
Comment on “Iterative and Recursive Estimation in

Structural Non-Adaptive Models” by Sergio Pastorello,

Valentin Patilea and Eric Renault

Jun Pan∗

May 29, 2003

This paper constitutes a serious attempt to develop a new inference method for structural

models with latent variables. In addition to tackling some difficult econometric issues, it is

carefully executed with thoughtful discussions on many detailed issues. Overall, I see this

article as a nice addition to the literature that focuses on the development of efficient and

feasible econometric methods for structural models. My comments will revolve around one

very basic question: as a practicing econometrician, under what situation will I choose the

proposed latent backfitting method over existing approaches?

1 The Setup

I will start with a relatively general setup that includes some, if not all, of the motivating

examples used in this paper. In many ways, I am simply re-stating the general framework
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of the paper, but with one difference that will become important later. Let X be a vector of

state variables, and let θ be a set of constant parameters associated with the data-generating

process of the state variables X. Let λ be a set of constant parameters that control the market

prices of risk present in X, and let Y be a vector of market observables. Given that this

paper puts a lot of emphasis on efficiency gain due to the one-to-one relationship between

latent state variables X and observed asset prices Y , I will focus most of my discussion

on the case where the number of state variables equals the number of observables. More

specifically, I’ll assume that conditions hold so that there is a one-to-one mapping between

Y and X:

Y
(i)
t = g(i)(Xt, θ, λ) , i = 1, 2, . . . , n , (1)

where n is the dimension of X.

This setup is of interest for a variety reasons, the most interesting (at least in my opinion)

of which originates from the increasing availability of time-series data on derivative securities

such as options, swaps, swaptions, and credit derivatives. For every derivative security, we

also have time-series data on the underlying or related securities: stocks for stock options,

swaps for swaptions, corporate bonds for credit default swaps, etc. The above setup provides

an ideal framework to incorporate time-series data from various markets that are exposed to

the same fundamental risk factors. For example, we can place both stock and option prices

in Y , and model the risk factors affecting the stock market explicitly in X. By incorporating

them in one integrated system, we can ask some important economic questions. For example,

how are the risk factors in X priced in the financial assets Y ? In other words, in addition to

knowing θ, which characterizes the dynamics of the fundamental risk factors, we also know

λ, which tells us about the market price of such risk factors. By reason of familiarity, one
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such example that comes to mind is Pan (2002), which incorporates the time-series data on

the S&P 500 index and options in a unified framework and estimates stock-price dynamics

and market prices of associated risk factors.

2 MLE and IS-GMM

Now let’s think about the best estimation method for such a setup. As usual, maximum-

likelihood estimation (MLE) is the gold. If the dynamics of X are specified in such a way

that the conditional transition density f(Xt |Xt−1) and the pricing relation in equation (1)

are known in closed form, then the conditional transition density of Y is readily available

and MLE is our last stop.

Here is where feasibility becomes an issue. For a wide range of empirical problems, the

demand for rich and flexible dynamics of the state variables typically results in sacrificing

tractability to the extent that the transition density cannot be derived in closed form. This

is the case for the general affine jump-diffusion models (Duffie and Kan (1996)), which have

found a wide range of applications in asset pricing. There is, however, still tractability. For

example, although the conditional density is not known explicitly, the conditional transform

(including characteristic function and moment-generating function) of affine jump-diffusions

can be calculated with considerable tractability (Duffie, Pan, and Singleton (2000)). This

naturally leads one to focus more directly on the dynamics of X and the particular tractabil-

ity it offers. In other words, given that MLE is not feasible, let’s settle for the second best

and write down moment conditions (as efficient as possible) using the analytical tractability

in X.

To a large extent, this is the motivative behind the “implied-state” generalized method
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of moments (IS-GMM) proposed by Pan (2002). Suppose, for the moment, that the state

variables X can be observed directly, and let’s start with moment conditions of the form:

Eθ0
t−1 [h (Xt, θ0)] = 0 , (2)

where θ0 are the set of true parameters that govern the actual dynamics of X, and where

the moment conditions are built to take advantage of the analytical tractability in X. For

example, if the joint moment-generating function of X is known in closed form, then the

test function h can be chosen to include the first n moments of X. Moreover, efficient

instruments, which typically involve even higher moments, can be calculated using Hansen

(1985).

The problem is that the state variables X are not directly observable. At the same time,

however, our setup tells us that Xt are not really latent in the sense that they can be backed

out from the observables Y through the pricing relation (1), given that we know the true

parameters θ0 and λ0. Of course, the problem is that we don’t know θ0 or λ0, which are,

in fact, the objects of our investigation. The idea of IS-GMM comes from the observation

that for any given set of θ and λ, we can always try to invert Xt from Yt using the pricing

relation (1). So assuming the inversion holds, for every θ and λ, we have a vector of implied

state variables Xθ,λ
t , which might have nothing to do with the true state variables Xt. When

evaluated at the true parameters θ0 and λ0, however, the implied state variables become the

true state variables:

Xθ0,λ0
t = Xt . (3)

Taking advantage of the unique information embedded in the implied state variables, Pan

(2002) proposes IS-GMM estimators by replacing the state variables Xt with the implied
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state variables Xθ,λ
t . Clearly, the moment condition is still of the form (2), but the sample

analogue of the moment condition becomes

GN (θ, λ) =
1

N

N∑
t=1

h
(
Xθ,λ

t , θ
)

, (4)

which involves implied state variables Xθ,λ
t , not the true state variables.1

3 Latent Backfitting Method

The latent backfitting method proposed by Sergio Pastorello, Valentin Patilea and Eric

Renault is designed more or less for the same setup summarized in Section 1. The application

of this method could be more general, but my comment will focus on the stated setup as I

found it to be the most interesting application.

My first observation is the restriction imposed on λ. To be more specific, this paper

assumes that the set of parameters λ is a function of θ. I found this to be quite puzzling

because this restriction excludes most of the motivating examples discussed in the paper.

For example, in the option pricing application, the market prices of various factors (volatility

risk or jumps) do not show up in the stock price dynamics. So by definition, these important

parameters do not belong to θ, nor can they be any functions of θ. We have a similar

situation in the state-space term-structure estimation: the λ’s are only present in the pricing

relation (1) but not in the data-generating process of X. Given the severity of this restriction,

I am willing to give the authors the benefit of doubt and assume that their θ is big enough

to include both the θ and λ. In other words, let’s assume that there are parameters λ that

show up only in the pricing relation but not the data-generating process of X.

1See Pan (2002) for the large-sample properties of IS-GMM estimators.

5



With this assumption in mind, I am puzzled by my second observation: how can the

latent backfitting method identify λ? If I understand the paper correctly, the backfitting

method adopts a recursive scheme. In the first step, choose some initial values θ1 and λ1

and use them to back out the state variables Xθ1,λ1

t . In the second step, take the state

variables backed out from the first step to the moment condition (2) and obtain GMM (or

MLE) estimators for θ, with the assumption that the backed-out state variables are the true

state variables. The recursion happens when one feeds the second-stage estimates θ2 to the

pricing relation to back out an updated version of the state variables Xθ2,λ1

t . My problem

with this approach is that λ never gets updated in this recursive scheme because it does not

show up in the moment condition.2

This leads to my third puzzle: how can IS-GMM estimators be the limiting case of the

latent backfitting estimators? In IS-GMM, the identification of λ comes from the its influence

on the implied state variables Xθ,λ, which in turn show up in the sample analogue Gθ,λ
N of

the moment condition. To be more explicit, the IS-GMM obtains identification of λ through

∂

∂λ
Gθ,λ

N =
1

N

N∑
t=1

hx

(
Xθ,λ

t , θ
) ∂Xθ,λ

t

∂λ
, (5)

where hx denotes the derivative of h with respect to the state variables X. The key to identi-

fying λ in IS-GMM is ∂Xθ,λ
t /∂λ: the parameter dependence of the implied state variables. In

latent backfitting, however, the backed-out state variables are assumed to be observed. As a

result, there is no ∂Xθ,λ
t /∂λ in latent backfitting. Unless I am missing something important,

I am not convinced that the latent backfitting method converges to IS-GMM in the limit.

2Of course, this is not a problem if λ is indeed a function of θ. This, however, is not the case for most

of the interesting empirical applications considered in literature, including the empirical implementation

considered in this paper!
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At least, this does not seem to hold true for the case where λ shows up only in the pricing

relation but not the data-generating process of X.

My last puzzle comes from reading Section 6 on empirical implementation issues. There,

we have an example where λ does not show up in data-generating process. So according

to my puzzles 2 and 3, I would expect λ to be unidentifiable using the latent backfitting

method. Nevertheless, we have results showing that the latent backfitting method produces

satisfactory results for λ. In the next section, I will try to reconcile these two conflicting

observations.

4 Empirical Implementation Issues

In the empirical implementation, X is a one-factor CIR or Vasicek process, and Y are zero-

yields of varying maturities. The setup we’ve considered so far does not hold in this example

because there are four observables, but only one latent state variable.

To understand the source of identification of λ, let’s consider an illustrative example.

Let’s assume that only two yields Y
(1)
t and Y

(2)
t are used for estimation. The first yield

is used to back out the state variable X while the second one is assumed to be measured

with error. The following linear pricing relation holds for zero yields in a one-factor CIR or

Vasicek model,

Yt = A + BXt ,

where A and B are constant coefficients that depend on the maturity of the yield, θ, and,

most importantly, λ.

In the first step of the latent backfitting method, we fix some parameters θ1 and λ1 to
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calculate the associated A and B and then back out the state variable X by

Xt =
Y

(1)
t − A1

B1

,

where we use A1 and B1 to denote the coefficients for the maturity associated with Y
(1)
t . In

the second step, we assume that the backed-out Xt is actually observable and obtain second-

stage estimates θ2 and λ2 using the moment condition that derives from the likelihood

function

f(Xt|Xt−1, θ)
1√
2πσ2

e

exp

−

(
Y

(2)
t − A2 − B2Xt

)2

2σ2
e

 , (6)

where f is the conditional density of X (Gaussian for Vasicek and non-central χ2 for CIR),

and where σe is the standard deviation of the pricing error associated with Y
(2)
t .

It is important to note that in equation (6), the first piece, f(Xt|Xt−1, θ), comes from the

actual dynamics of the state variable X, and the second piece comes from the pricing error

associated with Y (2). To be more specific, the first piece takes advantage of the dynamic

property of X, which is the key motivation behind an approach like IS-GMM, while the

second piece has nothing to do with the dynamic property of X. Instead, it takes advantage of

the cross-sectional information in the data, which is valuable when the number of observables

is greater than the number of state variables.3 As discussed in Section 3, the first piece does

not provide identification for λ in the latent backfitting approach. By introducing the pricing

relation through the pricing error, the second piece, however, does provide identification for

λ. Specifically, A2 depends on λ in a Vasicek model, and both A2 and B2 depend on λ in a

CIR model.

3This pricing error approach has been used in a wide range of applications. See, for example, Chen and

Scott (1993) for a term-structure application and Pan (2002) for an option application.
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I guess this is how the conflicting observations are reconciled. The empirical implemen-

tation of this paper uses one yield (or linear combination of the four yields) to back out the

state variable X, and then takes advantage of the cross-sectional information embedded in

the other yields through pricing errors. The moment condition (to be more precise, the score

of the likelihood function) is built not only from the dynamics of the state variable X, but

also from the pricing errors associated with the “surplus” yields. The identification of λ is

achieved from the latter addition to the moment condition.

It is clearly a good practice to use as many liquid market prices as possible, and to use

both the time-series and cross-sectional information in the data. I would like to point out,

however, the potential pitfall of the proposed recursive approach. In particular, when the

number of usable market observables just equals the number of state variables, the latent

backfitting method has an identification problem for parameters like λ, which shows up only

in the pricing relation but not in the data-generating process. At least for this special case,

the latent backfitting method does not converge to IS-GMM, which does not suffer from the

identification problem of λ.

Let me close by answering the initial question I raised: under which condition will the

latent backfitting method be the chosen estimation method? Clearly, we would have to

exclude the case we just mentioned. Putting this aside, my view of this recursive scheme is

that it does provide some computational tractability by focusing one issue at a time. When

I was working on Pan (2002), in my computer programs I had a flag that would turn off

the parameter dependence of X, which corresponds to the second step of latent backfitting

method. As an intermediate try, I would use this flag to get a quick estimation of θ and then

use it as initial parameter values for the IS-GMM estimation. At no point, however, did I
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trust the estimation results with the parameter dependence of X turned off. First, there is

identification problem for λ for the case where the number of observables equals the number

of state variables. Second, the desired fixed point is ever so eluding when not much pressure

is enforced. If IS-GMM is the end point where things converge, why not use IS-GMM (when

MLE is not feasible)?
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