only during the

2007-08 crisis, did these numbers became meaningfully large.

3 Regulatory Requirements

The regulatory requirements for banks makes a very long list and requires exhaustive and

patient learning. The landscape of regulatory requirements is still in transition with new

rules and requirements phasing in over the next few years. Their effectiveness remains to be

evaluated. In the meanwhile, the increasing regulatory requirements have certainly created

more risk compliance jobs.
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Figure 6: The Number of VaR Exception Days per Year.
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• Capital Adequacy: As we learned in the example of a simple bank, equity acts

as a buffer to cushion the downfall a bank during stressful situations. An important

component of the regulatory requirements is expressed as capital ratios that compare

measures of regulatory capital to risk weighted assets (RWAs). Capital ratios are ratios

of Capital to Assets. Let’s take a look at the regulatory measures of these two items

separately.

• Risk Weighted Assets: Going back to our simple example, the bank holds 10 dollars

in cash and 90 dollars in risky loans. For regulatory purpose, the 10 dollars in cash

is safe and carries a zero weight in RWA. For the risky loans, there are two kinds of

risks: credit and market risk. The bank incurs credit risk because the firms the bank

lends to might default. The associated risk weights depend on the type of counter-

party (e.g., sovereign, bank, broker-dealer or other entity), the credit worthiness of the

counterparty (Aaa, A, Baa, etc), and whether or not the loan is collateralized. In the

case of the loan, the bank also incurs market risk because the fluctuations of interest

rates. If the bank also holds equity or loans in foreign currencies, then stock market

risk and currency risk will also affect the bank’s asset. Overall, the bank’s RWAs is the

sum of its credit RWAs and market RWAs, and most of the regulatory capital ratios

are calculated as a ratio to this RWA number.

Figure 7 reports Goldman’s RWA in 2014, which including three components, credit,

market, and operational RWAs. The actual calculations of these number requires some

training, which I am not at all an expert. But the Table is a good starting point for

us to understand the various components of RWA and their relative importance.

From Figure 7, we can see that the regulatory landscape is still in transition. For

example, Goldman reported its RWAs in 2014 under two sets of capital frameworks:

Basel III Advanced Rules and Standardized Capital Rules.

• Regulatory Capital and Capital Ratios: There are also various ways of measur-

ing regulatory capital, including the newly proposed Common Equity Tier 1 (CET1)

capital. Figure 8 is a good starting point to understand the differences in these capital

measures. Essentially, what matters in capital requirement is the quantity as well as

quality of the capital.

Capital requirements are expressed as capital ratios of the various regulatory capitals

to RWAs. Figure 9 the minimum ratios under the Revised Capital Framework as of

December 2014 and January 2015, as well as the minimum ratios that expected by

Goldman to apply at the end of the transitional provisions beginning January 2019.
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Figure 7: Credit, Market, and Operational Risk Weighted Assets Reported by Goldman
Sachs.
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Figure 8: Regulatory Capital.

Figure 9: Minimum Capital Ratios and Capital Buffers.

26



The framework of RWA has been subject to much criticism, especially given that banks

are allowed to use their own risk models to calculate Market RWAs. Tier 1 leverage

ratio moves away from the RWA framework, and measures the ratio of Tier 1 capital

to the average adjusted total assets.

• Liquidity Adequacy: We also learned in our simple example that the liquidity mis-

match between the assets and liabilities is the root cause of runs on financial insti-

tutions. The more recent regulatory effort in Basel III pays special attention to this

liquidity issue and proposed two liquidity measures.

– LCR: The measure of Leverage Coverage Ratio (LCR) is to promote the short-

term resilience of the liquidity risk profile of banks. It does so by ensuring that

banks have an adequate stock of unencumbered high-quality liquidity assets that

can be converted easily and immediately in private markets into cash to meet

their liquidity needs.

– NSFR: Another proposed measure in Basel III is Net Stable Funding Ratio

(NSFR), which requires that long-term financing resources (e.g., equity and any

liability maturing after one year, retail deposits, deposits from non-financial cor-

porates and public entities) must exceed long-term commitments.

• The Last Taxi Cab in the Train Station: I heard this story from Prof. Doug

Diamond who was the Fischer Black Visiting Professor of Finance at MIT Sloan in

2015.

On a cold and rainy night, the last train arrived at a small town in ... Europe. There

was just one passenger getting off from the train and he is tired and hungry and eager

to go home. There was one taxi cab waiting at the train station. The passenger got

in and asked to be taken to his home, which is only a few miles away from the train

station. But the taxi driver told him that he cannot take him there. According to the

local law, there must always be one taxi cab waiting at the train station.

It is one of those story that sounds crazy and yet not totally crazy. Going back to

the regulatory requirements on capital and liquidity adequacy, it is possible that banks

are required to hold liquidity that goes unused, just like the last taxi cab at the train

station. But this does not necessarily mean that the unused liquidity was not useful. In

a way, the presence of the unused liquidity deters the run on the financial institution.

For a bank, the calculation would be how costly it is to hold the unused liquidity vs

the cost of a run. For regulators, the concern is not on just one bank, but the liquidity
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and stability of the entire financial system. As such, they would want to focus on the

liquidity adequacy of those highly connected financial institutions.
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1 From Equity to Fixed Income

• Vehicles for Risk: Moving from equity to options to bonds and, later, to OTC

derivatives, there is always one thing in common: each market is a vehicle for risk.

The nature and origin of the risk might vary from one market to the other, but our

approach to risk remains the same.

We plot the time-series data to see how it varies over time. We map the historical ex-

periences into a distribution and use it as a basis to envision future scenarios. Thinking

of the future in a static fashion as one fixed future date, we employ random variables

to model the distribution at this future date (e.g., the CAPM). Thinking of the future

in a dynamic fashion as a path leading into the future, we use stochastic processes

to model the random paths (e.g., Black-Scholes). Either way, we use these models to

price the risk involved, taking into account not only the likelihood and magnitude of

the risk, but also investors’ attitudes to the risk. After this is done, we go back to the

data to see how well our model performs. Very often, the data surprises us. In this

process of model meeting the data, new insights arise.

• Relating one to the other: You might also notice that, in Finance, we keep ourselves

busy by relating one thing to the other. For example, in the equity market, we relate

the individual stock returns Ri
t to the contemporaneous returns of the market portfolio

RM
t . The pricing of an individual stock is done through the pricing of the market:

E(Ri
t)− rf = βi

(
E(RM

t )− rf
)
.

1This note was originally written in November 2015. I have not had the chance to update it for Fall 2016.
In many places, “right now” means Fall 2015. Just a quick update on the numbers: as of November 16,
2016, the three-month Treasury yield is at 46 basis points, the 10-year yield is at 2.22%, and the 30-year at
2.92%. On November 8, 2016, the 10-year was at 1.88%, followed by 2.07%, 2.15%, and 2.23% on November
9, 10, and 14.
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By doing so, we narrow our attention down to one risk factor: the market portfolio.

In the crowd of thousands of stocks, your eyes are on this one and one thing only, and

everything else fades into the background.

In options, we relate the time-t option price Ct to two things: the price of the underlying

stock St and the volatility of the underlying stock σ. The relation between Ct and St

is useful, but what really makes options unique is the relation between Ct and σ. This

is especially important when we step outside of the Black-Scholes model and allow σt

to vary over time: now options are unique vehicles for the risk in σt. This is why I

asked you to pay special attention to this approximation for an ATM option:

Ct/St = Pt/St ≈
1√
2π

σ
√
T .

Now we are studying the fixed-income market, which is large and important, en-

compassing products such as Treasury bonds ($12.5tn), mortgage-backed securities

($8.7tn), corporate bonds ($7.8tn), Muni ($3.6tn), money market funds ($2.9tn), agency

bonds ($2.0tn), and asset-backed securities ($1.3tn). The numbers in parentheses are

amount outstanding as of end 2014. At the center of our attention is the risk that

is common to all of these products: interest rate fluctuations. Not one interest rate,

but many: one for each maturity. Putting them together, we have a yield curve. In

Finance, there is no other risk that is more important than this yield curve risk. It

is fundamental to everything we do in Finance. It is the basis from which all other

discount rates are calculated.

In dealing with this risk, we prefer to work in the yield space because it is more

convenient, but the profit/loss happens in the dollar space. As a result, we will be

busy relating one thing to the other again. This gives rise to concepts such as duration

and convexity. An outsider might look at these funny names and accuse people in

Finance of creating unnecessary concepts so as to confuse and take advantage of those

who know less about finance. There might be such practices going on elsewhere on

Wall Street, but concepts such as duration and convexity and Black-Scholes implied

vol are created out of necessity. I cannot imagine myself navigating the bond market

without having tools like duration and convexity.

• Focus on What’s Important: In talking about beta in equity, implied-vol in options,

and duration and convexity in bonds, my intention is to remind you to focus on what’s

important.
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Often, I notice that some students have the tendency to focus on the small and trifling

things first before trying to digest the more important message. When you look at a

tree, your attention goes first to the overall structure and shape, not to a small offshoot

from a branch of the tree (unless there is a cat sitting there). If you are drowning, you

grab the nearest and largest lifesaver available; you don’t stop to examine the color or

the make of the lifesaver. Nor do you question whether or not the lifesaver is made of

sustainable materials.

So please, go for the important concept first. Only after you understand these concepts

really well, then you have the luxury in digging into the minute details. Of course,

ideally, you would like to be good at both: big-picture and rigor. But in the process

of learning, it makes sense to go after the big picture first.

While I am on this topic, let me also add that you should always bring your common

sense back to anything you do in Finance. For example, it is very easy to get lost

when working on a project. Sooner or later, the model and the spreadsheet become

the boss and you the slave. Use your common sense. Don’t invest in any fancy models

or techniques until you have a very clear view of why you need them. Otherwise, it will

be garbage in and garbage out. In the process, you might manage to impress yourself

and a few others with the fancy techniques and models. But in truth, it is mostly

confusion.

The same thing applies to a professor. If, after each class, I make you more confused

than before, then I am not doing a good job in teaching the materials. That is why I

am writing the lecture notes, to give myself ... a second chance.

• In the Return Space: Coming back to our main topic, I list in Table 1 summary

statistics of equity (the CRSP value-weighted index) and bond returns using monthly

data from 1942 through 2014. In the second panel of the table, I also report the

numbers for the more recent period from 1990 through 2014.

For the sample period from 1942 through 2014, the average monthly return of the

US stock market is 1.03% and the volatility is about 4.16%. In annualized terms,

the average return is 12.33% and the volatility is 14.4%. (The 20% annual volatility

number we’ve been using includes the great depression.) For the same period, the

average return of a 10-year bond is about 47 basis points per month and the volatility

is about 2%. Not surprisingly, with decreasing maturity (and duration), both the

average return and volatility decrease for shorter maturity bonds. The one-month

TBill has an average return of 32 basis points per month, and an average yield of

3



0.32%× 12 = 3.84%. The monthly volatility of the one-month Treasury bill is 0.26%,

which is only a small fraction of that in the stock market (4.16%).

Table 1: Monthly Equity Returns and Bond Returns

Monthly mean std Sharpe min max correlation with
1942-2014 (%) (%) ratio (%) (%) Stock TBill 10Y
Stock 1.03 4.16 0.17 -21.58 16.81 1.00 -0.05 0.10
10Y Bond 0.47 2.00 0.08 -6.68 10.00 0.10 0.12 1.00
5Y Bond 0.46 1.38 0.10 -5.80 10.61 0.07 0.19 0.90
2Y Bond 0.42 0.77 0.13 -3.69 8.42 0.08 0.37 0.76
1Y Bond 0.40 0.50 0.16 -1.72 5.61 0.08 0.59 0.62
1M TBill 0.32 0.26 -0.00 1.52 -0.05 1.00 0.12
CPI 0.31 0.45 -1.92 5.88 -0.07 0.26 -0.07
Monthly mean std Sharpe min max correlation with
1990-2014 (%) (%) ratio (%) (%) Stock TBill 10Y
Stock 0.87 4.22 0.15 -16.70 11.41 1.00 0.01 -0.06
10Y Bond 0.57 1.99 0.16 -6.68 8.54 -0.06 0.07 1.00
5Y Bond 0.50 1.24 0.20 -3.38 4.52 -0.10 0.15 0.93
2Y Bond 0.39 0.54 0.26 -1.30 2.07 -0.11 0.41 0.74
1Y Bond 0.33 0.31 0.26 -0.33 1.31 -0.03 0.72 0.51
1M TBill 0.25 0.19 -0.00 0.68 0.01 1.00 0.07
CPI 0.21 0.34 -1.92 1.22 -0.04 0.18 -0.16

Table 1 also reports the best and worst one-month returns for each of the securities.

Not surprisingly, the stock market is the most risky with the largest range of minimum

and maximum. During the sample period from 1942 to 2014, the worst one-month

return was -21.58%, which happened in October 1987.

Also reported are the correlations between the stock returns and the bond returns.

The correlation between these two markets is very weak and is also unstable. The

correlation between stock and 10-year bond is 10% for the sample from 1942 through

2014 and -6% for the more recent sample from 1990 through 2014. Unlike the low

correlation between stock and bond, the correlations between the bond returns are

relatively high. The closer the maturity (e.g., 10Y and 5Y), the higher the correlation.

We will come back and the investigate this issue in our next class when we do PCA

(Principal Component Analysis) on bonds.

It is also interesting to see that the correlations between inflation (CPI) and the stock

returns and 10Y are low and slightly negative. The correlation between inflation and
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the 1M Tbill is about 26% for the entire sample and 18% for the more recent sample.

Note that we are working with nominal interest rate, which is the sum of real interest

rate and inflation. As you can see from Table 1, the average inflation is close to the

1-month Treasury bill, but slightly lower, implying that the real interest rate is on

average positive.

• The Cycle of Hot and Cold: Using the average return of the one-month Treasury bill

as the riskfree rate, we can calculate the Sharpe ratios of the equity and bond returns.

From this perspective, bonds have been more attractive (higher average return and

lower volatility) for the more recent sample period from 1990 through 2014.

In fact, from the mid 1980s to today, the bond market condition has been quite fa-

vorable. The interest rates have been decreasing from the double digits in the early

1980s to today’s near-zero. Some call it a 30-year bull market run. In addition to

the favorable market condition, we have also seen the rise of MBS, junk bonds, OTC

derivatives, asset-backed securities, all of which add to the business of fixed-income

desks in investment banks.

When Michael Lewis joined the training program in Salomon in 1985, the bond mar-

ket was just getting hot, driven by the profitability in bonds. In 1986, other firms like

Goldman Sachs were catching up with Salomon’s bond expertise by hiring people away

from Salomon (See, for example, Money and Power by Cohan). Within Salomon, as

described in Michael Lewis’ book, Liar’s Poker, an entertaining (maybe too entertain-

ing) book, the desired location was to be on a bond desk. Equity was looked down up,

and “Equity in Dallas” was the equivalent of Siberia.

But only ten years prior to that, bond was not at hot and equity was the place to go.

Quoting Michael Lewis,

That, anyway, is what I was told. It was hard to prove any of it because the

only evidence was oral. But consider the kickoff chuckle to a speech given to

the Wharton School in March 1977 by Sidney Homer of Salomon Brothers,

the leading bond analyst on Wall Street from the mid-1940s right through

to the late 1970s. “I felt frustrated,” said Homer about his job. “At cocktail

parties lovely ladies would corner me and ask my opinion of the market, but

alas, when they learned I was a bond man, they would quietly drift away.”

Or consider the very lack of evidence itself. There are 287 books about bonds

in the New York Public Library, and most of them are about chemistry. The

ones that aren’t contain lots of ugly numbers and bear titles such as All Quiet
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on the Bond Front, and Low-Risk Strategies for the Investor. In other words,

they aren’t the sort of page turners that moisten your palms and glue you to

your seat. People who believe themselves of social consequence tend to leave

more of a paper trail, in the form of memoirs and anecdotiana. But while

there are dozens of anecdotes and several memoirs from the stock markets,

the bond markets are officially silent. Bond people pose the same problem

to a cultural anthropologist as a nonliterate tribe deep in the Amazon.

By now, bond people are certainly not the equivalent of a nonliterate tribe deep in

the Amazon. In fact, if you search Amazon for books on Finance, many of them were

written by bond traders. So is this endless cycle of being hot and cold, in and out

of favor. Whatever that can go up certainly has the potential to come down. The

moment something is in favor marks the beginning of its decline.

Right now (Fall 2015), the interest rate is at a level as low as it can ever be, and the

30-year bull run in the bond market is approaching to an end. Most likely, the Fed will

raise the Fed fund rate in its December FOMC meeting this year (Fall 2015). Inferring

from the pricing in Fed fund futures, there is a 70% likelihood of a Fed hike at its

December 15-16 meeting (Fall 2015). So we will know the result before our final exam

on December 17 (Fall 2015).

In the mutual fund world, the famous bond fund, Pimco’s Total Return, is a good

representation of this cycle of bull and impending bear. As shown in Figure 1, the

first observation of Pimco (Total Return Fund, Institutional Class) in my data was at

the end of June 1987 with a total net asset value of $12.8 million. From 1987 to 2013,

the fund, benefited from the favorable bond market condition, was in a steady ascend,

reaching to its peak ($182.8 billion) in April 2013. This grow in the size of a mutual

fund has two component: the market performance and fund flows. So the growth from

$18 million to $182.8 billion was a combination of both. As we know, in the mutual

fund word, flow chases performance. So the favorable condition in the bond market

has a lot to do with the growth.

In recent months, the size of the fund has been decreasing quite rapidly. Figure 2

plots the total net asset value for all four classes of the fund. Of course, if you have

been following the news since 2014, you would know that the internal powerful struggle

and the clash of personalities also contributed to the fund outflow. But the clash of

personality probably would not have escalated to such a degree had the bond market

condition been favorable.
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Figure 1: Total Net Asset Value, Fidelity Magellan and Pimco Total Return.

Also note that the plot is in log-scale, in an effort to damp the high growth rate. If it

were plotted in a linear plot, the ups and downs would have been even more dramatic.

As another example of the force of the overall market condition versus the skills of an

individual fund manager, I plot in Figure 1 the total net asset value of the once famous

equity fund, Fidelity Magellan. The fund shows up in my data since May 1963 but

the first reported total net asset value in my data was $6.5 million in December 1967.

By December 1975, the fund was smaller at $5.4 million, most likely due to the bear

market of 1973-74. In June 1976 Peter Lynch took over the fund. From 1976 to 1990,

under Peter Lynch’s management, the fund grew in size as well as in fame. After Peter

Lynch’s retirement in May 1990, the fund kept growing, thankful to the bull market

of the late 1990s. The fund grew to its peak ($109.8 billion) in August 2000, and then

started its decline after the Internet bubble burst. Right now (Fall 2015), it is a $14

billion fund, roughly the size when Peter Lynch retired from the fund in May 1990.

Cycles like those in Figure 1 are part and parcel of the financial markets. Such forces in

financial markets should be humbling for any human being, no matter how successful

this person might be. To attribute one’s success entirely to one’s talent is pure arro-

gance and ignorance. If you have not read the recent stories surrounding Bill Gross

(the co-founder of Pimco), I would suggest that you do. At some point in your life,
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Figure 2: Total Net Asset Value, Pimco Total Return Fund.

you might get lucky and become successful. Try not to let your ego drive you too far.

There are no worse enemies in your life than your own ego. In fact, your ego is you

only enemy.

2 Bond Price and Yield: Duration and Convexity

• Bond Price P and Yield to Maturity y: A Treasury yield curve involves Treasury

bonds, notes, and bills. Treasury notes are issued in terms of 2, 3, 5, 7, and 10 years;

Treasury bonds are issued at 30 years. A Treasury bond issued 25 years ago would

have 5 years to maturity, same as a newly issued 5-year notes. But the coupon rates

of the two bonds are different. Coupon bearing bonds are issued at par, making the

coupon rate close to the yield to maturity at the time of issuance. Given the current

low interest rate environment, the 30-year bond issued 25 years ago has a coupon rate

that is higher than the newly issued 5 year notes. It is therefore a premium bond.

There are also differences in liquidity, which we will talk about later.

Throughout the fixed-income classes, I’ll not make a distinction between notes and

bonds and will refer to them simply as bonds. I’ll use the notation of Pt as the bond

price at time t, and yt% as the yield to maturity at time t. At issuance, a Treasury
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bond is defined by the following parameters: face value = $100; coupon rate =

c; maturity = T years. These parameters are fixed throughout the life of the bond

and will not change. Treasury bonds pay coupon semi-annually, and, at issuance, the

coupon rate c is chosen so that the bond is priced at par with P = $100. As a result,

the yield to maturity y (semi-annual compounding) equals to the coupon rate c when

the bond was first issued.

Later, with the fluctuations in interest rates, both P and y will change. There is a

deterministic relation between the two:

P =
2T∑
n=1

c
2
× 100(

1 + y
2

)n +
100(

1 + y
2

)2T , (1)

where both c and y are expressed in percentage. So an increasing interest rate envi-

ronment after the issuance of the bond is bad news for long-only bond investors: P

decreases with increasing y and the bond will be in discount (P < $100). Conversely,

a decreasing interest rate environment is good news such a long-only bond investor: P

increases with decreasing y and the bond is in premium (P > $100).

So Treasury bonds are not at all riskfree, and its volatility is driven by the volatility of

the interest rate. Assuming the high credit quality of the US government, the Treasury

bonds are considered to be almost default free. During the heat of the debt-ceiling crisis

in 2011, the rating agency S&P downgraded the US Treasury from AAA to AA+. The

financial markets were in a crisis mode and Treasury bonds actually appreciated in

value because, out of the flight to quality, investors move their capital away from risky

assets to ... the US Treasury bonds.

The relation between P and y as expressed in Equation (1) is a very important one,

and we will come back to it again. For now, I would like you to keep the picture of

Figure 3 in mind. This is what the payoff schedule of a bond looks like. Over the

life of the bond, you collect small coupon payments every six months, and toward the

end of the life of the bond, at maturity, you collect the last coupon payment plus the

principal. You discount this cashflow by a constant interest rate y using the discount

function 1/(1 + y/2)n for the n-th semi-annual payment. In doing this calculation,

you link the bond price P to its yield to maturity y. There is no uncertainty involved

in this relationship. There is also no economics involved in this calculation. But

the calculation becomes very handy as we move between P and y. Concepts such as

duration and convexity arise out of this calculation.
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Figure 3: Coupon and Principal Payment Dates

• Treasury Yield Curve: As shown in Figure 4, a Treasury yield curve is plot of yield

against maturity, for Treasury bonds of varying maturities. Treasury bonds are traded

in terms of market prices P . So a yield curve is constructed using the market prices of

individual Treasury bonds. In Figure 4, the green dots are Treasury bills, the blue dots

are Treasury notes, and the purple dots are old Treasury bonds. For example, the yield

curve in Figure 4 was plotted for November 8, 1994. For a purple dot with a maturity

of seven years, the bond was issued 23 years ago in 1971 as a 30-year Treasury bond.

As you can see, the yield curve is not created in vacuum. It is made up of individual

bonds. In fact, the creation of a yield curve is not a simple task. The various bonds have

different liquidity: the old bonds are typically less liquid while the new bonds/notes

are typically very liquid. The liquidity effect shows up in the market prices of these

bonds: illiquid bonds are cheaper than the liquid bonds. As a result, in constructing

the yield curve, considerations such as liquidity take place. I do not want to make you

a specialist in curve fitting, but if we have time in the next class, I will talk more about

curve fitting.

Focusing back on the yield curve in Figure 4, we see that on this day, the term structure

is upward sloping. The short end of the yield curve is about 4.6%, the 2-year yield
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Figure 4: Treasury Yield Curve on November 8, 1994.
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is about 6.8%, and the 10-year yield is at 7.8%. This makes the 10y to 2y spread at

about 100 basis points. For bonds of similar maturities, the spreads are quite tight,

indicating active arbitrage activities on the yield curve. By comparison, the yield

curve on December 11, 2008, plotted in Figure 5, looks quite dramatic. Bonds are

very similar maturities are trading at a yield spread in the order of 50 basis points.

During normal market conditions, spreads so wide would never happen in this market.

Of course, December 2008 was not normal. This picture indicates the lack of arbitrage

activities in 2008, even in the most liquid market.

Figure 5: Treasury Yield Curve on December 11, 2008.

• Time-Varying Yields: To understand how the yield curve move over time, Figure 6

plots the time-series of Treasury constant maturity yields for a few selected maturities.

These constant maturity yields are calculated daily by using market prices of Treasury

bonds as the input. And the output is the par-coupon yields of varying maturities.

Effectively, these are interpolated yields for the a set of fixed maturity of interest (e.g.,

1, 2, 3, 5, 7, 10, 20, and 30 years). Again, to know what is really going on, we need to
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Figure 6: Time-Series of Treasury Constant Maturity Yields.

spend some time on curve fitting. For those who are interested, this is a not so useful

explanation from the Treasury department, but it is better than nothing.

Let’s now used these CMT yields and see how the yield curve vary over time. As shown

in Figure 6, most of the time, the yield curve is upward sloping. Using data from 1982

to today, the 2-year CMT yield is on average 4.97%, the 10-year yield is on average

6.09%, and the 30-year yield is on average 6.72%. So the spread of 10y to 2y is on

average 100 basis points. There are also times when the yield curve is not so steep or

even inverting. We will take a closer look later on these events. Also notice that the

green line (2yr yield) is picking up in recent days. The 2yr yield is a policy sensitive

yield and is moving up in anticipation of a rate hike.

Also notice the missing 30yr yield in Figure 6 from early 2002 to early 2006. In late

2001, facing projections of burgeoning surpluses, the Treasury decided to stop issuing

the 30-year bond to save tax payers money. In late 2005, the Treasury decided to

re-introduce the 30-year bond and held its first auction in fives years on February 9,

2006.

Using these CMT yields, let’s also calculate the daily volatility of the Treasury yields.

As shown in Table 2, using daily data from 1982 to today, the standard deviation of
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the daily changes in the 3M Tbill rate is about 7.63 basis points. The 2Y and 10Y

yields are slightly less volatile, at around 6.8 basis points. In recent years, however, the

volatility is low for the short end because of the monetary policy. In general, however,

the short end of the yield is typically more volatile, although the different in volatility

is not huge. In other words, when measured in the yield space, the volatility across

different maturity is comparable. But when it comes to the return space, the volatility

across different maturity will be very different because of the difference in duration,

which we will see shortly.

Table 2: Summary Statistics of Daily Changes in Treasury Yields

sample maturity std min date max date
(bp) (bp) (bp)

1982-2015 3M 7.63 -104 19820222 169 19820201
2Y 6.86 -84 19871020 80 19820201
10Y 6.80 -75 19871020 44 19820201
30Y 6.30 -76 19871020 42 19820201

1990-2008 3M 5.18 -64 20070820 58 20001226
2Y 6.05 -54 20010913 36 19940404
10Y 5.78 -23 19950613 39 19940404
30Y 4.99 -33 20011031 32 19940404

2008-2015 3M 4.94 -81 20080917 76 20080919
2Y 4.86 -45 20080915 38 20080919
10Y 6.42 -51 20090318 24 20080930
30Y 6.12 -32 20081120 28 20110811

Table 2 also reports the largest one day movements for these yields. Let me link a few

of these extreme movements in yield to the events at the time:

– October 20, 1987 was the day after the 1987 stock market crash.

– April 1994 was a very testy time in the bond market because of monetary policy

tightening by Chairman Greenspan.

– September 15 to 19, 2008 was the week of Lehman default and AIG bailout. TBill

rates first decreased sharply (increased in value) because of flight to quality and

then bounced back on September 19.

– On March 18, 2009, the Fed made the following announcements, which were

summarized in Chairman Ben Bernanke’s recent book. The overall package was

designed to get markets’ attention, and it did. We announced that we planned to
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increase our 2009 purchases of mortgage-backed securities guaranteed by Fannie,

Freddie, and Ginnie Mae to $1.25 trillion, an increase of $750 billion. We also

doubled, from $100 billion to $200 billion, our planned purchases of the debt is-

sued by Fannie and Freddie to finance their own holdings. We would also buy $300

billion of Treasuries over the next six months, our first foray into Treasury pur-

chases. Finally, we strengthened our guidance about our plans for our benchmark

interest rate, the federal funds rate. In January, we had said that we expected

the funds rate to be at exceptionally low levels “for some time.” In March, “for

some time” became “for an extended period.” We hoped that this new signal on

short-term rates would help bring down long-term rates.

– The across-the-board increase in yield on February 1, 1982 was likely caused by

the monetary policy tightening under Chairman Paul Volcker.

Overall, the numbers presented in Table 2 give us a baseline in observing and judging

the daily movements in interest rates. A one-sigma move in this market is about 6 to

7 basis points. A daily movement of 25 basis points is unusual for this market.

• Dollar Duration: There are two measures of duration that is important for us to

know. The dollar duration is defined as

− ∂P

∂y
=

1

1 + y
2

[
2T∑
n=1

n

2
×

c
2
× 100(

1 + y
2

)n + T × 100(
1 + y

2

)2T
]
, (2)

which is the negative of dollar change in bond price per unit change in yield. Given

that a typical change in yield is measured in basis points, the often used DV01 measure

scales the dollar measure by 10,000:

DV01 = Dollar Duration/10, 000 ,

which measures the negative change in bond price per one basis point change in yield.

Figure 7 plots the bond price P as a function of yield y for a ten-year bond with coupon

rate of 6%. Effectively, it plots the relation between P and y in Equation (1). As we

can see, P is inversely related to y: decreasing y is coupled with increasing P . Also,

the relation is not linear. But if we would like to approximate the relation linearly,

we can pick a level of y, say y = 6% and P = $100 and draw a tangent line at that

point. As you’ve been taught many times in the past, the slope is ∂P/∂y as calculated

in Equation (2). In other words, the dollar duration is the negative of the slope.
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Figure 7: Bond Price as a Function of Yield and Duration as a Function of Yield

So if I would like to know how much I will lose when the ten-year Treasury yield

suddenly increases by 10 basis points, I can use the linear approximation:

ΔPt = Pt−Pt−1 ≈ −D$×(yt − yt−1) = −D$×Δyt = −D$× 10

10, 000
= −DV01×10 bps

Going back to Figure 7, let’s still focus just on the blue line. We notice that when

y decreases, the slope gets steeper; when y increases, the slope gets flatter. This is

because the relation between P and y as defined by Equation (1) is convex. For an

investor holding a long position in bond, he would very much welcome this feature:

profits due to decreasing y are amplified and losses due to increasing y are dampened.

• Modified Duration: The modified duration is defined as

− 1

P

∂P

∂y
=

1

1 + y
2

∑2T
n=1

n
2
×

c
2
×100

(1+ y
2 )

n + T × 100

(1+ y
2 )

2T

∑2T
n=1

c
2
×100

(1+ y
2 )

n + 100

(1+ y
2 )

2T

(3)

It is the dollar duration divided by the bond price. So its focus is on the profit/loss as
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a fraction of the position:

Rt =
ΔPt

Pt−1

=
Pt − Pt−1

Pt−1

− ≈ Dmod × (yt − yt−1) = −Dmod ×Δyt

Dollar durations and modified durations are used for different purposes. If we are

interested in the profit/loss in dollar terms, we go with the dollar duration, but if we

interested in the profit/loss in the return space, we go with the modified duration.

As shown in Equation (3), the modified duration is a normalized measure and the unit

is in year. In dealing with coupon bonds, it is always useful to go to the extreme and

think first in terms of zero-coupon bond. For a T -year zero-coupon bond, the modified

duration is T divided by (1+ y/2). If instead of semi-annual compounding, the yield y

is continuously compounded, then the modified duration of a T -year zero-coupon bond

is simply T .

For a bond with semi-annual coupon payments, the modified duration is a weighted

sum of all of the coupon payment dates, 0.5, 1.0, 1.5, ..., and T years. Except for the

final date T , the n-th coupon dates are weighted by c/2×100
(1+y/2)n

. The last date T carries

a disproportionately high weight because of the principal payment $100. Because of

this, the weighting is always tilted toward the final date T . To be more precise, date

T is weighted by c/2×100+100
(1+y/2)2T

. For a coupon rate of 6%, c/2 × 100 + 100 is 103, easily

overpowering c/2 = 3.

You might wonder what happens when we have a really aggressive discount rate y, say

y = 10%? Well, let’s consider the two extreme points: 1
(1+y/2)n

for the first coupon

payment n = 1 and 1
(1+y/2)2T

for the final date T . Plugging y = 10%, we have 1
(1+y/2)

=

0.9524 and 1
(1+y/2)2T

= 0.3769 for T = 10. As you can see, even with this very aggressive

discount rate discounting over a 10-year period, the principal payment of $100 still

dominates the calculation.

This is why, as you can see in Table 3, the modified duration of a ten-year bond is

close to 10, especially when y is low. As y gets higher, this discounting effect becomes

relatively more important, pushing the “center of gravity” away from T . As a result,

the modified duration gets smaller.

Building on this analogy of “center of gravity” a little bit more, let’s go back to the

picture in Figure 3, which is a useful picture to have in our head when doing bond

math. At least this is how I do the math. I imagine that there is a center of gravity

along the horizontal dimension. Its gets pulled/pushed left and right, depending on the
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Table 3: Modified Duration

yield y 2% 3% 4% 5% 6% 6% 6% 7% 10%
coupon c 2% 3% 4% 5% 4.8% 6% 7.2% 7% 10%
T = 1 0.99 0.98 0.97 0.96 0.96 0.96 0.95 0.95 0.93
T = 2 1.95 1.93 1.90 1.88 1.87 1.86 1.84 1.84 1.77
T = 3 2.90 2.85 2.80 2.75 2.74 2.71 2.68 2.66 2.54
T = 5 4.74 4.61 4.49 4.38 4.36 4.27 4.18 4.16 3.86
T = 7 6.50 6.27 6.05 5.85 5.81 5.65 5.51 5.46 4.95
T = 10 9.02 8.58 8.18 7.79 7.71 7.44 7.21 7.11 6.23
T = 20 16.42 14.96 13.68 12.55 12.12 11.56 11.13 10.68 8.58
T = 30 22.48 19.69 17.38 15.45 14.46 13.84 13.39 12.47 9.46

relative weights between the last date T and the other coupon dates. Getting pushed

to the left results in a smaller duration and getting pull to the right results in a larger

duration.

For example, consider two bonds with the same y and same T but different coupon

rate c. It could be that one bond was issued back in 1990 as a 30-year bond and has

five year to maturity. The other bond is a newly issued 5-year notes. Assuming a flat

term structure of interest rate, the yields of these two bonds are the same, but their

coupon rates are different (so are their bond prices). Which one has a higher duration?

The one with lower c has its center of gravity closer to T . As a result, it has a higher

duration.

Generally, it is useful to have a table like that in Table 3 handy, or build a function

in Excel to calculate the modified duration of a bond for give coupon c, yield y, and

maturity T . Historically, the average 10-year yield is about 6%. It is useful to know

that, for a 10-year par coupon bond with c = 6%, its modified duration is around 7.44

years. (Not precisely 7.44, but a number around 7 or 8.) In recent years, interest rates

have been low, implying a relatively high duration for bonds. Right now (Fall 2015),

the 10-year yield is at 2.34%. It would be useful to know that a 10-year par coupon

bond with c = 2% has a modified duration around 9 years. The current 5-year yield

is at 1.72%, and it is useful to know that a 5-year par coupon bond with c = 2% has

a modified duration around 4.75 years. There is no need to memorize these numbers,

but to have a rough sense in terms of orders of magnitudes would be handy.

For example, we know that a typical one-day one-sigma move in 10-year yield is about

6.8 basis points. How much does that translate to return volatility? Recall that,
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Rt ≈ Dmod×Δyt. So, std(Rt) ≈ Dmod× std (Δyt). For a 10-year bond with a duration

of 7.44, a 6.8-bps volatility in Δyt translates to 6.8× 7.44 = 50.6 basis points in daily

return volatility. Right now (Fall 2015), in a low interest rate environment, duration

is high. For the same amount of volatility in Δyt, the bond return volatility would be

higher because of the higher duration.

As another example, suppose you believe that the 30-year bond is priced cheap relative

to the yield curve. Your model tells you that the spread between the 30-year bond and

the curve (generated by your model) is about 10 basis points. You believe that this

spread is due to temporary illiquidity in 30-year bonds and will converge to close to

zero later on. How much does this 10 basis points translate to return? Right now (Fall

2015), the 30-year yield is at 3.12%. Table 3 tells us that at this rate, the modified

duration is about 20 years. So Rt ≈ −Dmod ×Δyt = −20× (−10 bps) = 2%.

• Duration and Convexity: Concepts such as duration and convexity are only mean-

ing because we work in the yield space and the profit/loss is in the dollar space. As

such, duration serves as a bridge that connects the bond price to yield:

– Dollar Duration:

ΔPt = Pt − Pt−1 ≈ −D$ × (yt − yt−1) = −D$ ×Δyt

– Modified Duration:

Rt =
ΔPt

Pt−1
=

Pt − Pt−1

Pt−1
− ≈ Dmod × (yt − yt−1) = −Dmod ×Δyt

In addition to this linear approximation through duration, we also notice that the

relation between price and yield is not linear but convex. So convexity is introduced as

a second-order approximation to improve upon the first order, linear approximation.

In this class, we will not go for the exact formula for this second order approximation.

If one day, you become a bond trader/portfolio manager, than you might be busy with

convexity hedging. Even then, you might notice that the term structure of interest

rate is not flat, which could cause quite a bit of problem for your first order duration

hedge.

Let me close by talking about one intuition associated with convexity that is important.

The relation between duration and yield is as plotted in Figure 7. With decreasing y,

duration increases. As a result, the profit from holding a bond gets amplified. This

19



effect is not symmetric in losses because with increasing y, duration decreases. As a

result, the loss associated with holding a bond gets dampened. This positive convexity

makes bond more attractive than a security that is linear in y. Later on, we will see

a fixed-income security (Mortgage-Backed Securities) with negative convexity and use

bonds (with positive convexity) to do duration hedge.

3 The Universe of Fixed Income Securities

Fixed-income securities share one thing: exposures to the Treasury yield curve. Most of these

securities have an added component of credit risk. Muni’s are bonds issued by municipal-

ities, whose default probability is higher than the US government. The recent bankruptcy

of Detroit is one example. Corporate bonds are issued by individual corporations, which

also include credit risk. Agency bonds are issued by the government sponsored agencies

(GSE) like Fannie and Freddie. After the government takeover in 2008, these bonds are

explicitly backed by the US government. Prior to the takeover, it was implicitly backed by

the government. For most of the fixed-income securities, the Treasury yield curve serves as

a benchmark. Credit-sensitive instruments such as corporate bonds are usually quoted in

terms of its spread relative to the US treasury yield.

Table 4 gives a summary of the US bond market. It gives us a sense of the relative size

of the various components of the fixed-income market. In later classes, we will study the

corporate bond market and will also touch upon the mortgage backed securities.
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Table 4: Outstanding US Bond Market Debt in $ Billions

Mortgage Corp Agency Money Asset
Muni Treasury Related Debt Bonds Markets Backed Total

1980 399.4 623.2 111.4 458.6 164.3 480.7 2,237.7
1981 443.7 720.3 127.0 489.2 194.5 593.7 2,568.4
1982 508.0 881.5 177.1 534.7 208.8 622.7 2,932.8
1983 575.1 1,050.9 248.3 575.3 209.3 638.3 3,297.2
1984 650.6 1,247.4 302.9 651.9 240.4 777.1 3,870.4
1985 859.5 1,437.7 399.9 776.6 261.0 950.9 1.2 4,686.7
1986 920.4 1,619.0 614.7 959.3 276.6 998.6 11.3 5,399.8
1987 1,012.0 1,724.7 816.0 1,074.9 308.3 1,125.8 18.1 6,079.7
1988 1,080.0 1,821.3 973.6 1,195.8 370.7 1,263.0 25.8 6,730.1
1989 1,129.8 1,945.4 1,192.7 1,292.4 397.5 1,359.5 37.3 7,354.6
1990 1,178.6 2,195.8 1,340.1 1,350.3 421.5 1,328.9 66.2 7,881.5
1991 1,272.1 2,471.6 1,577.1 1,454.6 421.5 1,215.7 91.7 8,504.3
1992 1,295.4 2,754.1 1,774.3 1,557.1 462.4 1,157.9 116.4 9,117.6
1993 1,361.7 2,989.5 2,209.0 1,782.8 550.8 1,143.6 132.5 10,170.0
1994 1,325.8 3,126.0 2,352.9 1,931.1 727.7 1,229.1 161.9 10,854.5
1995 1,268.2 3,307.2 2,432.1 2,087.5 924.0 1,367.6 214.9 11,601.4
1996 1,261.6 3,459.7 2,606.4 2,247.9 925.8 1,572.7 296.8 12,371.0
1997 1,318.5 3,456.8 2,871.8 2,457.5 1,021.8 1,871.1 392.5 13,390.0
1998 1,402.7 3,355.5 3,243.4 2,779.4 1,302.1 2,091.9 477.8 14,652.8
1999 1,457.1 3,266.0 3,832.2 3,120.0 1,620.0 2,452.7 583.5 16,331.5
2000 1,480.7 2,951.9 4,119.3 3,400.5 1,853.7 2,815.8 699.5 17,321.5
2001 1,603.4 2,967.5 4,711.0 3,824.6 2,157.4 2,715.0 811.9 18,790.8
2002 1,762.8 3,204.9 5,286.3 4,035.5 2,377.7 2,637.2 902.0 20,206.3
2003 1,900.4 3,574.9 5,708.0 4,310.4 2,626.2 2,616.1 992.7 21,728.6
2004 2,821.2 3,943.6 6,289.1 4,537.9 2,700.6 2,996.1 1,096.6 24,385.1
2005 3,019.3 4,165.9 7,206.4 4,604.0 2,616.0 3,536.6 1,275.0 26,423.2
2006 3,189.3 4,322.9 8,376.0 4,842.5 2,634.0 4,140.0 1,642.7 29,147.3
2007 3,424.8 4,516.7 9,372.6 5,254.3 2,906.2 4,310.8 1,938.8 31,724.2
2008 3,517.2 5,783.6 9,457.6 5,417.5 3,210.6 3,939.3 1,799.3 33,125.2
2009 3,672.5 7,260.6 9,341.6 5,934.5 2,727.5 3,243.9 1,682.1 33,862.7
2010 3,772.1 8,853.0 9,221.4 6,543.4 2,538.8 2,980.8 1,476.3 35,385.9
2011 3,719.4 9,928.4 9,043.8 6,618.1 2,326.9 2,719.3 1,330.0 35,685.9
2012 3,714.4 11,046.1 8,814.9 7,049.6 2,095.8 2,612.3 1,253.6 36,586.7
2013 3,671.2 11,854.4 8,720.1 7,458.6 2,056.9 2,713.7 1,252.5 37,727.3
2014 3,652.4 12,504.8 8,729.4 7,846.2 2,028.7 2,903.3 1,336.5 39,001.3
2015Q1 3,694.0 12,630.2 8,688.9 7,965.1 1,975.6 2,879.2 1,361.3 39,194.4
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1 Term Structure Models

• The Challenge from the Data: In the fixed income market, term structure models

are used to model interest rates. The challenge from the data has two dimensions.

First, it should take into account of how the interest rates move over time. Second, for

a given time, it should be able to model the yield curve, also called the term structure

of interest rates. Figure 1 is a good summary of these two challenges from the data:

a good term structure model should be able to capture the dynamic variations of the

level of interest rates and the shape of the yield curve.

These two demands from the data are very similar to those in the equity market. A

good model for stock market returns should be able to take into account of how stock

returns vary over time, as well as how, for a give time, the cross-section of stocks

are priced in relation to one another. In the equity market, an i.i.d. model for stock

returns is a reasonable approximation. As such, the dynamics for stock returns are

really simple: constant expected return μ, constant volatility σ, and unpredictable

random shocks εt+1. Cross-sectionally, the expected stock returns are linked to one

another through their exposures (i.e., betas) to risk factors in a model such as the

CAPM. As such, the CAPM model is a static model with constant expected returns

and constant beta.

The need for a dynamic model shows up when we investigated the time-varying volatil-

ity in our volatility class and stochastic volatility in our options class. Here in this class,

we have a chance to take a closer look at these dynamic models.

• Term Structure Models, Historical Development: Term structure models were

developed in the mid-1970s by Cox, Ingersoll and Ross (1985) and Vasicek (1997). You

1A small correction of Figure 3, which was missing a portion of the Fed target rate.

1



1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

2

4

6

8

10

12

14

16

18

 Y
ie

ld
 (

in
 p

er
ce

n
t)

 U.S. Treasury Constant Maturity Yield (in percent)

 averages reported for 1982-2016

 3-month (avg= 4.10%)
 2-year     (avg= 4.47%)
 5-year     (avg= 5.46%)
 10-year   (avg= 5.96%)
 30-year   (avg= 6.58%)
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might notice that the CIR paper was published in 1985, but it was really a product

of the mid-1970s. These term structure models were a continuation of the work done

by Black, Merton, and Scholes, who popularized the application of continuous-time

models in Finance. Like the Black-Scholes model before them, these term-structure

models use the stochastic processes studied by mathematicians and physicists. For

example, the CIR model builds on the Feller process and the Vasicek model builds on

the Ornstein-Uhlenbeck process. In both cases, the starting point is the instantaneous

short-rate rt, which is modeled by a stochastic process (OU or Feller). The entire yield

curve is priced using the dynamics of this one short rate. As such, the CIR and Vasicek

models are one-factor short-rate models.

The second wave of term structure models came in the 1990s. When I entered the

Stanford PhD program in 1995, I was just in time to catch the excitement surrounding

term structure models. Relative to the original models of CIR and Vasicek, the effort

of the new generation of term structure models is to be empirically relevant. From the

work of Litterman and Scheinkman (1991), it became clear that a one-factor model

will not be able to capture the entire shape of the yield curve. Unlike the stock market,

where you can dismiss the risk uncaptured by the model as idiosyncratic risk, we do

not have the luxury of dismissing common risk factors in the fixed income market (e.g.,

the slope factor).

These multifactor models quickly found their way into the “real” world. It is my un-

derstanding that each investment bank has its own proprietary term-structure model.

And I was told by some practitioners that the industry has the best and most so-

phisticated term structure models. And they use these models to manage and hedge

interest-rate risk (level, slope, convexity, volatility, etc) as well as to price interest-rate

derivatives and other rate-sensitive instruments such as MBS. Looking back, I can now

understand why during the mid-1990s, the Wall Street hired so many physicists and

mathematicians. Most of my classmates in Physics ended up on Wall Street. I can also

understand the sudden demand for more sophisticated term structure models in the

1990s. The fixed income desks were very profitable and the range and trading volume

of their fixed income products were also expanding very rapidly during that time.

By now, the excitement surrounding term structure models has all but fizzled out. As

a PhD student at Stanford, I spent much more time learning and working on term-

structure models than anything else I did there. Since coming to Sloan in 2000, I have

not made much use of that part of my training. Nevertheless, I am very grateful to

my advisers at Stanford for having trained me in this area. As I wrote earlier in my
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lecture notes, not everything we do in life is of practical use. Still, they are useful and

meaningful in our growth process.

For our class, however, I don’t want to emphasize too much on the modeling part,

because it takes quite a bit of mathematical skills. Instead, I would like to use the

term structure models as a way for us to understand conceptually how the various

parts of the yield curve are connected through a pricing model and the role of the risk

factors in generating the pricing results.

• Bond Pricing in Continuous-Time: Let rt be the time-t instantaneous short rate.

Let today be time 0, and let P0 be the present value of a dollar to be paid in T years.

Discounting this future dollar all the way from T to today using the short rate, we

have:

P0 = E
(
e−

∫ T
0 rt dt

)
(1)

Let me explain this expression in sequence:

– The reason why we need to do
∫ T

0
rt dt is because we have to add up all of the

future short rates along the path from 0 to T . Take the extreme example of a

constant short rate r. We have
∫ T

0
rt dt = r T and P0 = e−r T .

– We put
∫ T

0
rt dt onto e−

∫ T
0 rt dt because the rates are continuously compounded.

(You will find that working with ex and ln(x) typically gives us a lot of tractability

in Finance.)

– Later on, we will see how rt is going to be driven by a random risk factor. Because

of this, there could be many paths of rt, depending on the random outcomes of

the risk factor. And the present value of a future dollar to be paid in year T is

an expectation, E (·), taken over all potential random paths of rt with t running

from 0 to T .

• Relating back to Option Pricing: The calculation in Equation (1) is similar to the

calculation of EQ
(
e−rT (K − ST ) 1ST<K

)
in option pricing. The difference is that we

do not have to deal with the random variation in ST . But we have to deal with the

random variation in the riskfree r, which turns out to be more difficult to deal with.

Instead of fixing a maturity date for this interest rate r (as in yields to maturity), we

choose to work with the “short rate” so that this one rate can be used to discount

future cashflows over any horizon. We just need to add them up via
∫ T

0
rt dt.

A by-product of this modeling choice is that we now have to keep track of the entire path

of rt from 0 to T in order to calculate
∫ T

0
rt dt. Remember that when you performed
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option pricing via simulation in your Assignment 3, you didn’t have to keep track the

path of ST from 0 to T . You only needed to know the values of ST . So in order to

have one million scenarios of ST , you needed to simulate one million random variables.

To price bonds, however, you need to simulate the entire path of rt from 0 to T .

Suppose we decide to discretize the time interval from 0 to T into monthly intervals,

then pricing a one-year bond with one million scenarios would involve simulating 12 ×
one million random variables; pricing a 10-year bond would involve simulation 120 ×
one million random variables. In short, pricing bond is generally more involving than

pricing equity options and pricing bond derivatives would be even more challenging.

That is why models with closed-form solutions are very useful. Otherwise, we will have

to resort to either simulations or solving partial differential equations.

Also notice that to be precise, I should take the expectation in Equation (1) under the

risk-neutral measure. For this class, however, let me not make a distinction between

the two, just to keep things simple.

• The Vasicek Model: In the Vasicek model, the short rate rt follows

drt = κ (r̄ − rt) dt+ σ dBt , (2)

where, as in the Black-Scholes model, σ dBt is the diffusion component with B as a

Brownian motion. This model has three parameters:

– r̄: The long-run mean of the interest rate, r̄ = E(rt).

– κ: The rate of mean reversion. When rt is above its long-run mean r̄, r̄ − rt is

negative, exerting a negative pull on rt to make it closer to r̄. A larger κ amplifies

this pull of mean reversion and a smaller κ dampens it. Conversely, when rt is

below its long-run mean r̄, r̄ − rt is positive, exerting a positive pull on rt, again

to make it closer to its long-run mean r̄.

– σ: controls the volatility of the interest rate.

• Bond Pricing under Vasicek: Bond pricing under the Vasicek model turns out of

be very simple. Let today be time t and let rt be today’s short rate, then the time-t

value of a dollar to be paid T years later at time t+ T is

Pt = eA+B rt ,
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where

B =
e−κT − 1

κ

A = r̄

(
1− e−κT

κ
− T

)
+

σ2

2κ2

(
1− e−2κT

2κ
− 2

1− e−κT

κ
+ T

)

2 Calibrating the Model to the Data

• The Vasicek Model: As usual, we work with models in order to understand, at a

conceptual level, the key drivers in the pricing of a security. Applying the model to

the data, we further understand quantitatively how well the model works and what’s

missing in the model.

For a one-factor model such as the Vasicek model, we know its limitation even before

applying it to the data. In the fixed income market, the level of the interest rates is

the number one risk factor in terms of its importance, but it is not the only risk factor.

In Assignment 4, I ask you to work with a discrete-time version of the Vasicek model

by first estimating the model parameters, r̄, κ, and σ, using the time-series data of

3-month Tbill rates. Basically, I am asking you to calibrate the model only to the

time-series information of the short-end of the yield curve, without allowing you to

take into account of the information contained in the other parts of the yield curve.

Then I ask you to price the entire yield curve. Not surprising, you will find that the

calibrated model does not work very well to accommodate the different shapes of the

yield curve.

An alternative approach is to calibrate the model using the yield curve. For example,

on any given day, we estimate the model parameters, r̄, κ, and σ, so that the pricing

errors between the model yields and the market yields are minimized. By doing so,

the model will do a much better job in matching the market observed yield curve, but

it will miss the time-series information. Moreover, you will have one set of parameters

per day, which is inconsistent with the assumption that these parameters are constant.

The better solution is to introduce more factors to the model. For example, instead

of forcing the long-run mean r̄ to be a constant, we can allow it to vary over time by

modeling it as a stochastic process. Instead of forcing the volatility coefficient σ to be

a constant, we can allow it to vary as another stochastic process. There, you have a

three-factor model. The pricing will be more complicated and so will be the estimation.

Working with these multi-factor models requires some patience, perseverance, and the
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love for the subject matter. Indeed, it is not for everybody.

• Curve Fitting: On a topic related to model calibration is yield curve fitting. In this

approach, there is no consideration along the time-series dimension. The zero rate

r(τ) of maturity τ is modeled as a parametric function, which is then used to price

all market traded coupon-bearing bonds. On any given day, the parameters in that

parametric function will be chosen so that the pricing errors between the model yields

and the market yields are minimized. This exercise of yield curve fitting is repeated

daily and the model parameters are updated daily as well.

Figure 2 plots the yield curve during the depth of the 2008 crisis. It uses the Svensson

model for curve fitting. The parameters in the Svensson model are first optimized so

that the model can price all of the market-traded bonds on December 11, 2008 with

minimum pricing errors. Using these parameters, the black line is the corresponding

par coupon curve. The blue or purple dots are the market yields for the market-

traded bonds. For each dot, there is a companion red “+”, which is the model yield

for the corresponding bond. In a fast decreasing interest rate environment such as

December 2008, most of the existing bonds are premium bonds. As we discussed

earlier, with an upward sloping term structure, the yields of these bonds are lower

than the corresponding par-coupon yields of the same maturity. That is why most of

the red “+”s are below the par coupon curve. If there are many discount bonds being

traded at the time, then you will see some red “+”s above the par coupon curve.

This curve fitting exercise is useful in connecting the yields of different maturities

through a parametric function of zero rates. For example, there is quite a bit of

overlap in discount rates between a ten-year yield and a ten-year minus one-month

yield. The presence of a parametric function of zero rates acknowledges the overlap

(ten years minus one month) and the pricing difference between these two yields will be

sensitive only to the one-month gap. But the usefulness of a curve fitting exercise stops

at this level. If you would like to use a model to help you with derivatives pricing on

the yield curve (e.g., Bond options, swaptions, caps/floors, etc), a curve-fitting model

will not be helpful at all because it does not take into consideration of how yields vary

over time. For derivatives pricing on the yield curve, you need to use dynamic models.

The usual approach is to use multi-factor versions of CIR or Vasicek models. Affine

models are examples of these multi-factor versions of CIR and Vasicek.
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Figure 2: Treasury Yield Curve on December 11, 2008.
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3 Relative Value Trading with a Term Structure Model

In March 2011, Chifu Huang (a former MIT Sloan Finance professor) came to Prof. Merton’s

class to give a guest lecture. I found his talk to be very informative and the following is

based on one portion of his talk.

• How to Use a Term-Structure Model to Identify Trading Opportunity: Rel-

ative value trading in the fixed income market does not make a judgment on the level

of interest rates or the slope of the curve. It assumes that a few points on the yield

curve are always fair. For example, the time-series data on the 10yr, 2yr, and 1-month

rates can be used to estimate a three-factor term structure model.

Recall that in the Vasicek model, the short rate is the only risk factor (i.e., state

variable). That is why in your Assignment 4, I ask you to estimate the model using

only the 3M Tbill rates. With a three-factor model, we have three risk factors (i.e.,

state variables) and we need three points on the yield curve to help us estimate the

model. Intuitively, the 10yr gives us information about the level of long-term interest

rates; the 2yr together with the 10yr informs us about the slope of the curve; and

the 1-month Tbill rate captures the short-term interest rate (including expectations

on monetary policy in the near term).

Once you have the model estimated by the time-series data (which is a non-trivial

task if you would like to do it properly), this model is going to give you predictions

about the level of interest rates across the entire yield curve. You can then compare

the model price with the market price to judge for yourself whether or not a market

price is cheap or expensive. Once you convince yourself that your model helps you pick

up a trading opportunity, you would structure a trade around it. You can buy cheap

maturities and sell expensive maturities, and, at the same time, hedge your portfolio

so that it is insensitive to the changes of the level or the slope of the yield curve.

The main judgment call is to understand why your model identifies some maturities

as cheap or expensive. If it is due to institutional reasons (which does not show up in

your model but does show up in the data), then you can make judgment as to whether

or not such institutional reasons will dissipate over time (and how fast).

• An Example:

One example was given by Chifu. In August 1998, Russian defaulted on its local

currency debt, and the effect lingered well into September and was later known as

the LTCM crisis. As shown in Figure 3, in September 1998, bond markets rallied in
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Figure 3: Fed Target and Treasury Yields in 1998.

Figure 4: Cheapness and Richness of US 30-Year Swap Rate Based on a Two-Factor Model.
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anticipation of a rate cut. On September 29, the Fed cut the fed funds target rate by

25 bps.

Figure 4 is a slide presented by Chifu in his talk. In September 1998, his two-factor

model picks up a trading opportunity regarding the 30yr bond. According to the

model, the market price for the 30yr bond is cheap relative to the model price. The

deviation between the data and the model was at the range of 10 to 20 bps. The

30-year rate was around 5.5% at that time, implying a modified duration of about 15

years. So a 10 bps price deviation in 30yr would translate to 10 bps × 15 = 150 bps

in bond return. And a 20 bps deviation will translate to 3% in bond return.

So what are the reasons for this cheapening of 30yr? It is because residing over the

30yr region are pension funds and life insurance companies who are either inactive

“portfolio rebalancers” or rate-targeted buyers. As a result, the rally that happened

in the rest of the yield curve didn’t find its way to the 30yr region. There is a lag in

how information (regarding an impending rate cut) gets transmitted to this region. As

you can see from Figure 3 and 4, it was only after the Fed’s rate cut on September 28

when the 30yr yield was brought back in alignment with the rest of the yield curve.
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1 Factors Influencing the Yield Curve

• The Yield Curve: The Treasury yield curve is the best way to summarize the market

prices of Treasury bonds, just like the implied-vol curves in the options market. In

options, the vol curves become a three-dimensional surface because of an option could

vary in its moneyness as well as time to expiration. In bonds, the yield curve remains

a two-dimensional curve: a plot of yield against maturity.

Of course, bonds of the same maturity also vary in their “moneyness”: new bonds

are issued at par with y = c and P = $100; old bonds issued during high interest-

rate environment are premium bonds with c > y and P > $100; bonds issued during

extremely low interest-rate environment will eventually become discount bonds with

c < y and P < $100. Because of this, when we talk about yield curve, we need to be

more specific. In general, for coupon bonds, we usually use the par curve: the yields

for par coupon bonds. For a given maturity, the yield of a par coupon bond will be

located ... exactly on the curve, while the yields for discount/premium bonds will be

close to the curve but slightly off.

With an upward sloping yield curve, the yield of a premium bond sits below the par

curve while the yield of a discount bond sits above the par curve. This is, because the

premium bond, with relatively higher coupon payments cpremium > cpar > cdiscount, puts

a relatively higher weight on the yields of shorter maturities. With an upward sloping

yield curve, this translates to a slightly lower yield. Overall, however, the differences

are not huge. I would encourage you to go through the math yourself to verify this

intuition and gauge the magnitude.

In doing these calculations, there is always a curve in the background that guides our

intuition. That is the zero curve, which is effectively the collection of discount functions

over different maturities. Having this zero curve is useful in discounting cashflows and
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we can price bonds of all maturities and varying coupon rates, using the discount

function dictated by the zero curve. As a result, this zero curve enforces the pricing of

bonds of all maturities to be internally consistency. Now the question is where do we

get a zero curve in the first place? Most of the bonds in the market are coupon-bearing

bonds, we do not observe the zero curve directly. So the common practice is to build

a zero curve from market prices of coupon-bearing bonds. In fact, this task of yield

curve fitting should be a very basic skill for a fixed-income person. If I have time for

the next class (on term structure modeling), I’ll talk more about the exact approach.

By the way, using the intuitive developed earlier about premium/discount bonds, we

know that, with an upward sloping yield curve, the zero curve sits above the par curve.

• Factors Influencing the Yield Curve: Our discussion so far focuses on the internal

consistency of bond pricing. We imagine that there is a zero curve and ask the pricing

of all coupon-bearing bonds to be consistent with this zero curve. The first question

you would ask is: what are the factors influencing this zero curve? In an environment of

constant interest rate, this zero-curve would always be flat. Then there is not too much

to talk about. In practice, the curve is not flat and interest rates are not constant. So

what can we learn about them? We will try to answer this question in today’s class.

Once we are happy with the answers to the first question, we will ask the second

question, which is also very interesting. With a zero curve (or even a sophisticated

term structure model), we price all coupon-bearing bonds traded in the market. How

good is our curve (or model) in pricing all of these bonds? What are we to learn when

some bonds are mis-priced by a curve (or model)? We will try to answer this question

in our next class.

As you can see, both questions focus on the same issue: what are the factors influencing

bond pricing in the market place? I split the question into two so that we can answer

this important question in two steps. First, we address the economic factors influencing

the yield curve. In a way, these factors are more macro and systematic, affecting every

“body” on the yield curve. Second, we address the institutional reasons affecting the

yield curve. These factors are more localized and idiosyncratic.

• Movements and Co-Movements in Yield Curve: Figure 1 plots the time-series

of Treasury yields of the representative maturities: 3M, 2Y, 5Y, 10Y, and 30Y. As you

can see, most of the time, the yield curve is upward sloping. In a few occasion, the

yield curve becomes flat or even inverts to a downward sloping curve.

It is also evident from the plot that there is quite a bit of comovement in yields across
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Figure 1: Time-Series of Treasury Constant Maturity Yields.
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Table 1: Comovement in Yields, Daily Data from 1982 to 2015

corr in yields (%)
3M 2Y 5Y 10Y 30Y

3M 100.0 98.57 96.19 93.61 90.90
2Y 98.57 100.0 99.18 97.54 95.47
5Y 96.19 99.18 100.0 99.46 98.19
10Y 93.61 97.54 99.46 100.0 99.57
30Y 90.90 95.47 98.19 99.57 100.0

corr in daily changes in yields (%)
3M 2Y 5Y 10Y 30Y

3M 100.0 57.31 46.87 40.18 35.15
2Y 57.31 100.0 90.29 82.17 72.90
5Y 46.87 90.29 100.0 94.07 85.74
10Y 40.18 82.17 94.07 100.0 93.71
30Y 35.15 72.90 85.74 93.71 100.0

different maturities. This is better summarized in Table 1. The pairwise correla-

tions between yields of different maturities are well above 90%. Given the visible time

trend and the persistence in yield (the auto-correlation in yield is close to 1), it is more

meaningful to measure the comovement in changes in yields. After all, it is the surprise

components (i.e., the random shocks) in yield that interest us the most. Measuring

the pairwise correlations between daily changes in yields, we still find substantial co-

movements. Within the Treasury bonds and notes, the correlations between the two

nearest maturities are above 90%. The comovement becomes relatively weaker as the

maturities are further apart. But even for the 2Y and 30Y bonds, the correlation is

around 70%. The connection between the Treasury bills and the rest of the yield curve

is relatively weaker but still substantial: the correlation between 3M TBill and 2Y

bond is about 57%.

Overall, we can see that the Treasury yield curve is an inter-connected curve. It is

not a curve with its individual components moving around freely without any regard

for other parts of the curve. In this sense, the curve is a tight family of individual

members. But it is also not a curve with its individual components moving in exactly

the same pace. There is some internal consistency and relationship. The closer the

maturity, the stronger the relationship. Let’s try to figure out the economic factors

that drive these movements and comovements.

• Monetary Policy and Fed Funds Rate: By far, the most important factor in-
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fluencing the yield curve is monetary policy. In the US, monetary policy is carried

out by the Federal Reserve through the Federal Open Market Committee (FOMC). In

1977, Congress set explicit objectives for monetary policy: “maximum employment”

and “price stability.” These two objectives in the Fed’s so-called dual mandate are not

always in alignment and the committee members of FOMC face the task of making

the right decision when these two objectives are in conflict with each other.

The fed funds rate is the main policy tool of the Fed. It is the rate at which depository

institutions lend excess reserve balances to each other overnight. Bank reserves are

funds that banks hold at the Fed, much like the checking accounts that individuals

have at banks. A bank can use its reserve account at the Fed for making or receiving

payments from other banks, as well as a place to hold extra cash. Banks are legally

required to hold a minimum level of reserves. If a bank finds itself with reserve balances

in excess of the required minimum level, it often lends the excess reserves out to other

banks in the so-called fed funds market, in the form of an unsecured overnight loan.

And the interest rate of this private loan is the fed funds rate.

Quoting the former Chairman Ben Bernanke, “Although the federal funds rate is a

private rate between banks, the Fed was able to control it indirectly by affecting the

supply of funds available to banks. More precisely, the Fed managed the funds rate by

affecting the quantity of bank reserves.”

“The Fed was able to affect the quantity of bank reserves in the system, and thereby the

federal funds rate, by buying or selling securities. When the Fed sells securities, for ex-

ample, it gets paid by deducting their price from the reserve account of the purchaser’s

bank. The Fed’s securities sales consequently drain reserves from the banking system.

With fewer reserves available, banks are more eager to borrow from other banks, which

puts upward pressure on the federal funds rate, the interest rate that banks pay on

those borrowings. Similarly, to push down the federal funds rate, the Fed would buy

securities, thereby adding to reserves in the banking system and reducing the need of

banks to borrow from each other.”

Effectively, the Fed’s balance sheet is like a gigantic balloon attached to the entire US

banking system. If the Fed feels that the economy is at the risk of overheating (i.e., the

risk of high inflation), it will suck some air out of the system by selling securities into

the system and therefore draining cash out of the banking system. If the Fed feels that

the economy is performing poorly (i.e., the risk of high unemployment), it will blow

some air into the system by buying securities from the system and therefore replenish

the banking system with more cash.
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In each of the FOMC meetings, the committee members weight the option of tightening

(rate hike), loosening (rate cut), or no action. Over the history of FOMC meetings, the

committee members are not always in agreement in terms of the right policy action.

Hence the term hawk, who puts a higher weight on keeping the inflation low and often

biases toward a tighter monetary policy; and dove, whose concern with respect to

inflation is not as strong and often biases toward a loosening monetary policy. Of

course, each policy decision is an “organic” process, with committee members taking

into account of the information available to them at the time. If you read the memoirs

of the former chairmen (e.g., Greenspan and Bernanke), you will notice that each

decision weights heavily in their memory and on their conscience. Such men and

women perform a great service to society.

• Monetary Policy, Historical Experiences: Figure 2 plots the time-series of Trea-

sury yield curve (2-year and 10-year) along with the historical information that is

relevant for our understanding of the monetary policy: inflation rate, GDP growth,

and fed fund rates (the black solid line starting in the 1990s).

Figure 2: Treasury Yield Curve, Monetary Policy, Inflation Rate and GDP Growth.

Instead of writing about the historical experiences accompanying the events in Figure 2,

6



let me use the following extended excerpt from Ben Bernanke’s book. I find it to be

very useful in my own understanding of the US monetary policy, especially for the

pre-Greenspan era of Volcker and Burns. It was a period over which I know very little

about because ... I was still in China and thought of interest rate as little rectangular

stamps collected in a little booklet. Even that remotely related activity was performed

only once or twice when my dad dragged a reluctant me, less than ten years of age,

to a bank in an effort to educate me on the virtue of being frugal and the benefit of

saving.

Throughout most of the 1990s the Fed presided over an economy with em-

ployment growing strongly and inflation slowly declining to low levels. The

Fed was thus meeting both parts of its congressional dual mandate to pur-

sue maximum employment and price stability. In contrast, when I arrived

at the Fed (August 2002), we saw risks to both sides of our mandate. On

the employment side, we had the jobless recovery to contend with. On the

price stability side, we faced a problem unseen in the United States since the

Depression – the possibility that inflation would fall too low or even tip into

deflation, a broad decline in wages and prices.

In the past, the end of a recession had typically been followed by an improv-

ing jobs market. But during the two years after the recession that ended in

November 2001, the U.S. economy actually lost 700,000 jobs, and unemploy-

ment edged up from 5.5 percent to 5.8 percent even as output grew. Many

economists and pundits asked whether globalization and automation had

somehow permanently damaged the U.S. economy’s ability to create jobs.

At the same time, inflation had been low and, with the economy sputtering,

Fed economists warned that it could fall to 1/2 percent or below in 2003.

Actual deflation could not be ruled out.

Worrying about possible deflation was a new experience for FOMC partici-

pants. Ever since the end of the Depression, the main risk to price stability

had always been excessive inflation. Inflation spiraled up during the 1970s.

Paul Volckers Fed ended it, but at a steep cost. Within a few months of Vol-

ckers becoming chairman in 1979, the Fed dramatically tightened monetary

policy, and interest rates soared. By late 1981, the federal funds rate hit

20 percent and the interest rate on thirty-year fixed-rate mortgages topped

18 percent. As a consequence, housing, autos, and other credit-dependent

industries screeched to a halt. A brief recession in 1980 was followed by a
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deep downturn in 1981-82. Unemployment crested above 10 percent, a rate

last seen in the late 1930s.

After succeeding Volcker in 1987, Alan Greenspan continued the fight against

inflation, although he was able to do so much more gradually and with

fewer nasty side effects. By the late 1990s, the battle against high inflation

appeared to be over. Inflation had fallen to about 2 percent per year, which

seemed consistent with Greenspans informal definition of price stability: an

inflation rate low enough that households and businesses did not take it into

account when making economic decisions.

The Great Inflation of the 1970s had left a powerful impression on the minds

of monetary policymakers. Michael Moskow, the president of the Federal Re-

serve Bank of Chicago when I joined the FOMC (August 2002), had served

as an economist on the body that administered the infamous – and abjectly

unsuccessful – Nixon wage-price controls, which had attempted to outlaw

price increases. (Predictably, many suppliers managed to evade the controls,

and, where they couldn’t, some goods simply became unavailable when sup-

pliers couldn’t earn a profit selling at the mandated prices.) Don Kohn had

been a Board staff economist in the 1970s under Fed chairman Arthur Burns,

on whose watch inflation had surged. Greenspan himself had served as the

chairman of President Ford’s Council of Economic Advisers and no doubt

shuddered to remember the Ford administrations ineffectual Whip Inflation

Now campaign, which encouraged people to wear buttons signifying their

commitment to taming the rising cost of living. With Fed policymakers con-

ditioned to worry about too-high inflation, it was disorienting to consider

that inflation might be too low. But it was a possibility that we would soon

have to take seriously.

• Fed Funds Rate and Yield Curve: Beginning in 1994, the FOMC began announc-

ing changes in its policy stance, and in 1995 it began to explicitly state its target level

for the fed funds rate. As you can see in Figure 3, this aspect of monetary policy has

an immediate impact on the Treasury yield curve, especially on the short end. In many

instances, the bond market, in anticipation of the impending rate change, would price

the event in advance. For example, on September 13, 2001, when the bond market

re-opened on a limited basis after 9/11, the 3M Tbill rate dropped 52 bps from 3.26%

to 2.74%, the one-year rate dropped 50 bps from 3.31% to 2.81%, and the two-year rate

dropped 54 bps from 3.52% to 2.99%. It was not until four days later, on September
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17, the Fed cut the fed fund target rate from 3.50% to 3%.

Figure 3: Treasury Yield Curve and Fed Fund Target Rate.

There is also a visible impact on the long-end of the yield curve, although the reactions

of the longer end of the yield curve are not one-for-one in magnitude. This of course,

makes sense given the impermanent nature of a monetary tightening or loosening. For

example, On September 13, 2001, the five-year yield decreased by 38 bps from 4.41% to

4.03% and the ten-year yield decreased by 20 bps from 4.84% to 4.64%. Interestingly,

the 30-year yield dropped by only 4 bps from 5.43% to 5.39%. (More on this topic on

the 30-year yield next class.)

There were also times when the longer-term interest rates failed to rise after the Fed

tightened monetary policy. This happened in 2004-05, the famous Greenspan’s “co-

nundrum.” Quoting Bernanke again, “In speeches, I tied the conundrum to what I

called the ‘global savings glut’ – more savings were available globally than there were

good investments for those savings, and much of the excess foreign savings were flow-

ing to the United States. Additional capital inflows resulted from efforts by (mostly)

emerging-market countries like China to promote exports and reduce imports by keep-

ing their currencies undervalued. To keep the value of its currency artificially low
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relative to the dollar, a country must stand ready to buy dollar-denominated assets,

and China had purchased hundreds of billions of dollars’ worth of U.S. debt, including

mortgage-backed securities.”

Before leaving Figure 3, let me point out one well-known pattern: Prior to each of the

three NBER-dated recessions, the yield curve was either very flat or even inverted. It

turns out that the slope of the interest rate is a good predictor for future GDP growth.

• Factors Influencing Monetary Policy: Also plotted in Figure 3 are the NBER-

dated recession periods. The cyclical nature of the monetary policy is obvious in this

plot: tightening during economic expansions and loosening during recessions. It is

also worthwhile to note that, in order to cause minimal disruption to the markets, the

monetary policy applies itself to the market gradually. A typical rate cut/hike is in

increments of 25 bps. There were four rate hikes that were 50 bps (twice in 1994, once

in 1995 and 2000) and one rate hike of 75 bps (November 1994). There were sixteen

rate cuts of 50 bps (three times in 1991-92, nine times in 2001-02 and four times in

2007-08) and three rate cuts of 75 bps (all happened in 2008).

Given the dual mandate of price stability and maximum employment, it is not surpris-

ing that expectations of the rate of inflation, GDP growth, and employment numbers

(e.g., nonfarm payroll employment) influence the decision of the policy decision of the

FOMC. The Stanford economist John B. Taylor wrote a paper in 1993, linking the pol-

icy rate explicitly to inflation rate and GDP. This became the famous Taylor rule and

there are various extensions of this rule. Again, if you read the memoirs of Greenspan

and Bernanke, you would see that each policy decision is an “organic” process, with

committee members taking into account of the information available to them at the

time. Having a mechanic rule is useful as a baseline, but cannot be the ultimate answer.

If you pay attention to the famous Wall Street activity called the “Fed Watch,” you

will notice market participants use all kinds of signal trying to predict the next policy

move. Some macro investors also perform directional trades to express their views

and they typically do so using the two-year notes. As such, the two-year yield are

considered to be highly sensitive to changes in the Fed’s policy outlook. Consequently,

the shape of the yield curve (relative to the two-year yield) might contain information

about the impending policy move. As you can see in Figure 3, the two-year yield

has been increasing quite steadily since the beginning of 2015 in anticipation of the

monetary tightening in the end of December 2015.

In addition, investors also use fed funds futures traded on CME to express their views.
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Consequently, the pricing information in this market has been used to extract expecta-

tions of future Fed actions. This is a number watched closely by fixed-income traders

and global macro investors. Even the Fed tracks this number to gauge the market

expectation of their action. According to this calculation the implied probability of a

rate hike from the current 25-50 bps to 50-75 bps is about 93.5%.

The market participants are involved in “Fed Watch” because uncertainties in the

target rate have a big impact on the markets, not only the bond market but also

the stock market (and the currency market). The Fed under chairman Bernanke and

chairwoman Yellen has been working hard on Fed transparency in order to better

communicate with the market participants in terms of the Fed policy.

• Quantitative Easing and Operation Twist: Earlier, we talked about how the

Fed can use this gigantic balloon to suck/blow air into the entire banking system by

selling/buying securities. Up to the 2008 crisis, the Fed performed monetary policy

through affecting the fed funds rate. Starting from late 2008, the Fed employed a policy

tool that is highly unorthodox and controversial: purchasing hundreds of billions of

dollars of securities directly from the market with the intention to keep the long-term

interest rates low.

After the FOMC meeting on October 29, 2008, the fed funds target rate was at 1% and

the 3M Tbill rate was at 62 bps (the Treasury bill rates are lower than the overnight

fed funds rate because of the potential counterparty risk involved in the unsecured fed

funds loans). When the short-term interest rate reaches close to zero, what to do to

bring down the longer-term interest rates in an effort to keep the economic recovery

going? One way is to try to convince the market participants that the short-term

interest rate will be kept low for a long time. In addition, the Fed also started to to

purchase securities in an effort to directly influence the long-term interest rate. On

November 25, 2008, the Fed announced plans to perform large scale asset purchases,

often referred to as “Quantitative Easing” or QE. As shown in Figure 4, the actual

purchases happened in December 2008 for agency bonds (Fannie and Freddie debt)

and January 2009 for mortgage-backed securities backed by Fannie Mae, Freddie Mac,

and Ginnie Mae. This was later known as QE1, because of it was followed by QE2 and

QE3.

From Figure 4, you can see that the Fed also purchased around $300 billion in Treasury

securities during QE1, partly to supplement the reduction in MBS holdings when

the mortgages underlying the MBS were paid off (either because of home sales or
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refinancings due the decreasing interest rate). We will visit this issue of negative

convexity of MBS in a later class.

Figure 4: The Fed’s Balance Sheet.

QE1 was followed by QE2 and QE3 and a program called “operation twist” in between.

The securities purchased through QE2 and QE3 can be seen through the Fed’s balance

sheet in Figure 4. By now (November 11, 2015), the total market value of securities

held outright on Fed’s balance sheet is $4.24 trillion, with $2.46 trillion in US Treasury

securities. To put these numbers in perspective, let’s take a look at some other numbers.

According to this Treasury website, as of August 2015, foreign holdings of the Treasury

securities totals to $6.099 trillion with China holding $1.27 trillion and Japan holding

$1.197 trillion. According to the World Bank, the 2014 GDP is $17.419 trillion for the

US, $10.360 trillion for China, $4.601 trillion for Japan, $3.852 trillion for Germany,

and $2.942 trillion for the UK.

Figure 5 plots the Fed’s holdings of Treasury securities by maturity. As shown Fig-

ure 5, during “Operation Twist,” the overall Treasury holding by the Fed remains

nearly constant in market value. But the maturity of Fed’s holdings went through a

big change. As shown in Figure 5, the Fed was actively selling Treasuries securities
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maturing in 1-5 years and buying longer maturity bonds (5-10 years and longer than

10 years). Effectively, the Fed was increasing the duration of its Treasury portfolio

without having to expand its balance sheet, in an effort to influence the long maturity

yields so as to reduce the cost of credit for mortgage loans and corporate bonds.

Figure 5: US Treasury Securities on Fed Balance Sheet, Maturity Composition.

The unconventional QE programs and the burgeoning Fed balance sheet were certainly

not without risk. To put the policy thinking in perspective, let’s take a look at the

macro variables from 2008 to 2015 (see Figure 6). Prior to QE2, around October

2010, the unemployment rate was at 9.6%. The last time the unemployment rate was

this high was during 1982-83 after the monetary tightening by Chairman Volcker. By

contrast, the inflation was low at 1.1% in October 2010. Prior QE3, around August

2012, the employment rate was at 8.1% and the inflation was at 2%. It was clear that

at the time, the Fed felt that the unemployment rates were too high (and inflation was

not an issue of big concerns) and the economy needed help ... from somewhere. And

the Fed’s decision at the time was to step up and provide that help.

The economy has certainly been doing relatively better since then. As shown in Fig-

ure 6, by the end of QE3, the unemployment rate has been decreasing steadily to 5.7%
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and the GDP growth was at 4.3%. Right now (October 2015), the unemployment rate

is at 5% and the GDP growth has been uneven: 1.5% for the third quarter and 3.9%

for the second quarter. Overall, however, it is difficult to quantify the effect of the

QE programs. How do you evaluate the counterfactual of an economy without QE

programs? This, of course, is what differentiates Economics from Physics, where you

can do controlled and repeated experiments.

Figure 6: GDP, infation, and unemployment rate since 2008.

At the time, two major concerns about the QE programs were hyperinflation and sharp

dollar depreciation. As shown in Figure 6, the inflation rate has in fact been unusually

low in recent years with the 2015 numbers hovering around 0. If you follow the currency

market, you would know that in recent years the dollar has been strengthening against

most currencies, and this is true even before the recent election). So what were the

reasons? Let me quote Ben Bernanke again:

That idea (hyperinflation and sharp dollar depreciation) was linked to a per-

ception that the Fed paid for securities by printing wheelbarrows of money.

But contrary to what is sometimes said (and I said it once or twice my-

self, unfortunately, in oversimplified explanations), our policies did not in-
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volve printing money – neither literally, when referring to cash, nor even

metaphorically, when referring to other forms of money such as checking ac-

counts. The amount of currency in circulation is determined by how much

cash people want to hold (the demand goes up around Christmas shopping

time, for example) and is not affected by the Fed’s securities purchases. In-

stead, the Fed pays for securities by creating reserves in the banking system.

In a weak economy, like the one we were experiencing, those reserves simply

lie fallow and they don’t serve as ‘money’ in the common sense of the word.

As the economy strengthened, banks would begin to loan out their reserves,

which would ultimately lead to the expansion of money and credit. Up to a

point, that was exactly what we wanted to see. If growth in money and credit

became excessive, it would eventually result in inflation, but we could avoid

that by unwinding our easy-money policies at the appropriate time. And, as

I had explained on many occasions, we had the tools we needed to raise rates

and tighten monetary policy when needed. The fears of hyperinflation or a

collapse of the dollar were consequently quite exaggerated. Market indicators

of inflation expectations – including the fact that the U.S. government was

able to borrow long-term at very low interest rates – showed that investors

had great confidence in the Fed’s ability to keep inflation low. Our concern,

if anything, was to get inflation a little higher, which was proving difficult

to accomplish.

Finally, Figure 7 looks at the impact of the unconventional QE policy tools on the level

as well as the slope of the yield curve. Again, causality is difficult to establish because

we need to know the counterfactual of what would have happened if the Fed had not

installed these policies. Also, the issue is further complicated by markets’ anticipations

at the time as well as the endogenuity of the decision itself. All in all, however, these

policy actions seem to be effective in keeping the long-term interest rate low.

• Why So Much on QEs? If you feel that I am writing too much here on quantitative

easings (more than you need to know), I agree. But more information is always better

than no information, right? Rest assured, I’ll not ask you to present the pro/con of

the QE programs in the final exam.

I am recounting the events of 2010-2012 regarding quantitative easing for two reasons.

First, these were really important events in the fixed income market. By going through

the Fed’s balance sheet, you get a better sense as to how the Fed’s open market
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Figure 7: Treasury Yield Curve and Fed Fund Target Rate.

operation actually works. At least that was really helpful for me. The textbook

information can be dry sometimes. Having plots like those in Figure 4 and 5 adds

texture to my understanding. Second, I lived through that period in 2010-12 listening

to many criticisms and derision against the QE programs. I am not a macro-economist

and have not been trained in that field. And my thinking at the time was confused by

many voices competing for attention. Personally, I find it is useful to read through the

above two paragraphs written by Bernanke and look at the numbers for myself. So I

thought I would share my readings with you.

I would not be surprised if, for each argument presented by Bernanke in his book, there

is a counter argument. Honestly, the writings and thinking of some macro-economists

are so complicated that they add more confusion than clarity. In my opinion, truth is

always simple. It is the false that needs decoration. Complicated writing comes from

a crowded and clouded mind. Unfortunately, in our field, complicated and convoluted

thinking is often awarded with a premium because it is an exercise of a high IQ. In any

case, for whatever it is worth, I appreciate the clear writing and thinking of chairman

Bernanke.
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2 Statistical Analysis of the Yield Curve

By now, we are comfortable with yield curves and have an intuitive understanding of the

various factors influencing the short- and long-end of the yield curve. Let’s now move on

to quantify these random factors. Not surprisingly, the first risk factor that will show up

through our analysis is the risk involved with duration. Second, we also noticed earlier that

the entire yield curve does not move in tandem as in synchronized swimming. In particular,

the long-end of the yield curve might not move entirely in parallel to the short-end of the

yield curve. This points to the fact that the slope of the yield curve is not a constant. In

fact, the slope becomes our second random factor. Finally, there might be some freedom in

how the middle portion of the yield curve moves in relation to the short- and long-end. This

observation gives rise to a third random factor called curvature.

It would not be surprising that market participants have long recognized the importance

of these factors influencing the yield curve. But the concept of level, slope, and curvature

was formally introduced in the 1991 paper by Litterman and Scheinkman, when both pro-

fessors were working at Goldman Sachs. They identified these three common factors in the

movements of yield curve through principal component analysis (PCA). In assignment 3,

you get the chance to do this analysis yourself. The main difference is that their analysis is

done in the yield space while your analysis will be done in the return space.

I’ll go over this exercise in the yield space here in the notes.

• Variance-Covariance Matrix: Table 2 reproduces the content from Table 1 with the

addition of 1Y yield. From Figure 1, we also notice that the 30Y yields were absent from

February 19, 2002 to February 8, 2006 because the Treasury department suspended

new issuance of 30-year bonds. In calculating the variance-covariance matrix, we will

have to skip that specific period because of the missing 30-year bonds.

Table 2: Correlation and Standard Deviation of Daily Changes in Yields (1982 to 2015)

corr (%) 3M 1Y 2Y 5Y 10Y 30Y
3M 100.0 72.72 57.31 46.87 40.18 35.15
1Y 72.24 100.0 87.90 78.18 70.44 63.06
2Y 57.31 87.90 100.0 90.29 82.17 72.90
5Y 46.87 78.18 90.29 100.0 94.07 85.74
10Y 40.18 70.44 82.17 94.07 100.0 93.71
30Y 35.15 63.06 72.90 85.74 93.71 100.0

std (bps) 8.06 6.95 6.96 7.19 6.90 6.30
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Let Cov be the variance-covariance matrix of the daily changes in yields for maturities

3M, 1Y, 2Y, 5Y, 10Y, and 30Y:

Cov(i, j) = Corr(i, j)× σi × σj ,

where σ is the standard deviation of the daily changes in yield.

• Eigenvalue Decomposition: Taking Cov as an input, we perform the eigenvalue de-

composition. Let’s first go through the calculations and then come back to understand

what is really going on. The eigenvalue decomposition will give us two inter-related

outputs. First, the eigenvalue E is a vector of six eigenvalues. This is because the

dimension of the variance-covariance matrix is 6, one for each maturity. As shown in

Table 3, we order the eigenvalues in the order of their magnitude. We call the eigen-

value with the largest magnitude PC1 (principal component one), the second PC2, and

so on. The magnitudes of the eigenvalues might not be meaningful for you now, but it

will be.

Table 3: Eigenvalues and Eigenvectors

Eigenvalues E PC1 PC2 PC3 PC4 PC5 PC6
E (bps2) 226.99 50.14 13.77 5.45 2.86 1.47
E/sum(E) (%) 75.49 16.68 4.58 1.81 0.95 0.49

Eigenvectors D PC1 PC2 PC3 PC4 PC5 PC6
3M 0.3630 -0.8017 0.4347 0.1876 -0.0365 0.0006
1Y 0.4182 -0.2371 -0.4682 -0.6806 0.2939 0.0016
2Y 0.4351 0.0257 -0.5134 0.3309 -0.6505 0.1176
5Y 0.4513 0.2493 -0.0709 0.4572 0.5076 -0.5124
10Y 0.4176 0.3430 0.2837 0.0418 0.2271 0.7577
30Y 0.3550 0.3472 0.4926 -0.4258 -0.4242 -0.3866

Second, associated with each eigenvalue is a vector, called eigenvector. There are six

eigenvalues. So there are six eigenvectors, one for each eigenvalue. Putting these six

eigenvectors together, we have a matrix D that is 6 by 6, as shown in Table 3. Let’s

now go over the first three PCs:
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– Level: As shown in Table 3, associated with PC1 is the first eigenvector:

DPC1 =





















0.3630
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0.4176

0.3550





















,

which is a vector of six, one for each maturity. So effectively, the first PC is

close to an equal-weighted portfolio of all six yields (or daily changes in yields,

to be more precise). This factor corresponds to a movement in the yield curve

when all six yields move up and down in tandem or in parallel. In other words, it

captures the level movement and the best measure for exposure to this level risk

is duration.

– Slope: Associated with PC2 is the second eigenvector:

DPC2 =





















−0.8017

−0.2371
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0.3430

0.3472





















,

which is a long/short portfolio along the maturity dimension. It is long long-term

yield and short short-term yield. It really does not matter which end of the yield

curve is being long, as long as the weights on the long-end are opposite to the

weights on the short-end. Naturally, you think “slope.”

– Curvature: Associated with PC3 is the third eigenvector:

DPC3 =





















0.4347

−0.4682

−0.5134

−0.0709

0.2837

0.4926





















,

19



which is again a long/short portfolio along the maturity dimension, but it is long

both short- and long-end of the yield curve, and short the middle part of the

yield curve. Again, the exact sign of long/short does not really matter as long as

the weights on the short- and long-end are opposite to the weights on the middle

portion of the yield curve. So this reason, this factor is called “curvature.”

Figure 8 summarizes the first three PCs in a plot, which might be more intuitive for

us to see the meaning of level, slope, and curvature.
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Figure 8: Level, Slope, and Curvature.

• Relative Importance of the PCs: We focus on the first three PCs because of

their relative importance. To see this, let’s go back to the eigenvalues in Table 3. By

construction, the eigenvalue associated with PC1 is the highest in magnitude. Let’s

now construct a time-series of PC1 using the weights subscribed in DPC1 (avoiding

the 2002-2006 period because of the missing 30-year yields). The standard deviation

of this portfolio turns out to be 15.07 bps, and the variance is ... 226.98 (bps2). You

can repeat the same exercise for all other PCs. In short, the n-th eigenvalue is in fact

the variance of the n-th PC.
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What is cool about the eigenvalue decomposition is that it transforms the original

data (with correlated yields) into six independent random factors: PC1, PC2, etc.

(Please double check this statement by constructing time-series of PC1 and PC2 and

calculate their correlation.) As a result, working with mutually independent PCs

is more convenient than working with correlated yields. Because all six factors are

independent, we can add now all six eigenvalues into sum(E) and use it as a normalizing

factor for E. As shown in Table 3, the first PC accounts for 75.49% of the total variance,

the second PC accounts for 16.68%, and the third PC accounts for 4.58%. Adding all

three together, we see that they account for 96.75% of the total variance. This is

why most of the term structure models use three factors. This is also why duration

hedging, which is a hedge against PC1, is the most important form of hedging in the

fixed income market.

Once a portfolio is hedged with zero duration, then the slope exposure becomes the

most important risk. Once a portfolio is hedged with duration and slope, then you

worry about curvature exposure. In the old days, there are butterfly trades which

are duration and slope neutral, and are structured so that the main exposure is the

curvature risk. Of course, you need to be a fixed-income nerd to get this deep into the

yield curve trades.

• More on the Eigenvectors D: By now, we understand that there are six eigenvectors

and putting them together gives us a 6 × 6 matrix. Each eigenvector is a vector of

portfolio weights (not normalized) on the six maturities.

Let’s now take a closer look. Let’s start with the important observation that all six PCs

are independent. So pick any two PCs, say PC1 and PC2, and their correlation will

be zero. As mentioned earlier, this is why eigenvalue decomposition is useful. It gives

us independent factors. Let’s use the matrix notation for the following calculations.

First we know that

PC1t =
(

DPC1
)⊺

×∆ yt ,

where ∆yt is the vector of daily changes in yields for the six maturities and
(

DPC1
)

⊺

is the transpose of DPC1. Of course, we also know that

PC2t =
(

DPC2
)⊺

×∆ yt .

So if cov (PC1t, PC2t) = 0, then it must be that

(

DPC1
)⊺

×DPC2 = 0 .
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Applying this logic pairwise to all maturities, you will be convinced that

D⊺D = I ,

where I is an identity matrix of dimension 6 × 6, with diagonal terms equaling 1 and

off-diagonal terms equaling zero. In other words,

D−1 = D⊺ .

If you don’t believe me, just try it out using Excel or Matlab.

• Running Regressions: Now let’s take a look at Table 4, where I report the following

regression results:

∆yt = a+ βPC1 PC1t + βPC2 PC2t + βPC3 PC3t + ǫt .

Knowing that all three PCs are independent, we can calculate the individual R-squared

for each PC and add them together to get the total R-squared of the regression.

Table 4: Regressing ∆y on the First Three PCs

PC1 PC2 PC3 PC1 PC2 PC3 Total
maturity β β β R2 (%) R2 (%) R2 (%) R2 (%)
3M 0.3630 -0.8017 0.4347 46.06 49.63 4.01 99.70
1Y 0.4182 -0.2371 -0.4682 82.18 5.83 6.25 94.26
2Y 0.4351 0.0257 -0.5134 88.67 0.07 7.49 96.23
5Y 0.4513 0.2493 -0.0709 89.46 6.03 0.13 95.62
10Y 0.4176 0.3430 0.2837 83.17 12.39 2.33 97.89
30Y 0.3550 0.3472 0.4926 72.04 15.22 8.41 95.66

First, you can see that PC1 remains the most important random factor, explaining the

daily changes in yields with very high R-squared’s. For the two extreme ends of the

yield curve (3M and 30Y), the explanatory power is relatively weaker. This is where

PC2 picks up. In particular, PC2 contributes quite a bit in explaining the movements

in the short-end of the yield curve. Adding all three PC factors, we can explain the

random variations in daily changes in yields with R-squared’s that are well above 90%.

Second, take a look at the regression coefficients β’s. What do you see? Compare

DPC1 with the beta coefficients on PC1, there are identical! Likewise for DPC2 and
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βPC2, and DPC3 and βPC3. Can you prove this result mathematically? (No worries,

I’ll not ask you to do this proof in the exam.)

• More on PCA: What we’ve talked about so far in this section is statistical based.

The yield curve is well suited for a statistical analysis like PCA. Once you understand

the mechanics of the PCA, it will be instructive for you to go back to the economic

drivers for these common risk factors in the fixed-income market.

More broadly, the PCA approach can also be used in many markets where the ob-

servables are correlated due to some common factors. For example, applying PCA

to international equity returns, the first PC will be a world index with roughly equal

weight on all countries. The second PC will be a long/short portfolio across the two

most representative regions (which could change over time).

Whatever you might do with PCA, just be reminded that this is simply a statistical

tool that helps you extract mutually independent factors, and the importance of the

factors are ordered by their variances (i.e., eigenvalues). Also remember that the only

input for the eigenvalue decomposition is the variance-covariance matrix. Use this

tool effectively for the your desired objective. All all is done, take the extra step to

understand the economic and institutional drivers for the extracted factors.
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Appdendix

3 Yield Curve Fitting

The Treasury bond market is a highly liquid market. Everyday, we observe

transaction prices of bonds of different coupon rates, and with different

remaining maturities. Usually, this information is fed into a yield curve

program and the bond prices are transformed into yield curves. There are

three yield curves that we should pay attention to: the forward curve, the

zero-coupon curve (also called spot curve), and the par-coupon curve.

A good starting point of a yield curve program is the Nelson and Siegel (1987)

model.
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1 Interest Rate Swaps

• Fixed and Floating: A USD interest rate swap is a private agreement between two

counterparties to exchange cashflows in US dollar. One counterparty receives fixed

and pays floating, while the other counterparty pays fixed and receives floating. For

convenience, let’s call one counterparty receiver and the other payer, with reference,

in both cases, to their activities on the fixed leg. Later, we will see that the receiver is

long duration and the payer is short duration.

Figure 1 is a Bloomberg screenshot made for me by a former MBA student. It provides

a nice description in terms of the fixed and floating legs of an interest rate swap.

Figure 1: Description of a Standard Swap Quote from Bloomberg.

The fixed leg is referenced to the swap rate. For example, on November 19, 2015,
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the five-year swap is quoted at 1.55%, implying a fixed payment of 1.55%/2 × notional

amount, to be delivered every six month, from the payer to the receiver, until the

end of contract maturity, which, in this case, is year five. This structure is exactly

the same as the coupon payments in Treasury bonds, and this is so by design. The

notional amount in the swap market is typically quite large, say $10M per contract.

For our analysis, let’s make the notional amount $100 so as to match the $100 principal

amount we’ve been using for Treasury bonds. By now, it should be obvious that the

notional amount or the principal amount is scalable and its absolute value does not

really matter for our analysis. Of course, it will matter when we think in terms of the

size of our portfolio and calculate profit/loss in dollar.

The floating leg is referenced to the short-term interest rate. For most of the floating

rate instruments, the standard reference rate is the LIBOR rate (London Interbank

Offered Rate). Unlike TBill rates, LIBOR is not based on actual transactions. Prior

to September 2012, it was calculated by BBA (British Bankers’ Association), compiled

from quotes given by 16 major banks (eliminating the highest and lowest our bank

quotes and then averaging the remaining eight). Effectively, the 3M LIBOR is an

indication of the average rate a leading bank can obtain unsecured funding for three

months. It is a vital benchmark interest rate to which hundreds of trillions of dollars of

financial contracts are tied, including CME Eurodollar futures and interest rate swaps.

Figure 2 plots the time-series of the spread between the 3M LIBOR and 3M TBill

rates. As you can see, the LIBOR spread tends to spike up during financial crises,

reflecting the increased concerns on banks’ credit quality.

The scandal on LIBOR fixing is an event that reflects very poorly on Wall Street. Even

before the collapse of Lehman, questions about the accuracy of LIBOR showed up in

articles published in FT, WSJ, and others. As we now know, LIBOR manipulation has

been perceived as business as usual and were even encouraged in some banks. As of

now, regulators in the US, UK, and EU have fined banks more than $9 billion for rigging

LIBOR. The scandal cost the Chairman and CEO of Barclays their respective jobs,

sent one trader to jail on a fourteen-year sentence, and the trials and investigations are

still ongoing.

Coming back to the floating leg, in a standard swap contract, the floating leg is ref-

erenced to the 3M LIBOR rate and resets every quarter. For example, at time 0, we

enter into a swap. The floating leg takes the prevailing 3M LIBOR rate at that time,

r3M
0

, as a reference rate. Three months later, the floating payment is r3M
0

/4× notional

amount. Now the prevailing 3M LIBOR rate becomes r3M
0.25

, which will be used as the
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Figure 2: Time Series of the Spread between the 3M LIBOR and 3M TBill Rates.
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reference rate for the next floating payment: r3M
0.25

/4× notional amount. As you will

see, this feature, often called payment in arrears, is very important design for interest

rate swaps.

• Interest Rate Swap Rates: A swap is structured so that the present value of the

future cashflow equals to zero for both counterparties. As a result, the both coun-

terparties enter into a swap without having to put up any capital initially. This is

true in theory. In practice, because of concerns over counterparty credit risk, upfront

payments are required for some counterparties for some type of contracts (e.g., credit

default swaps).

At the time 0, when two counterparties enter into an interest rate swap, the swap

rate s is set so that the present value of the future cashflow equals to zero for both

counterparties. Once set, this swap rate will be fixed to the contract until its maturity

in year T . To see how we can set this swap rate s, let’s add the notional amount, say

$100, back to both the fixed and floating legs. Remember, this notional amount never

exchanges hand, but adding it back serves a purpose for our understanding.

Now, the fixed leg looks exactly like a Treasury bond of maturity T . The only difference

is that instead of paying at the Treasury par-coupon rate c, the payer is paying the

swap rate s. So the present value of this fixed cashflow is the same as the market price

of a bond paying at a coupon rate of s. And what is the present value of the floating

leg? For a bank whose three-month financing rate is the 3M LIBOR rate, it is ... $100.

The present value of these two cashflows should equal. So the present value of the

fixed leg should equal to the present value of the floating leg, which is $100. In other

words, s should be the coupon rate of a par coupon bond.

• Duration: It is really as simple as this. If you know how to do bond math for coupon-

bearing bonds, you should be quickly at home with calculating swap rates. Because

entering into a five-year interest rate swap as a receiver is the same as buying a five-year

par-coupon bond and selling a five-year floating rate bond.

As soon as we enter into the swap, the real effect on our portfolio is our exposure to

interest-ate risk. By buying a five-year par-coupon bond, we load up on duration. For

example, the modified duration for a five-year par-coupon bond is about 4.74 when the

interest rate is at 2%. By selling the five-year floating rate, what is your interest rate

exposure? Very little. The initial duration is 3 months, decreases to zero just before

the next quarterly settlement, and reset to 3 months at the next quarterly settlement.
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So if you would like to buy duration, you enter into an interest swap as a receiver; if

you would like to sell duration, you enter as a payer.

Thinking in terms of duration is the most effectively way to understand this product.

In fact, duration is the reason of existence for interest rate swaps.

• Swap Spreads: By now, it is obvious that interest rate swaps parallel Treasury

bonds. In fact, the Wall Street Journal used to publish two curves everyday, as shown

in Figure 3.

Figure 3: Treasury and Swap Curves, April 2007.

Figure 4 plots the time-series of the Swaps rates and Treasury rates. As you can see,

these two markets are closely connected. In fact, it is a common practice to calculate

the spread of swap minus Treasury rates of the same maturity and look at the swap

spread, which is plotted in Figure 5.

The time-variation of the swap spreads is a very interesting topic, which we will not

have time to talk too much about. The negative swap spreads at the longer maturity,
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especially for the 30yr, has been an interesting phenomenon after the Lehman default.

If you asked me back in 1995, can spread spreads can negative, I would say very

unlikely. But the 30yr swap spreads has been in the negative territory for the past 7

years.

2 Using Interest Rate Swaps

As discussed earlier, interest rate swaps are vehicles for duration. We enter into an interest

rate swap as a receiver to buy duration, and as a payer to sell duration. To emphasize on

this point, let’s look at a specific example.

• Negative Convexity of MBS: Because of the prepayment options given to home-

owners and mortgage borrowers, mortgage-backed securities (MBS) have negative con-

vexity. Let me quote Fannie in its 2010 10K report,

Our mortgage assets consist mainly of single-family fixed-rate mortgage loans

that give borrowers the option to prepay at any time before the scheduled

maturity date or continue paying until the stated maturity. Given this pre-

payment option held by the borrower, we are exposed to uncertainty as to

when or at what rate prepayments will occur, which affects the length of time

our mortgage assets will remain outstanding and the timing of the cash flows

related to these assets. This prepayment uncertainty results in a potential

mismatch between the timing of receipt of cash flows related to our assets

and the timing of payment of cash flows related to our liabilities.

Changes in interest rates, as well as other factors, influence mortgage pre-

payment rates and duration and also affect the value of our mortgage assets.

When interest rates decrease, prepayment rates on fixed-rate mortgages gen-

erally accelerate because borrowers usually can pay off their existing mort-

gages and refinance at lower rates. Accelerated prepayment rates have the

effect of shortening the duration and average life of the fixed-rate mortgage

assets we hold in our portfolio. In a declining interest rate environment,

existing mortgage assets held in our portfolio tend to increase in value or

price because these mortgages are likely to have higher interest rates than

new mortgages, which are being originated at the then-current lower interest

rates. Conversely, when interest rates increase, prepayment rates generally
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slow, which extends the duration and average life of our mortgage assets and

results in a decrease in value.

Effectively, when interest rates fall, mortgage borrowers take advantage of the prepay-

ment option by refinancing their mortgage. As a result of this refinancing activity, some

of the mortgage loans with nice looking duration (e.g., 30-year or 15-year maturity) are

suddenly turned into cash (with zero duration). And this happens when interest rate

is falling, exactly when a bond holder expects duration to work in his favor. For the

entire pool of mortgages, the net effect is that the average duration is a function of the

probability of prepayment. With falling interest rates, the probability of prepayment

increases and the expected average duration shortens; With increasing interest rates,

the probability of prepayment decreases and the expected average duration lengthens.

Figure 6 plots the time-series of MBS rates and durations for the Barclays US MBS

Index. As you can see, when rates decrease, there are sharp declines in MBS duration;

when rates increase, MBS duration increases. As a result, the convexity of MBS is

negative. Also plotted in Figure 6, is the time-series of yields and duration for Barclays

5-year Treasury index. As you can see, the duration increased slightly over time as

the interest rate decreased after the 2008 crisis. This is the effect of positive convexity.

The small periodic variation in duration was due to periodic rebalance of the index

composition in order to main the maturity of the portfolio close to five years.

• Hedging Interest Rate Risk at Fannie and Freddie: For Fannie and Freddie,

holing MBS implies positive exposure to duration risk as well as exposure to negative

convexity. In order to manage the interest rate exposure, Fannie and Freddie issue debt

(i.e., agency debt) that is a mixture of short- and long-term, non-callable debt and

callable debt. The varied maturities and callability of their debt (i.e., liabilities) give

them the flexibility to deal with the variation of duration (i.e., negative convexity) in

their mortgage assets. At the day-to-day level, however, this flexibility on the issuance

side does not match the more frequent change in duration on the asset side. For

this reason, Fannie and Freddie use interest rate derivatives extensively for hedging

purpose. For example, as of December 31, 2010, a hypothetical increase of 50 basis

points in LIBOR rate cost Fannie $0.9 billion before derivatives and $0.2 billion after

derivatives. In other words, using interest rate derivatives helped Fannie hedge out a

large portfolio of its interest rate exposure. The benefit of hedging is more significant

in 2014: before derivatives, a hypothetical increase of 50 basis points in LIBOR cost

Fannie $1.9 billion before derivatives and $0.3 billion after derivatives.
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Figure 6: Time Series of Yield and Duration for Barclays US MBS Index and 5-Year Treasury
Bellwethers Index.
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Figure 7: Risk Management Derivatives Held by Fannie Mae, from Fannie Mae’s 2010 10K.

Figure 8: Interest Rate Sensitivity of Net Portfolio to Changes in Interest Level and Slope
of Yield Curve, from Fannie Mae’s 2014 10K.
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Figure 7 reports the derivatives used for hedging in Fannie’s 2010 10K form. I am using

the 2010 10K form in this plot because the reporting in Fannie’s 2014 10K form is not

as nice (in my personal opinion) as it was before. As of end 2010, Fannie’s interest

rate swap positions involve:

– Payer with notional amount $277 billion.

– Receiver with notional amount $274 billion.

In addition, Fannie also have positions on basis swaps, interest rate swaptions (options

on swaps), interest rate caps (portfolio of options on floating interest rates, with each

caplet providing the cap buyer the option to cap the short-term interest rate at a

pre-arranged fixed level), and others.

Figure 8 also reports the overall interest rate sensitivity of Fannie’s portfolio, including

derivatives hedging, in 2014. As you can see, the average duration gap of Fannie was

very small, only around 0.2 months, with a standard deviation around 0.2 months.

The largest swings in duration gap were only in the range of -0.6 to 0.3 months. In

addition to measuring its portfolio’s sensitivity to interest rate (dollar duration and

modified duration), Figure 8 also reports Fannie’s sensitivity to change in the slope of

the yield curve.

• MBS Footprint on Swaps: Going back to Figure 6, we see how changes in interest

rate could affect the duration of MBS via the probability of prepayment. In June 2003,

there was a sudden increase in interest rates. On June 13, 2003, the 10YR Treasury

yield was at 3.13%, a result of a steady decline of interest rate. Over the next month

and half, however, the 10yr rate increased steadily to 4.44% on August 1. As shown in

Figure 6, the increase in the MBS rate was more dramatic, from 3.48% on June 13 to

5.53% on August 1, and the corresponding modified duration for the MBS increased

from 2.09 to 5.15 years.

This was an event that took the MBS market by surprise. With the increasing interest

rate, the MBS holders found themselves to be long in duration through their MBS

holdings. The liabilities side of their balance sheet does not match this sudden increase

in duration. So they need to sell duration, fast. Otherwise, this unwanted duration will

show up as a positive duration gap on their portfolio. Recall that the average duration

gap for Fannie was 0.2 months in 2014. Selling duration means paying fixed in the

interest rate swap market. In other words, selling swap “bonds.” If this demand from

MBS holders to sell duration arrives simultaneously in the swap market, how would
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Figure 9: Time-Series of 3M LIBOR and 10YR Swap Rates in 2003.
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it affect the price? The selling pressure on the swap “bond” would lead to decreasing

“price” in the swap “bond” and increasing yield. As shown in Figure 9, this hedging

activity resulted in a temporary spike in the 10yr swap spread just prior to August 1,

2013. For your viewing convenience, I’ve marked those two dates (June 13 and August

1) by a combined sign of green ’x’ and red ’o’. Recall that the 10yr Treasury yield also

increased during that period. So the increase in swap spread implies an increase in the

10yr swap rate that is more severe than the 10yr Treasury yield. By comparison, the

3M LIBOR spread was not affected during this period.

In going through this example of MBS hedging, we learn a few lessons. First, the

negative convexity of MBS. Second, the wide usage of interest rate swaps as a hedging

instrument. Third, the supply and demand in the swap market as a driver to the

changes in swap spreads.

3 OTC Derivatives

• An Overview: The global OTC derivatives market had its beginning in the mid-

1980s. Over the past 30 years, it has grown into an important part of the global

financial markets, allowing business to manage and hedge financial risk. By far, the

most important segment of this market is interest-rate product. As such, most of the

hedging activities on interest rate risk have migrated from Treasury bonds to interest

rate swaps. In addition, it also provides derivatives on currency, credit, equity, and

commodities.

This is a privately organized market, with transactions taking place bilaterally between

dealers and end users, or dealers and other dealers. As such, the dealers function as

market makers, engaged in either side of the transaction and keeping an inventory

when necessary. The most active dealers are called the G14 dealers, comprising Bank of

America-Merrill Lynch, Barclays Capital, BNP Paribas, Citi, Credit Suisse, Deutsche

Bank, Goldman Sachs, HSBC, JP Morgan, Morgan Stanley, RBS, Societe Generale,

UBS and Wells Fargo Bank.

Because of the OTC nature of this market, trading information is very much limited.

The lack of transparency in this market is in direct contrast to exchange-traded prod-

ucts such as equity, options, and futures, where trading information is readily available.

For this market, the most comprehensive information available to the public is through

the semi-annual and triennial surveys conducted by the Bank of International Settle-

ments (BIS). This is a link to the most recent statistical release from BIS.
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The OTC nature of this market also introduces potential systemic risk. Through

their market-making activities in OTC derivatives, major dealers put themselves in

the middle, creating an extra layer of interconnectedness in the financial system. At

the time of its bankruptcy in September 2008, Lehman was a counterparty to 6,500

different institutions and corporations, across 1.2 million derivative transactions. The

tangled web of deals took years to unwind and points to the obvious problem of this

market.

Under Dodd-Frank, new rules are to be implemented with the objective of increasing

transparency and reducing systemic risk in the derivatives markets:

– Reporting swap transactions to a swap data repository;

– Clearing sufficiently liquid and standardized swaps on central counterparties;

– Where appropriate, trading standardized swaps on trading platforms; and

– Setting higher capital and minimum margin requirements for uncleared swaps.

• Notional Amount, Gross Market Value, and Credit Exposure: After the 2008

crisis, the growth of this market has slowed down quite significantly. Figure 10 reports

the total notional amount, surveyed semi-annually by the BIS, from 1998 through

2014. One potential contributing factor for the slowdown in the notional amount is

compression. After the 2008 crisis and Dodd-Frank, some OTC trades were moved to

CCPs (central clearing party), which facilitate the compression process. (Compression

is a process for tearing up trades that allows economically redundant derivative trades

to be terminated early without changing each participant’s net position.)

Figure 11 focuses on the more recent data. At end-June 2015, the total notional

amount is at $553 trillion, the fourth consecutive semiannual decline of this market.

As we see in this class, the notional amount of a derivatives contract is ... notional,

never exchanging hands during the transaction.

In order to measure the amounts at risk (or loss/profit), it is more useful to look at

the gross market value of outstanding derivatives contract. At end-June 2015, the

market was at $15.5 trillion, down from $20.9 trillion at end-2014 and $35 trillion at

end-2008. The variation of gross market value is influenced by both the variation in

notional amount as well as the variation in the underlying risk. A derivatives contract

is structured so that, when the two counterparty enters into the contract, the gross

market value equals to zero for both parties. Later, as the underlying risk fluctuates

over time, the gross market value moves away from zero. The profit of one party equals
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the loss of the other party, making the derivatives contract zero-sum as far as the two

counterparties are involved.

If the underlying risk factor, say the interest rate, stays constant throughout the life of

the contract, there the gross-market value stays at zero. If the gap between the initial

interest rate and the current interest rate is close to zero, then the gross-market value

will also be close to zero. In this sense, the gross-market value is also not the best

way to capture the risk exposure. For the current example of interest rate exposure, a

better measure of market risk exposure will be duration, as discussed early.

In addition to market risk exposure, counterparty credit exposure is also an important

consideration in OTC derivatives. Again, this is due to the bilateral OTC nature of the

market. Just imagine that you enter into a swap with Lehman and the gross market

value of your position is positive and then Lehman went into bankruptcy. In order

to reduce their exposure to counterparty credit risk, market participants can do two

things. First, through netting agreements. For example, the last panel in Figure 11

reports the gross credit exposure, which adjusts the gross market value for legally

enforceable bilateral netting agreements. With netting, the gross value of $15.5 turns

into a net value of $2.9 trillion, accounting for 18.5% of the gross market value at

end-June 2015.

Another way for market participants to reduce their counterparty exposure is through

collateral. For example, suppose Goldman bought credit default swap (CDS) from

AIG to insure against mortgage defaults. Initially, the contract was structured so that

the present values are zero for both counterparties. After entering into the swap, the

mortgage default started to increase, and Goldman’s position is in the money. In a

situation like this, Goldman would ask AIG to post more collateral against the gross

market value of its CDS position. Often, the amount of the collateral is linked to the

credit quality of the counterparty. A lower quality counterparty typically has to put

up more collateral for the same amount of market exposure. This is why during the

2008 crisis, the downgrade of AIG was like throwing salt on the wound (although AIG

totally deserved the treatment).

• Goldman’s Derivatives Book: After the above discussions, we are now in a better

position now to understand Figure 12, which was reported in Goldman’s 10K report

in 2014. First, it reports Goldman’s derivatives positions by major product type on a

gross basis. For example, the gross value of interest-rate derivatives totals to $786,362

million in assets and $739,607 million in liability with a total notional amount of
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$47,112,518 million. In the language of derivatives, the assets are those derivatives

on which Goldman is currently making money and the liability are those on which

Goldman is losing money.

Just to compare with the broader market, as of December 2014, the total notional

amount of interest-rate OTC derivatives was $505 trillion, making Goldman (total

notional amount of $47 trillion) an important participant in this market.

To get to the $63 billion derivatives assets and $63 billion derivatives liabilities that

eventually showed up in Goldman’s financial statement as part of its financial instru-

ments, counterparty netting was an important step. On the assets side, the gross

value was $1,039,047 million and the counter party netting reduces it by $886,670 mil-

lion, giving us $152,377 million, which corresponds to the gross credit exposure in the

above discussion. Interestingly, $152,377 million accounts for 17.19% of the gross value

$886,670 million, in line with the ratio reported in Figure 11 for the broader market

in 2014.

The various components of the counterparty netting reported in Goldman’s 10K is

also interesting. In particular, “OTC-cleared” are done through central counterpar-

ties, which most likely is a product of Dodd-Frank. Also, the cash collateral netting

also contributes to the reduction of the gross value to the net value used to measure

counterparty exposure.

• Interest Rate Swaps: The interest rate segment accounts for the majority of the

OTC derivatives activity. At end-June 2015, the notional amount of outstanding inter-

est rate derivatives contract totaled $435 trillion, which represented 79% of the global

OTC derivatives market. Within this segment, interest rate swaps, with total notional

amount of $319 trillion, is by far the largest component. In term of market gross market

value, interest rate swap was at $9.8 trillion by end-June 2015, a near 30% reduction

from the gross market value of $13.9 trillion at end-2014. By comparison, the reduction

in notional amount over the same period was 16%. As discussed earlier, the variation

of gross market value is influenced by both the variation in notional amount as well as

the variation in the underlying risk. The narrow gap between the initial interest rate

and the current interest rate contributes to the low gross-market value.

Figure 13 reports the interest rate derivatives by currency, maturity and counterparty.

As we can see, the USD and Euro are the two major currencies for interest rate deriva-

tives. Most of the swaps seem to be of less than five years in maturity. The longer

maturity swaps accounts for less than 25% in 2015. The distribution of interest rate
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Figure 12: Goldman’s Derivatives Positions.
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Figure 13: Interest Rate Derivatives by Currency, Maturity, and Counterparty.

derivatives by counterparty points to a continued shift in activity towards financial

institutions other than dealers, including CCPs (central clearing party). It is also in-

teresting to see that the need for non-financial institutions to hedge interest rate risk

decreased significantly during the second half of 2013.

• History of Swaps: Although some swaps were arranged in the late 1970s, the first

widely publicized swap took place in 1981 when IBM and the World Bank agreed to

exchange interest payments on debt denominated in different currencies, an arrange-

ment known as a currency swap. The first interest rate swap was a 1982 agreement

in which the Student Loan Marketing Association (Sallie Mae) swapped the interest

payments on an issue of intermediate-term, fixed-rate debt for floating-rate payments

indexed to the three-month Treasury bill yield.

Interest-rate swaps have existed since April 1987. In that time, these agreements

between two parties to exchange periodic interest payments have risen from being an

innovative means of transferring financial risk to providing a new “benchmark” for

interest rates in the United States.

Most swaps are entered with dealers, who then seek to limit their exposure to interest

rate risk by entering into netting swaps with other counterparties. At end-June 2015,

the notional amount of outstanding interest rate derivatives contract totaled $435

trillion, which represented 79% of the global OTC derivatives market. Within this
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segment, interest rate swaps, with total notional amount of $319 trillion, is by far the

largest component. In term of market gross market value, interest rate swap was at

$9.8 trillion by end-June 2015.

In addition to swap dealers, major market participants include financial institutions

and other corporations, international organizations such as theWorld Bank, government-

sponsored enterprises, corporate bond and mortgage-backed securities dealers, and

hedge funds. Hedging interest rate risk is one important motive for trading interest

rate swaps. Swaps constitute the most common instrument in asset-liability man-

agement and in portfolio and debt management. A large universe of fixed-income

securities including corporate bonds and mortgaged-back securities use interest rate

swap spreads as a key benchmark for pricing and hedging. They are also widely used

as a benchmark, as an index, and as an underlying asset for options (e.g. swaption).
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1 The Credit Market

Banks play an important role in creating credit. In our class on Risk Management, we

talked about a simple model of a bank, which holds only a fraction, say 10%, of its total

deposits in its cash reserves and lends out the rest in loans. In doing so (often called

fractional reserve banking), credit is created. Another important factor in credit creation

is the Federal Reserve. In our class on Monetary Policy and Yield Curve, we talked about

how the Fed injects or withdraws the total amount of bank reserves from the entire banking

system via open market operations (i.e., purchasing or selling securities). In doing so, the

Fed influences the amount of credit creation by banks. When the economy needs help, the

Fed inject reserves into the system. With more reserves, banks are more willing to extend

credit to their customers. When the economy is at risk of over-heating, the Fed withdraw

reserves from the system and the banks are less willing to extend credit.

For anyone in Finance, understanding how the credit market works is essential. At the

macro level, it informs you on the overall condition of the economy, given that the economic

cycles are often linked to the credit market conditions. At the micro level, many of the

financial instruments and much of the financial transactions contain credit components. So

knowing how to model and price credit risk is an important skill to have.

Figure 1 plots the debt securities and loans outstanding in the US. By the second quarter

of 2015, the total credit in the system is $62.30 trillion, among which $14.49 trillion goes to

the federal government, $15.20 trillion goes to the financial sectors, $12.48 trillion goes to

non-financial business and $14.05 trillion goes to households and non-profit organizations.

Figure 2 tracks the relative importance of the six sectors in Figure 1 by measuring their

debt and loan outstanding as a fraction of the total credit. As you can, the fraction of bor-

rowing from the financial sectors increased steadily from 12% in 1980 to a plateau of around

31% in the mid-2000 and decreased quite significantly to 24% in 2015. By contrast, the

fraction of borrowing from the Federal Government increased quite dramatically from 11%
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Figure 2: The Fraction of Debt Securities and Loans Outstanding by Sector.
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before the 2008 crisis to 23% in 2015. Interestingly, the borrowing from non-financial busi-

ness decreased from 30% in 1980 to about 19% before the 2008 crisis, dipped to an all-time

low of 18.26% in the first quarter of 2011 and has recovered to 20% in 2015. For house-

holds, a large amount of borrowing is in mortgage. Compared with the federal government,

non-financial business and financial sectors, the fraction of borrowing from the households

remains relatively stable over time. This makes more obvious the significant increase and

then the subsequent reduction in household borrowing surrounding the 2008 crisis. The

fraction of households borrowing peaked at 27.9% in 2006 to dropped quite steadily to 22%

in 2015.

2 Corporate Bonds

• Default Probability: In extending credit to a counterparty or an issuer, there are

two considerations. First, the credit worthiness of the creditor. For this, we use the

concept of default intensity to model the likelihood of the creditor’s default. Second,

in the event of a default, how much can we expect to recover or what is the expected

loss? For this, we use the concept of loss given default. For the rest of the class, we

will focus mostly on the corporate bond market, which by far is the most important

component of the credit market.

Figure 3 plots the annual issuer-weighted corporate default rates reported by Moody’s

in its “Annual Default Study: Corporate Default and Recovery Rates.” This is a very

useful document updated annually by Moody’s and I would encourage you to take a

look if you are interested in the credit market. To link the credit market condition to

the business cycles, I’ve also plotted the NBER-dated recession periods in the same

plot. The average annual default rate for investment-grade corporates is about 14 basis

points. Excluding the great depression era, the average default rate is about 5.84 basis

points. In general, the likelihood of default for an investment grade bond (the so-

called fallen angle) is low. Since the great depression, the two largest investment-grade

defaults were: the default of WorldCom in 2002 with $33B and the default of Lehman

in 2008 with $120B.

The annual default rates for speculative grades are significantly higher, with an average

of 2.83% including the great depression era and 2.77% excluding the great depression.

The connection of corporate defaults and business cycle is also stronger for this sector.

For the three most recent recessions, the default rates all peaked above 10%, with the

2008 number reaching 13.3%.
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Figure 3: Annual Issuer-Weighted Corporate Default Rates for Investment and Speculative
Grades.

• Loss Given Default: In the event of a default, it matters for the bond holder how

much the bond is worth. For example, Fannie and Freddie had recovery rates close

to 100 percent after receiving government guarantees on their senior unsecured bonds.

Interestingly, the terms of the government rescues meant that “credit events” were

deemed to have occurred, triggering CDS auctions. For most bonds, however, the

recovery rates are much lower than 100%. For the purpose of credit pricing, the loss

given default (LGD) is often set to a constant level around 50%.

Figure 4 summarizes the average recovery rates reported by Moody’s. For senior un-

secured bonds (which is the category for most corporate bonds), the average recovery

rate from 1982-2014 is about 37.4%, making the LGD around 1-37.4%=62.5%. In the

most recent years (2013 and 2014), the recovery rates are higher compared with their

long-term averages. This in part is due to the positive relation between higher recov-

ery and economic conditions. For example, the recovery rate was 33.8% in 2008. It

should be noted that measures such as recovery rates are sensitive to the specific de-

fault events. With defaults being rare in general, what we can learn from these default

events is difficult to generalize. For example, in 2014, the recovery rate for senior sub-
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Figure 4: Average Corporate Default Recovery Rates Measured by Post-Default Trading
Prices.

ordinated bonds was 46.9%, slightly higher than the senior unsecured bonds (43.3%).

This is due to the fact that the 46.9% number was based on only four defaults.

Figure 5: Average Corporate Default Recovery Rates Measured by Ultimate Recoveries.

The above recovery data are based on trading prices averaged over 30 days after a

default event. An alternative recovery measure is based on ultimate recoveries, or

the value creditors realize at the resolution of a default event. Going through the

bankruptcy court is usually a lengthy process of 1-2 years following the initial default

date. As shown in Figure 5, for senior unsecured bonds, the average ultimate recovery

rate is 48.8% compared with the average recovery rate of 37.4%. In other words, funds

specializing in distressed debt can purchase defaulted bonds and hope to recover the

extra 10% by going through the bankruptcy court.

• Estimating Default Probability: We will now focus on modeling and estimating

the default probability of a bond issuer, whiling keeping the recovery rate at a constant

level.
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Information about default probability can be collected from multiple sources. First,

we can use credit ratings posted by the three rating agencies (Standard and Poor,

Moody’s, and Fitch). Using the historical default rates for each rating category, we

can get a sense of the likelihood of default knowing the rating of the issuer. For

example, as mentioned earlier, the average default rate of an investment-grade issuer

is about 14 basis points including the great depression, and 5.84 basis points excluding

the great depression. The corresponding numbers for a speculative-grade issuer are

higher: 2.83% including the great depression era and 2.77% excluding.

In addition to measuring the default probability using the actual default experiences,

there are two other markets from which we can collect information about default.

First, a borrower with access to the corporate bond market is in general a large and

mature company. In addition to debt financing, it also finance itself through the equity

market. As such, information such as the firm fundamentals (e.g., financial statements)

and equity market pricing and volatility becomes valuable information for us to assess

the credit quality of the bond issuer. For this to work, however, we need to have a

model that takes into account of the firm’s total value (or cashflow) and prices the

equity and bond securities simultaneously. These models are often called structural

models of default, pioneered by the work of Merton (1974).

In addition to the equity market, the credit market itself provides a direct measure of

default probability. We can use the bond yield spreads in the corporate bond market

and the pricing of credit-default swaps to gauge the likelihood of default of an issuer.

The fact that the default probability of an issuer can be collected from these multiple

sources implies that these markets are inter-related and any mis-pricing across the

multiple markets could be an “arbitrage” opportunity. In fact, understanding the

credit market requires a broad knowledge base that includes fixed-income, accounting,

equity, and macro-economics. Once, a former MBA student visited my office with his

boss and we spent a very nice hour discussing the CDS-bond basis. Toward the end,

the boss said, with a full range of emotion, “When I met credits, that’s when my love

for Finance really started.” Not that I wanted to stereotype middle-aged Wall-Street

guys, but it was such an usual experience for me. And I fully understand what he

meant.

• Structural Model of Default: This class of models are pioneered by the work of

Merton (1974), and followed up and refined by Black and Cox (1976) and Leland

(1994).
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In Merton (1974), the total asset value V of a firm is modeled as a geometric Brownian

motion with growth rate µ and volatility σA:

dVt = µVt dt+ σA Vt dBt .

There are two classes of claimants for V : equity and bond holders. Let K be the book

value of the bond, which is a zero-coupon bond that maturities in some future date T .

Let’s consider the fixed time horizon, say t, which is prior to the maturity of the bond.

In this model, as long as the time-t firm value Vt is above K, the firm is solvent. And

default happens when Vt falls below K.

Using what we learned from the Black-Scholes model, the distance to default can be

measured by

DD =
ln(V/K) + (µ− σ2

A
/2) t

σA

√

t

and the probability of default is N(−DD). Although this is a very simple and some-

what unrealistic model, it captures the essence of what drives the probability of default

for a name issuer. When the debt-to-asset ratio is high, the firm is closer to the default

boundary K. As a result, its distance to default is small and the firm is more likely

to default. When the firm’s growth potential is good, then the the growth rate pulls

the firm value away from the default boundary, making it less likely to default. A

firm with more volatile asset value is more likely to touch the default boundary and

therefore more likely to default.

In addition to probability of default, the Merton model can also price equity and bond

simultaneously. The equity of a firm is essentially a call option of the firm’s asset

value V with strike price K. A low leverage ratio K/V implies the option is deep in

the money. For example, the leverage ratio of an Aaa firm is around 13% while the

leverage ratio of a Baa firm is around 43%. A typical single A-rated issuer has a leverage

ratio around 30%. Even for a single B-rated issuer, the ratio of K/V is around 65%,

implying a call option that is deep-in-the-money. In the Merton model, the maturity of

the call option is the maturity of the zero-coupon bond. But in practice, firms return

to the capital market periodically to manage the maturity structure of their debt. This

is where the Merton model (and many of the structural models of default) becomes

inadequate.

On the bond side, buying a defaultable bond is the same as holding a default-free bond

and selling a deep out-of-money put option on the firm’s asset value V with strike price
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K.

• Moody’s KMV: The Merton model was used by KMV to calculate expected default

frequency (EDF). One of the key innovations of KMV was to recognize that, in the

Merton model, the mapping between the distance to default to probability of default

relies on the assumption of normal distribution: N(−DD). Instead of using the map-

ping prescribed by the model, they use the actual default rates for companies in similar

ranges to determine a mapping from DD to EDF. Effectively, they are using an empir-

ical mapping. The EDF service provided by KMV has been quite successful and was

acquired in 2002 by Moody’s in a $210 million cash transaction.

• Model Default using Reduced-Form Approach: Let T̃ be the random default

time of a credit issuer. Let t be the horizon over which we care about the survival of

this issuer. If T̃ ≥ t, then issuer is able to survive over the time horizon of our interest

and the probability of survival can be summarized by Prob
(

T̃ ≥ t
)

. Conversely, the

probability of default before time t is 1− Prob
(

T̃ ≥ t
)

.

Let’s model this random default time T̃ by exponential distribution:

Prob
(

T̃ ≥ t
)

= e−λt

, where the constant parameter λ captures the default intensity. An issuer with large

λ defaults faster. To see this, let’s consider the one-year default rate under this model.

Setting t to one year, the one-year survival probability is e−λ and the one-year default

probability is 1− e−λ
≈= λ, where I used the linear approximation for ex for small x.

As you can see from this exercise, λ is directly linked to default probability.

We can now use this model to price defaultable bonds. I am going to side step the

question about risk-neutral pricing for now. Let’s consider a one-year zero-coupon

bond with a face value of $1 and assume that the loss given default is 100%. Let

r be the riskfree interest rate (continuously compounded), the present value of the

defaultable bond is:

P = e−rProb
(

T̃ > 1
)

= e−r
× e−λ = e−(r+λ)

So the yield to maturity of this defaultable bond is r + λ and the credit spread is λ.

If the loss given default is not 100%, then, assuming the loss given default is L, we
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have

P = e−rProb
(

T̃ > 1
)

+e−r
×Prob

(

T̃ ≤ 1
)

×(1− L) = e−(r+λ)+e−r
(

1− e−λ
)

×(1−L) ,

where the second term comes from the recovery rate (1-L). For small λ, the credit

spread can be approximated by λ × L. Being able to recover part of the bond value

makes the credit spread smaller. For two issuers with the same default intensity λ, the

one with higher loss rate is priced with a higher credit spread. For example, an issuer

might issue two bonds with different seniority, say senior vs. subordinated. Then the

difference in the pricing of these two bonds bolts down to the recovery rate.

• Historical Default Rates and Credit Spreads: The reduced-form approach gives

us a useful tool to connect the historical default rates to credit spreads. In Figure 6, I

plot the Moody’s one-year default rates together with the credit spreads of Barclays’

investment-grade and speculative-grade bond indices. In calculating the credit spreads,

I use Barclay’s Treasury bond index. For teaching purpose, this is Okay, but the

maturity match between the credit indices and the Treasury index are not very well

done.

In the first panel of Figure 6, the blue line plots the credit spreads for investment

grades and the average is around 150 basis points. The red line plots the one-year

default rates and the average over the same sample period is about 9 basis points.

Recall that the one-year default probability is 1− e−λ
≈ λ for small λ. Let the red line

is essentially λ for investment grade issuer and the average default intensity is 9 basis

points. Also recall that the credit spread can be approximated by λ× L, for small λ.

So the blue line is essentially λ × L. If we start with the red line, and multiply it by

L, how can we get the blue line?

Of course, in doing this calculation, we assume a constant default intensity and we

make no distinction between risk-neutral and actual pricing. In other words, there is

no role of default risk premium in our very simple pricing framework. In the academic

research, this disconnect between the actual default experiences and the credit spreads

has been studied quite extensively. It is called the “credit spread puzzle.” The main

puzzle is that the credit spreads are too high (or corporate bonds are too cheap)

compared with the actual default experiences. Possible explanations include: credit

risk premium and liquidity premium.

In the second panel of Figure 6, the same exercise is done for speculative grades. There,

the disconnect is not as severe. The average credit spread is 570 basis points while
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Figure 6: Corporate Default Rates and Credit Spreads for Investment and Speculative
Grades.
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the average one-year default rate for the same sample period is 464 basis points. If we

start with the red line, and multiply it by L = 1 − 37.4% = 62.6% to get the credit

spread, we will still have a gap. In other words, even for the speculative grade, the

credit spreads are too high. But the gap is not as dramatic as that for the investment

grade.

3 Credit Default Swaps

• Introduction: The US corporate bond market is among the most illiquid markets. For

a market of $8T in 2015, the average daily trading volume is only $25B. By comparison,

the average daily volume is $499B for US Treasury and $321B for US Equity.

In buying a corporate bond, investors take on both duration and credit exposures. To

have a pure positive exposure to credit risk, investors have to hedge out the duration

risk. To have a pure negative exposure to credit risk, investors have to locate, borrow,

and then sell the bonds and buy back the duration exposure. The emergence of credit

derivatives was in part a response to the limitations of corporate bonds as a vehicle

for credit risk.

Figure 7 plots the size of the CDS market along with the market for interest rate swaps.

The market for CDS started out in the late 1990s. It really took off in the mid-2000

and peaked to a notional amount of $58T in 2007. The notional amount of CDS has

declined quite rapidly in recent years and is at $16T in 2014.

• CDS: An investor enters into a CDS contract to either buy or sell credit protection on

a named issuer, who could be a corporate issuer (e.g., Ford, GM, etc) or a Sovereign

issuer (e.g., Russia, Mexico, etc). In 2009, the CDS market has gone through a pretty

large change, which is called the “CDS big bang.”

Let me first describe the contract specification in the “old-fashioned” way. The swap

has two legs: the fixed leg consists of quarterly fixed payments indexed to the CDS

spread/price and the floating leg pays nothing as long as the named issuer is not in

default. In the event of a default (before the maturity of the CDS contract), the

payment of the fixed leg stops and the floating leg pays the full face value of the

defaulted bond minus the recovery of the bond. In other words, in the event of a

default, the seller of the protection makes the bond whole for the buyer.

When the CDS was first introduced, the settlement involves the buyer locating and

delivering the physical bond to the seller in exchange for the face value of the bond.

12
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Figure 7: Interest Rate Swaps and Credit Default Swaps, Notional Amount and Gross Market
Value.
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In some default cases, however, the amount outstanding of CDS contracts became so

large that it had the potential to drive up the price of the defaulted bonds as investors

scrambled to acquire bonds to deliver. Because of this concern, in some cases, auctions

can take place to determine the final recovery rate of a defaulted entity.

As with any swap, the present value of the fixed leg must equal the present value of

the floating leg at the start of the contract and this is how the CDS spread/price is

determined. Let’s think of a very simple example to get some intuition. Suppose there

is a one-year CDS on a named issuer. The fixed leg pays only annually. So the present

value of the fixed leg (annuity):

CDS× P
(

T̃ > 1
)

× e−r

And the present value of the floating leg (insurance protection):

Loss× P
(

T̃ ≤ 1
)

× e−r

We set CDS so that the two legs have the same present value:

CDS =
P
(

T̃ ≤ 1
)

× Loss

1− P
(

T̃ ≤ 1
)

As you can see, for small one-year probability of default P
(

T̃ ≤ 1
)

, the CDS can be

approximated by

CDS ≈ P
(

T̃ ≤ 1
)

× Loss = 1yr Default Rate× Loss

Now let’s apply the constant default intensity model to the above calculation:

one-year default probability = 1− e−λ

So the one-year CDS price is

CDS =

(

1− e−λ
)

× Loss

e−λ
≈ λ× Loss ,

where the approximation works for small λ.

• A Few Examples: By now, it should be clear that the CDS price/spread is simply
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the credit spread of a name issuer. For a corporate bond, we can invert its yield from

its price. To determine the credit quality, we have to locate a Treasury bond of similar

maturity and subtract the Treasury yield from the corporate yield to get the credit

spread. For example, during the time period leading up to the GM’s default in 2009,

the price of the GM bonds were actually going up because interest rates were going

down. It is only after taking out the duration exposure and focusing on the credit

spread, can we know the true credit quality of GM. By comparison, a CDS on GM

gives us direct information about GM’s credit quality. Figure 8 plots the time-series

of CDS for a few corporate issuers. And Figure 9 plots the time-series of CDS for a

few sovereign issuers.

• The CDS Big Bang: After the 2008 crisis, the CDS market has gone through some

very important change. Let me focus on just one change in contract specification that I

think you should know. As I mentioned earlier, a swap involves two counterparties. At

the start of the swap, the present value is zero for both counterparties. One important

change in the CDS market is such that this is no longer true. As of now, the contracts

are still quoted in the “old-fashioned” way, but the actual contract specification is

different. For a high-quality (investment grade) named issuer, the fixed leg of the

CDS contract is indexed to 100 bps. If the actual credit spread is 150 bps for this

named issuer, then the buyer of the protection has to pay upfront fee equaling the

present value of the difference between 150 bps and 100 bps. For a low-quality (high

yield/speculative grade) named issuer, the fixed leg is index to a fixed rate of 500 bps.

Again, an upfront fee (or rebate) is made to adjust for the difference between the deal

spread (i.e., 500 bps) and the actual credit spread. To be honest, I am surprised at

this change, but it seems to be taking place in the market.

• CDS-Bond Basis: For the same issuer, we now have two credit spreads: one from the

corporate bond market and the other from the CDS market. The difference between

the two is called CDS-bond basis: CDS spread minus the bond yield spread. In theory,

these two spreads should be close or the basis should be small.

Figure 10 plots the basis during the 2008 financial crisis. During the depth of the crisis,

the CDS-bond basis became very negative, to a level close to −300 bps on average. For

some named issuers, the basis were as negative as −500 bps. A negative CDS-bond

basis implies that, for the same named issuer, the bond yield spread is larger than the

CDS spread. In other words, the cash bond is cheaper than the CDS “bond.” An

arbitrage trade on negative CDS-bond basis would involve buying the corporate bond,

15



2004 2005 2006 2007 2008 2009 2010 2011
0

1000

2000

3000

4000

5000

6000

7000
One-Year Credit Default Swap (bps)

Ford

2004 2005 2006 2007 2008 2009 2010 2011
0

500

1000

1500

2000

2500
One-Year Credit Default Swap for GS, MS, and JPM (bps)

Bank1
Bank2
Bank3

Figure 8: One-Year Credit Default Swaps on a few Corporate Issuers.

16



2011 2012 2013 2014 2015 2016
0

100

200

300

400

500

600
One-Year CDS Price for Three Countries (USA, Russia, Turkey)

avg = 128 bps
avg = 15 bps
avg = 83 bps

Figure 9: One-Year Credit Default Swaps on a few Sovereign Issuers.

Figure 10: The CDS-Bond Basis in 2008-09.
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hedging out the duration exposure and buying protection in the CDS market.

The evolution of the negative CDS-bond basis in 2008-09 was a story of limits to

arbitrage. As shown in Figure 10, the basis turned negative after the Lehman default.

According to the press, arbitrage trades were put on to bet that the negative basis

would converge to zero. But instead of converging, the basis turned more negative.

For example, Boaz Weinstein, a trader and co-head of credit trading at Deutsche Bank

was down $1bn, Ken Griffin of Citadel was down 50% and John Thain of Merril was

said to be down by more than $10bn. The big part of these losses was due to the

“negative basis trade.” As they unwound their negative basis trades due to losses, the

basis further widened because of their unwinding. Eventually, the basis converged in

the second half of 2009 as the financial markets recovered from the crisis.
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