Preliminary Observations on IQSS/PSR LimeSurvey Project
Chase H. Harrison

January 3, 2008
I. Overview of Objectives for Open Source Development Project:
Assumptions
· System will be based on LimeSurvey
· System will be housed on a server.
· System will primarily be designed for web survey research

 Main Goals
· Create a free, open-source web-survey system which is as good at administering web surveys as any commercial product.
· Create a system which is easily downloadable and set-up on a server.
· Create a system which capitalizes on the advantages of collaboration across user networks

· Create a system which facilitates good survey research
· Create a system which provides for advanced research in survey methods
Operational Assumption
Designing question types is relatively independent of software architecture. This memorandum specifically does not detail the myriad ways survey questions might be asked in LimeSurvey, but focuses on broader issues such as core functionality and structure.

· II. Large Questions:
Balance between power and ease of use.

Advanced packages offer extensive customization or control, but require programming at different levels. In contrast, easy-to-use programs (such as SurveyMonkey or KeySurvey) offer more limited flexibility, but offer the ability for non-specialists to program. Developing a system that can meet both of these needs would be ideal.
At the same time, many users, including the people doing the most sophisticated work in visual survey design, develop their own web instruments from scratch using php, ColdFusion, or similar programming tools. One user mentioned: “We can design pretty much what we want and program a lot of functions into the instruments.” Another explained “The main advantage is the complete flexibility it offers for page layout, inclusion of graphics and other objects, orientation of response buttons in tables and matrices on screen, customization of screens with [visual logos] … and deployment of skip logic.” A system which allows infinitely customizable questions on top of a solid platform may optimize the ability of open networks to share new software developments.

Integration into multi-mode systems.
The trend in survey research is toward multi-mode surveys, and multi-mode facilities are built into the most sophisticated systems. Big multi-mode projects will be left to specialized organizations. However, many people who primarily conduct web-surveys incorporate items such as mailed pre-notification letters (which research suggests consistently improves response rates for all types of surveys) or telephone follow-ups for reluctant respondents. Recommended features:

· The ability to print a paper questionnaire from a web version
· The ability to integrate form-letter reminders and labels, etc. are all functions that might be incorporated into a system at some point.
· The ability to, in the future, upgrade with addition technology add-ons, e.g., mobile web applications, text-messaging, PDA surveys, etc. A good or great system will need to incorporate at least some of this flexibility.
Observation: If we can build the ability to incorporate some of these into the software at a later point, it will lay the ground for a large and extensible system.
WebSurvey 2.0:

Currently, most software packages (including LimeSurvey) provide “libraries” of question types for use as in surveys, for example as templates. The model for this is typically focused on the question format. Developing a platform for custom questions to be shared and indexed offers great potential to end users. At the same time, social scientists (and commercial users) often use batteries of questions (scales, etc.) consistently to compare results. Developing a platform or for sharing these batteries has great potential. Moreover, the data from these questions (including question wording, format, population, time) has significant value and could be shared as well (along the lines of the Dataverse).

Recommended features:
· Create a user-community to share survey questions, discuss the relative merits of survey questions, rate survey questions, substantively compare and analyze survey results, etc. This doesn’t have to be part of the “software” itself, but rather part of an on-line community.

· Encourage a link between data collected and Dataverse. Create a set of meta-data that a user would enter and would be stored with each survey (population frame, date, response rate, etc). Commercial firms typically provide this information in a Field Report (along with the top-line frequencies for individual questions).

III. Structural Issues for Web Software Packages:
Web survey systems do a lot of things. At the most basic level, they serve up web pages to users and collect data. The difference between the good systems and the bad systems are the features and interface to manage this.
A) Sample/Panel Management
Sample and survey administration – basically, everything but the questionnaire – is a crucial link for any survey project, or for that matter, any managed subject pool.
Preliminary Observation: In a typical data setup, the same database (i.e. in SQL) serves both sample records and collected data. Many of the crude home-brew survey applications require users to export data from this database to perform sample management functions. There’s nothing wrong with this, but it takes time, skill, and care. The advanced commercial systems integrate sample management functions into the software, thus making survey practice easier. Essentially, if I understand this correctly, the sample management functions represent an interface with the database to perform common functions.
The ability to maintain a dynamic relationship between stored data, sample management interface, the questionnaire, and the questionnaire management interface are essential.

Required features:

· The ability to upload, manipulate, and manage a list (or, in survey terms, sample). This requires:

· Import multiple fields in multiple formats

· Sort data based on fields and randomly

· Calculate and insert additional functions, including random numbers.

· Clean data upon import as appropriate (i.e. recognize “bad” e-mail addresses)

· Detect and eliminate duplicate records.

· Dynamically update sample records based on new information. This includes the ability to include multiple e-mail addresses and contact information.

· The ability to generate status reports of sample records, generate basic management reports, etc.

· The ability to manage and assess characteristics of returned e-mails, non-response, etc.

· Immediately review partial completes, including characteristics based on sample information, survey responses, and questionnaire characteristics.
· Understand characteristics of non-responders and returned e-mail attachments (for example, is a SPAM blocker at one institution eliminating all surveys; How does the system track things when a zillion e-mails are returned as undeliverable?)

· The ability to send personalized e-mail invitations, track response (including partial response and non-response), export respondent information to other formats (i.e. for letters, analysis, telephone follow-up).

· The ability to handle partial survey completes including:
· Optional suspend and resume
· Accidental suspend and resume
· The ability to manage complex quotas is essential for many surveys. Quotas involve the number of respondents in a given category who complete a survey, the number who receive different versions of a questionnaire, the number who are targeted in a sample mail-out, etc. Common and advanced quota functions include:

· Quotas managed based on sample information, survey responses, and external table information.

· Complex quotas based on calculations and data from multiple sources.
· Quotas dynamically managed based on incidence but including random functions.

· Quotas based both for full questionnaires and for attributes in questions.

· Qutoas based on minimum; maximum; least likely; most likely; other calculations
· Basic survey management database could be expanded to a “panel management” database that includes information about “panelists,” including preferences, circumstances in which they typically respond to surveys, surveys taken so far, and so forth.

B) Questionnaire Management:

Survey questionnaires have a form and structure which is more than the sum of individual questions. In terms of programming, some of these questionnaire management features may end up as functions of individual questions, while others stand out apart from the questions. Moreover, some of these features are the sorts of things that advanced programmers can typically program into questionnaires without specific pre-packaged features. The better software programs, though, make use of these features easy to use. This section is designed to cover some of the issues involved in structuring questionnaires and in structuring how survey questions relate to each other.
Better systems incorporate a questionnaire authoring interface to assist in survey design. The basic parts of this involve maintaining batteries of questions, libraries of response sets, and so forth. (LimeSurvey seems fine here). Recommended features:
· The ability to import a questionnaire in MSWord or ASCII format and have a basic survey questionnaire automatically generated. (There’s usually a bit of basic scripting here).
· The ability to review at-a-glance questionnaire logic, including branching and skipping.
· The ability to apply “style” sheets to surveys, or maintain libraries of survey elements such as color of background, font, visual effects, status-bars, etc.
One thing that the commercial web software systems do well, while custom systems do only with great difficulty if at all, is randomizing and rotating questions (and response options). This is important for good survey practice, and also essential to methodological research. This is also one of the complaints I most commonly hear about basic packages. Recommended features:
· Branching and filtering a questionnaire based on sample information.
· Complex Skips
· Calculations
· Skips based on sample/table information. For example, a respondent may be directed to a question based on whether other respondents have answered one way or another. If a survey randomly selects several scenarios for a respondent to answer questions about, the survey needs to be able to check whether a respondent has previously answered that scenario.
· Use of hidden code / calculations
· Questionnaire looping. For example, a respondent answers the same set of questions for each member of their family, each friend, etc.
· Randomization and rotation of questions, attributes, variables, and grids—and response options. It’s common to need to randomize blocks of questions within other blocks of questions. For example, studies often have several layers of randomization (e.g. response order, question order randomizations, etc.).
· Partial randomization and rotation of questions, attributes, variables, and grids—and response options. In some cases it is important to be able to designate certain response options as coming either first or last.

· Ability to manage complex experimental conditions within an easy questionnaire structure. For example, a study has six vignettes, and there are two sets of four variables embedded in the vignette that need to be changed. This sort of question should be able to be created without writing 96 separate survey questions.

· Ability to include experimental conditions based on randomization from different statistical distributions, including complex distributions. For example, a question might ask a respondent if they would vote for a candidate if they received X% of the vote, where X is drawn from a normal (or other) distribution. Or, make this conditional on another calculation or response.

· Recording the order randomized items are presented to respondents. Ideally, separate fields are available to record the order used in any randomization.
· Maintaining the same random order of items throughout multiple questions or batteries. For example, one battery of questions might ask about use of student services and the other would ask about satisfaction with those services. The order of the first battery is random, but the order of the second battery matches the first. This needs to be applied for response options as well.
· Balanced randomization and blocking
· Calculating random question order internally and from an external table. For example, sometimes questions need to be randomly generated “on the fly”. In other times, “random” order is predetermined based on a table. In other cases, random selection needs to occur within conditions (i.e. select one from list A; one from list B; One from list C; One from list D) The random order sometimes needs to include information about what other questions have been randomly selected.
· Changing length of open-ended text box

The ability to interactively change the questionnaire based on the particulars of question-level response or non-response, including:
· Controlled viewing of previous pages
· Variable progress bars – indicators
· Variable required and optional questions
· Customized error messages and reminders.
· Survey based error messages: for example, turned on or off by default; toggled for question; toggled for respondent
· Multiple constant sum indicators in real time
The ability to manage multiple languages (LimeSurvey is strong here). This often includes:
· Non-Western alphabets and character sets
· Ability to toggle languages at will.
· Ability to measure which questions are asked/read in which language.
Piping, or the moving of data from one field to another, is essential to many questionnaires. Data can be piped from previous questions (closed-ended or open-ended), from the sample database, or from an external table. Similar functions include:
· Contingent fill-in of items based on previous answers (auto-coding)
· Contingent response lists – for example, permitting response options to change based on responses to previous questions.
· Validation and editing (soft / hard editing)
· Use of open-end responses in answer choice list
Other possible features:
· Time-limited questions
· Use of hidden questions (timed on / off; placeholders)
C) Question Design:
Survey questions represent the visual stimulus that survey respondents respond to. It is particularly important to note that many variations in question presentation can impact survey responses. In addition to having a library with a variety of question types, an ideal question design tool provides full control over page layout, color, font, text, spacing, etc. Recommended features:
· Custom visual design
· Use of color / motion / sound
· Ability to add logos / custom visuals
· Support for PhP, Html, Java, Flash, etc. custom questions.
· Scalable and convertible orientation of response buttons, tables, and matricies
· Complete control of page-layout
· Control of the length of open-ended response option boxes.
Many survey questions need to import or pipe information from other survey responses, or other data. Typical piping features include:
· Piping text from previous questions (Closed Ended and /Open Ended)
· Piping text from sample (Closed Ended and /Open Ended)
· Piping text from external tables and databases
· Selection of answer choices based on previous responses
· Contingent Grids and Questions (e.g. awareness grid)
· Suppression of codes
Accessibility

Standards regarding the accessibility of surveys for users with disabilities are becoming increasingly used and required, particularly in government surveys.

Recommended standards:

· 508C Compliance. The federal government requires web pages used by federal agencies to be complant with a set of guidelines to make web pages compliant with section 508C of the ADA.
(See: http://www.access-board.gov/sec508/guide/1194.22.htm)
Many government agencies, at the state and federal level, require survey software to be compatible with these standards (and the major commercial packages are)

· WCAG 2.0 Compliance. The second set of standards for access are the Web Compatability and Access group standards.

See: http://www.w3.org/WAI/

Management and Editing
Although data collected by questionnaires is stored in a database (e.g. MySQL), survey systems commonly include features to facilitate the management of data in the core database and to facilitate transfer of the data to more commonly used formats.

Recommended features:
· Automated data editing and cleaning
· Automated cleaning and filling-in of open-ended responses
· Plausibility / outlier checks
· Validation to external data
· Storage of time to complete, time to mark, etc.
Survey checking and data cleaning are important steps in survey construction and validation. Recommended features:
· Generation of “random” data to check for quality and consistency checks
· Generation of logic and branching tables
In addition to survey responses, survey systems commonly are asked to record a variety of information about survey data:
· Time started, stopped, accessed, for each question
· IP address (or addresses for surveys completed in multiple time frames)
· Response latencies (time to complete)
· Edit histories (i.e. soft vs. hard)
· Use of mouse (number of clicks or, in some cases, movement)
· Use of forward and back browser buttons
E) Data Export and Analysis

Data stored in a survey database needs to be documented, exported, analyzed, and managed. Many survey packages, including LimeSurvey, include integrated analysis functions. Although these may have great use for some users, this memorandum largely ignores most of these. In an academic environment, or among survey analysts, survey data is commonly exported to other statistical packages (i.e. SPSS; SAS; STATA; R; Excel). For these types of users, analysis functions built into survey software are primarily used to review and manage data, perform quality control, understand the survey process, and so forth.
Recommended features:

· One absolutely essential feature which is present in most commercial systems but absent in many others is the ability to print paper (or *.TXT; *.RTF; *.DOC, *.PDF) documentation of survey questions. This “codebook” typically contains full question wording, documentation of all skip patterns, codes, question numbers (identifiers), and other essential information. The lack of this documentation has been the source of countless lost hours, lost data, and mis-analysis in web survey data.
· Full edit history for questionnaire
· The ability to include or suppress data labels
· The ability to easily print a screen-by-screen image of what the survey looked like to respondents
· Ability to generate questionnaires with summary data. In these cases, summary data (frequencies) are included. Filtering is usually an option here: for example, include all respondents, all who have completed the entire survey, all “valid” respondents, etc.
· Ability to generate questionnaires based on respondent, summary questionnaires, summary report, etc. In these cases, summary data (frequencies) are included.
Data editing features are usually included in a survey package. Although some (much) editing and cleaning can take place in an external package, the ability to delete cases (for example invalid ones) or make hard edits to responses (due to errors; corrections) are usually included. (Separately, survey users need to develop appropriate editing protocols and procedures to insure this isn’t done inappropriately or to cause damage. But there are many times when a permanent edit to a database preserves data integrity in the future.)
Data export and management features are also needed to transfer survey data from the web database. Recommended features:
· Ability to select respondents, data, and fields for export. (For example, it’s usually not a good practice to regularly export respondent names or identifiers if they are in the data, although they may be exported for special validation or review under appropriate circumstances)
· Ability to design custom data formats (e.g. for multiple response questions, numeric or alpha, separate column for “Other” specify, etc.). For example, multiple response questions can be structured as a categorical variable with different fields for each possible mention, or as a set of independent Yes/No (1/0) codes.
· Ability to re-shape or manipulate data (for example, in cases where single surveys collect data on multiple units, etc.) For example, if a study asks respondents to provide data about all family members, for example, it may be useful to have a single “stacked” dataset with one record for each family member.
· Ability to design a custom data format. In some cases, templates can be applied.
· The ability to appropriately include consistent data export formats when questionnaires have been modified. (For example, if Q2A is added after Q2 and before Q3, the user wants the option to restructure the dataset to include Q2A in position or to append It at the end of the dataset.)
· The transfer of meaningful variable names, value labels, and variable labels. (Note: One common was to do this is to have the export program export a .TXT or .CSV file, and include separately a data definition program in SPSS syntax or SAS code.)
· Ability to export data to common formats (i.e. SPSS; SAS; TXT; CSV)
Common user-friendly features of final exported data:
· Value labels and question wording as a variable label

· Allow for versatility is how response options are recorded in data. For example, if 3 different groups of respondents receive slightly different question wordings (but same response options), can one out-putted variable be created. Or if response options are randomly ordered, will a single variable be created or will each variation of response option list create a new variable.
· Ability to limit the length of open-ended responses at data output stage (as well as survey stage)

· Allow skips, refusals, etc to record with specific numeric values.
· Creation of a separate string variable for “other” text boxes. Some systems store all open-ended/text responses as a separate file that then is later merged in (often after coding). Other responses should receive both a numeric response as well as the string response so you can identify who has given an other response even before it has been coded.
· Ability to designated missing values for the entire dataset.

· Ability to distinguish between different types of missing values through default or custom codes (e.g. not asked; not answered; volunteered don’t know)

· Ability to output either text responses or numeric codes for data

LimeSurvey Notes (CHH; 01/03/08)

Page 1 of 9

