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Abstract— Trajectory optimization is performed for aggres-
sively maneuvering multirotors. Leveraging the differential
flatness of multirotors, we formulate the trajectory optimization
problem as a mixed-integer quadratic program solved using
Gurobi. We implement four different aggressive trajectories:
flip in roll, flip in pitch, flip in roll with translation and half-
flip with translation. The controller used to track the trajectory
consists of an outer loop (with a feedforward term) to track
the position and velocity, and an inner loop to track attitude.
This framework is extensively tested in simulation and on real
hardware, achieving flights through a 90◦ gate at 8m/s. Finally,
we study and implement an alternative method to explicitly take
into account actuator constraints.

SUPPLEMENTAL MATERIAL

A video of the simulation and hardware testing can
be found at https://youtu.be/WnfzMO0pXsc.
The code used in this project is available at https:
//github.com/jtorde/uav_trajectory_
optimizer_gurobi.

I. INTRODUCTION AND RELATED WORK

Multirotors are popular aerial platforms for guidance,
navigation, and control research. In this paper, we focus
on the guidance of these small unmanned aircraft systems
(sUAS) via trajectory optimization.

Different approaches have been proposed in the literature
to solve the trajectory optimization problem for multirotors.
One method uses the full nonlinear dynamics of multirotors,
and solve it as an standard optimal control problem, which
can be solved via sparse nonlinear programming and hp-
adaptive Gaussian quadrature collocation methods [1].

However, most state-of-the-art planners [2]–[7] leverage
the differential flatness of multirotors, which gives a one-
to-one algebraic mapping between the “flat” output states,
and the full system states and inputs [8]. Using this property,
trajectory generation can be formulated as a convex optimiza-
tion problem. Assuming a simple nth-order integrator model,
the squared norm of a derivative of the position is minimized
to find a dynamically-feasible smooth trajectory [4], [9].
Tracking of the trajectory is then achieved using a low-level
tracking controller [6].

The goal of this project is to implement both in simulation
and in hardware (see Fig. 1) the trajectory optimization
problem required to obtain different aggressive maneuvers.
In particular, we will focus on flips through a gate. Moreover,
we also study an alternative formulation proposed in [10] to
explicitly take into account actuator constraints.
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Fig. 1: A hexarotor following the optimized trajectory at 8m/s
through a gate rotated 90◦. Both the hexarotor and the cardboard
gate have reflective markers used for the motion capture systems.

In summary, this work presents the following contribu-
tions:

• A formulation of the trajectory optimization as a mixed-
integer quadratic program (MIQP) and implementation
in Python using Gurobi.

• Simulation experiments showing four different aggres-
sive trajectories: flip in roll, flip in roll with translation,
flip in pitch, and half-flip with translation.

• Hardware experiments for the half-flip with translation
trajectory, with speeds up to 8m/s.

• Implementation of an alternative formulation to take
into account the actuator constraints.

The rest of this paper is organized as follows. The tra-
jectory optimization problem is posed in Section II. A brief
discussion of the tracking controller is found in Section III.
Simulation results are given in Section IV-A and hardware re-
sults in Section IV-B. In Section V, an alternative formulation
is discussed. Finally, the conclusion is given in Section VI.

II. TRAJECTORY GENERATION

Using a triple-integrator model, and assuming a piece-wise
constant jerk, the acceleration will be piece-wise linear, the
velocity will be a spline of parabolas and the position will
be a spline of cubic polynomials. Hence, by minimizing jerk
we are minimizing the control cost (or, in in other words,
maximizing the smoothness of the trajectory). The design
of a sample trajectory with N intervals is shown in Fig. 2.
Apart from these dynamic constraints, we have to impose
continuity constraints and state/inputs bounds. Finally, to
obtain a desired trajectory, we impose several attitude and
position constraints that will be detailed later on. In summary,
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Fig. 2: Each interval n ∈ {0, N − 1} of the trajectory is a third
degree polynomial, with a total time of dt per interval. τ ∈ [0, dt]
denotes a local reference of the time inside an interval.

the mathematical program is given by

min
j0:N−1

N−1∑
n=0

‖jn‖2 (1)

s.t. x0(0) = xinit

xN−1(dt) = xfinal

xn(τ) = anτ
3 + bnτ

2 + cnτ + dn ∀n, ∀τ ∈ [0, dt]

vn(τ) = ẋn(τ) ∀n, ∀τ ∈ [0, dt]

an(τ) = v̇n(τ) ∀n, ∀τ ∈ [0, dt]

jn = 6an(0) ∀n
xn+1(0) = xn(dt) n ∈ {0, N − 2}
‖vn(0)‖∞ ≤ vmax, ∀n
‖an(0)‖∞ ≤ amax ∀n
‖jn‖∞ ≤ jmax ∀n
attitude and position constraints

In the above optimization problem, dt is the time allocated
per interval (see Fig. 2). To ensure that the problem remains
convex, we fix this value and use a line search on dt, taking
the first solution for which the problem converges.

In the remainder of this section, we outline the trajectory
design of four different trajectories.

A. Flip in Roll

In this scenario we consider a gate above the position of
the vehicle, and we force the multirotor to do a flip in roll
while traversing the gate. The five different stages of the roll
maneuver are depicted in Fig. 3. The stages are encoded as
the following constraints, where {bni}3i=0 are binary decision
variables:

bn0 = 1 =⇒ an,y = an,z + g ∀n

bn1 = 1 =⇒
{

an,z + g = 0 ∀n
an,y ≥ εy ∀n aN/2,z + g ≤ −εz

aN/2,y = 0
xN/2 = xGate

bn2 = 1 =⇒
{

an,z + g = 0 ∀n
an,y ≤ −εy ∀n

bn3 = 1 =⇒ an,y = −(an,z + g) ∀n∑N−1
n=0 bni = 1 ∀i∑3
i=0 bni ≤ 1 ∀n

All the variables in these constraints are evaluated at dt,
which is omitted to simplify the notation. In these constraints,
g denotes the absolute value of the gravity (9.81m/s), and
the accelerations ay and az are expressed in the world frame.
εy denotes a strictly positive quantity (but not necessarily
small) chosen by the user. The idea behind εy is to enforce a

Fig. 3: Orientations imposed to perform a flip in roll. In red,
an,z + g, and in blue, an,y

coupling between the accelerations ay and az to prevent the
vehicle from flipping with ay(t) = 0 ∀t. Without this cou-
pling, the multirotor could perfectly flip by simply achieving
az <−9.81m/s, which is feasible for this decoupled triple-
integrator model, but clearly infeasible in the real multirotor:
a flip in roll requires ay(t) 6= 0 for some interval of time
(i.e., the normal of the plane of the motors have to be not
parallel to the world axis z for some interval of time, see
Fig. 3).

Note that with the above binary decision variables, we are
allowing the solver to choose in which specific interval of
the trajectory each specific orientation is achieved. Moreover,
we are not forcing any specific order in these constraints.
Therefore, the solver can choose to do a positive-roll flip
or negative-roll flip (depending on the initial velocity of the
vehicle, for instance).

B. Flip in Roll with translation
Using the same constraints as above, we can also achieve

a translation while doing the flip if we impose that xinit,x 6=
xfinal,x. In this case the gate is placed in the middle between
the starting and the end point.

C. Flip in Pitch
In this scenario, the gate is again above the initial position

of the multirotor, but this time we force a flip in pitch using
the following constraints:

bn0 = 1 =⇒ an,x = an,z + g ∀n

bn1 = 1 =⇒
{

an,z + g = 0 ∀n
an,x ≥ εx ∀n aN/2,z + g ≤ −εz

aN/2,x = 0
xN/2 = xGate

bn2 = 1 =⇒
{

an,z + g = 0 ∀n
an,x ≤ −εx ∀n

bn3 = 1 =⇒ an,x = −(an,z + g) ∀n∑N−1
n=0 bni = 1 ∀i∑3
i=0 bni ≤ 1 ∀n

Note that these constraints are the same as the ones previ-
ously defined in Section II-A, but an,y is replaced by an,x,
and εy by εx.

D. Half-flip with translation
We now consider a scenario in which the vehicle has to

pass through a gate tilted by 90◦. To achieve this, we impose
the following constraints:

an,z + g ≥ 0 ∀n aN/2,z + g = 0
aN/2,y ≥ εy
xN/2 = xGate



Fig. 4: System architecture. The low-level autopilot is capable of tracking desired attitude and body rates, which are generated by the
outer loop. The outer loop tracks position and velocity, using acceleration and jerk as feed-forward commands. All of these inputs are
generated from the trajectory optimization described in this paper.

In the first constraint we simply impose that the relative
acceleration in z has to be always positive (to ensure that the
multirotor does not perform a complete flip). In the second
set of the constraints, we impose that the vehicle’s roll has
to be the same as the orientation of the gate. Note that no
binary variables are used in this case, since the constraint at
N/2 is enough to generate the desired trajectory.

For any tilted angle α 6= 90◦ of the gate, the constraints
would be as follows:

an,z + g ≥ 0 ∀n (aN/2,z + g)tan(α) = aN/2,y

aN/2,y ≥ εy
xN/2 = xGate

III. TRAJECTORY TRACKING

To track this trajectory, we use the control diagram shown
in Figure 4. In this control scheme, we distinguish fwour
main blocks:
• Trajectory Generator: Here the optimization problem

explained in Section II is solved, producing the desired
position, velocity, acceleration, and jerk.

• Outer Loop: Using a PID loop, feedback acceleration
is computed to track position and velocity. Combining
this feedback acceleration with the desired acceleration
from the trajectory generator as a feed-forward term,
the desired attitude is computed. The total commanded
acceleration is also used to calculate the desired thrust.

• Inner Loop: Given the desired jerk from the trajectory
generator and feedback jerk numerically differentiated
from feedback acceleration, the desired body rates ωdes
are computed. Then, given the desired attitude from the
outer loop, this block calculates the moments M using
a quaternion-based PID controller expressed as

M = sign(qw)Kp~qe +Kd(ωdes − ω), (2)

where qe = q∗ ⊗ qdes and ~qe =
[
qe,x qe,y qe,z

]>
is

the vector (imaginary) part of the quaternion. Using the
motor allocation matrix, the actuator commands f are
recovered from the desired thrust and moments.

• Observer: Position, velocity, attitude, and IMU biases
are estimated by fusing propagated IMU measurements
with an external motion capture system via an extended
Kalman filter.

IV. RESULTS

We solve the optimization problem using Gurobi [11], a
commercial solver that solves convex problems (LPs, QPs,
and QCPs), and that also allows the use of binary variables
(i.e., it also solves MILPs, MIQPs, and MIQCPs). We use
the Python interface to encode the optimization problem.
Additionally, we leverage ROS for communication between
the different algorithm components, which enables both
simulation and hardware testing with minimal changes.

A. Simulation

For the simulation, we first generate the trajectory with
the aforementioned optimization problem, and then track
it using the controller diagrammed in Figure 4. The full
nonlinear dynamics of the multirotor are simulated in C++ by
numerically integrating the associated differential equations
using a 4th-order Runge–Kutta solver. We visualize the
trajectory using RViz and Gazebo.

The 3D plot of the trajectory, together with the posi-
tion and orientation tracking errors of all the trajectories
explained previously are shown in Figure 5. As it can be
seen, the multirotor always passes through the gate and a
reasonably low tracking error in position is achieved for
all of the trajectories. We also have low attitude tracking
error in the flip in roll and flip in pitch trajectories, although
this error is higher for the flip in roll with translation and
half-flip with translation trajectories. One of the reasons
for this is that the controller struggles more when it has
to do a flip (or a half-flip) at the same time as it is
translating: specially in situations in which the plane of the
motors is parallel to the direction of the translation, the
multirotor instantaneously “loses control” on that direction.
We also believe that more tuning of the inner and outer loop
controllers of the simulation would help to reduce this error.

Refer to the supplemental material for a video of the
simulation.

B. Hardware

We test the trajectory generation algorithm in hardware
using a hexarotor in the Aerospace Controls Laboratory flight
space. The flight space (shown in Figure 1) is equipped
with two brands of motion capture systems: VICON for
the half where the vehicle starts and OptiTrack for the half
where the vehicle ends. This requires combining the two



(a) Flip in roll (b) Flip in roll with translation (c) Flip in pitch (d) Half-flip with translation

Fig. 5: Simulation results of the various trajectories discussed in Section II. The vehicle starts at the blue marker and ends at the red
marker. The tracking performance of each trajectory is also shown.

systems with a static frame transformation; however, due to
the warping of camera systems (and in particular, at the edges
of two separate systems), using a static transformation is not
accurate for all points between the systems.

Specifically, we test the half-flip with translation trajectory
through a gate (see Fig. 1) at various orientations and opening
sizes. The hexarotor (shown in Fig. 7) is equipped with a
Snapdragon Flight board which runs the outer and inner loop
control. The trajectory optimization piece is performed off-
board at the beginning of each test.

The results of these tests are found in Fig. 6. In the error
plots, we can see that the trajectories are generally tracked
well, but there is more error than in simulation. We think of
four possible causes for this, starting with the most flagrant:

• In the formulation presented so far, we are not taking
explicitly into account actuator constraints of individual

motors. After analyzing the logs of the flights, we
noticed that in some maneuvers motors were saturating.
This nonlinear phenomenon is clearly undesirable and
could be remedied by lowering the state bounds in the
optimization problem (1). An alternative approach to
solve this is presented in Section V.

• The flip happens at the intersection between the VICON
and OptiTrack camera systems. Due to the error in
fitting a static transform between the two systems, a
state jump is introduced as the multirotor flies between
these two systems. Further, we have observed that Opti-
Track is in general more finicky than VICON, requiring
frequent calibration and more thoughtful placement of
reflective markers.

• A higher-order model (i.e., minimizing snap) would
help reduce the jerk and create a more mild trajectory.



(a) 30◦ and wide (b) 45◦ and wide (c) 45◦ and narrow (d) 90◦ and narrow

Fig. 6: Hardware flight results of the half-flip with translation trajectory. The orientation and opening size of the gate is varied. The
tracking performance of each trajectory is also shown. The maximum speed achieved is about 8m/s.

• As with any controller, more time tuning the gains on
the outer and inner loop would help reject the specific
disturbances caused by the designed maneuver.

Refer to the supplemental material for a video of the flight
tests.

V. ALTERNATIVE FORMULATION

In contrast to a numerical optimization for minimum-
jerk trajectory generation, Cutler and How [10] propose
a method that utilizes 9th order polynomials to achieve a
closed-form solution to minimum-snap trajectories. Actuator
constraints are respected by iteratively solving this closed-
form expression while minimizing the time of the total
trajectory. We implemented this approach in MATLAB. To
track the trajectory, we also implemented the quaternion-
based attitude controller proposed in [10], which relies on
the differential flatness of multirotors.

A. Dynamic Model

The nonlinear dynamics of a multirotor are modeled as a
rigid body in R3×SU(2). We use the unit quaternion attitude
representation to capture the nonlinear nature of rotations.
Thus, the equations of motion (in an ENU inertial frame,

FLU body frame) are given by[
0
r̈i

]
=

1

m
q∗ ⊗

[
0
Fb

]
⊗ q−

[
0
gi

]
(3)

ω̇b = J−1
[
Mb − ωb × Jωb

]
, (4)

where Fb =
[
0 0 ftotal

]>
, ftotal is the thrust, aligned with

the z-axis due to motor placement, and Mb are the moments
induced on the body by the actuators.

B. Trajectory Generation

A piecewise-smooth trajectory is generated for the mul-
tirotor to follow. As is popular in other work [9], a poly-
nomial representation of the trajectory position is used,
which makes specifying constraints on the derivatives of
position straightforward. For a 9th-order polynomial with n
waypoints (n−1 segments), the position trajectory is defined
as

rd(t) =



∑9
i=0 αi,1t

i 0 ≤ t < t1∑9
i=0 αi,2t

i t1 ≤ t < t2
...

...∑9
i=0 αi,n−1t

i tn−2 ≤ t ≤ tn−1

.



Fig. 7: Custom hexarotor used in the hardware experiments. It is
equipped with the Qualcomm R© Snapdragon Flight, which is where
the controller and the observer run.

With a desired initial and final position, fixed times {ti}n−1i=1

and continuity constraints on the derivatives of rd, a linear
system can be constructed to solve for the coefficients αi,j .

C. Actuator Constraints
The primary factor in the magnitude of the actuator com-

mands is the segment endpoint times {ti}n−1i=1 . By performing
a line search on the endpoint times, actuator constraints can
be enforced. The mapping between the optimized trajectory
rd and actuator commands is found via differential flatness,
as outlined in [9], [12].

D. Results
To test our implementation of [10], we generate a two-

segment trajectory from x(0) =
[
0 0 0

]>
, through

x(t1) =
[
× × −2

]>
, to x(t2) =

[
6 0 0

]>
, as shown

in Fig. 8. Note that at time t1 we only impose a constraint on
the z-position, allowing the other positions to be free. The
times are initially set to t0 = 0, t1 = 0.5, t2 = 2.

The tracking of a minimum-time, actuator-constrained
trajectory is shown in Fig. 9. The trajectory is optimized
after 12 iterations. If the optimization is stopped early at 6
iterations, the actuator constraints are violated, as shown in
Fig. 10. Note that on a real system, the tracking would not
be as good since the actuators would saturate.

VI. CONCLUSION AND FUTURE WORK

This work presented a trajectory optimization framework
to obtain aggressive trajectories for multirotors. By using the
differential flatness of multirotors, a MIQP was formulated
to obtain a desired trajectory, and then a controller was
used to track it. This framework was successfully tested
both in simulation and in hardware experiments, achieving
aggressive flights through a gate with speeds up to 8m/s.
Finally, an alternative formulation to explicitly take into
account actuator constraints was studied and implemented
in simulation.

Fig. 8: A trajectory generated using the MATLAB implementation
of the alternative method. Constraints are chosen so that the z-
position of the multirotor moves through −2. A line search is
performed on time for a minimum-time trajectory that respects
actuator constraints.

Fig. 9: Tracking of the optimized trajectory after 12 iterations. Final
times are chosen to be t0 = 0, t1 = 1.6, t2 = 3.1. The actuator
constraints are mapped into forces and moments and shown in
dashed black lines.

Given the promising results obtained both in simulation
and in hardware experiments, there are several possible
future directions. On one hand, in the proposed approach
we have assumed that the controller is able to maintain the
multirotor near the desired trajectory, but strictly speaking,
there are no performance guarantees. Therefore, we think one
interesting future work is to apply tube-based MPC [13], [14]
to guarantee that the vehicle is inside a tube around a
nominal trajectory. This strategy is similar to the idea of
funnels and LQR-trees [15]. Moreover, for the hardware
experiments we have used the accurate full-state information
(position, velocity, orientation, and angular rates) provided
by the motion capture systems. Hence, one possible future



Fig. 10: Tracking of the optimized trajectory stopped early after 6
iterations. Final times are t0 = 0, t1 = 1, t2 = 2.5. The actuator
constraints are violated due to attitude commands.

work is to use on-board vision-based state estimation to
overcome this limitation. The planner would then generate a
more (or less) conservative trajectory by taking into account
the uncertainty of the state estimation.
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